Supporting information for: a-ARM: Automatic Rhodopsin Modeling with Ionization State Selection, Counter-ion Placement and Chromophore Cavity Generation

Laura Pedraza-González,[†] Luca De Vico,[†] María del Carmen Marín,[†] Francesca Fanelli,[‡] and Massimo Olivucci^{*,†,¶}

†Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy

[‡]Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, I-41125 Modena, Italy

¶Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States of America

> E-mail: olivucci@unisi.it Phone: +(39) 0577-234274

Contents

List of Figures	$\mathbf{S3}$
List of Tables	$\mathbf{S4}$
S1 Details on the automation limits of the original ARM protocol in te	erms of

the preparation of the ARM input

S5

S3	Detailed workflow of each step for the <i>a</i> -ARM automatic input generation	$\mathbf{S9}$
	S3.1 Step 1. Automatic identification of the protein chain, rPSB, chromophore bounded	
	Lys, MC and SC	S9
	S3.2 Step 2: Automatic generation of the chromophore cavity	S10
	S3.3 Step 3: Automatic assignment of ionization states	S11
	S3.4 Step 4: Automatic counter-ion placement	S12
$\mathbf{S4}$	Automatic format conversion from LYR to RET plus LYS	S13
S5	Features of the <i>a</i> -ARM QM/MM Models	$\mathbf{S14}$
S6	Summary of the ARM QM/MM calculations	S 17
$\mathbf{S7}$	Details of the employed comparative modelling protocol for AARh, PoXeR	Ł,
	hMeOp, mMeOp and BCone, GCone, RCone	S26
S8	Further details on the assignment of ionizable residues protonation state	S28
$\mathbf{S9}$	Notes	S29
Re	eferences	S 30

List of Figures

S1	Automatic Rhodopsin Modeling workflow. The new version $(a-ARM)$ incorpo-
	rates the original version of the ARM protocol further described in ref. S1. In
	ARM, N independent simulated annealing (SA) and molecular dynamics (MD)
	room-temperature relaxations are performed at the MM level using GROMACS
	on the cavity and the Lys-QM systems
S2	Step 1. Initial preparation of the input file. The red filled boxes represent tasks
	in which the user may interact with the program
S3	Step 2. Automatic generation of chromophore cavity. The code does not require
	the user's interaction during its execution
S4	Step 3. Automatic assignment of ionization states. The red filled boxes represent
	tasks in which the user may interact with the program
S5	Step 4. Automatic selection of counter-ion placement. The code does not require
	the user's interaction during its execution

List of Tables

S1	Correspondence between atom names in RET and LYR residues. The atom name	
	of LYR and Lys covalently linked to the rPSB are consistent	S13
S2	Main features of the a -ARM QM/MM models for the rhodopsins in the bench-	
	mark set.	S14
S3	Summary of the ten a -ARM QM/MM calculations performed for the rhodopsins	
	in the benchmark set. Computed total ground state (S_0) and first excitation	
	(S ₁) energies, transition oscillator strength (f_{Osc}), first vertical excitation energy	
	(ΔE_{S1-S0}) and maximum absorption wavelength (λ_{max}^a) . Statistical parameters	
	such as average (\overline{N}) , difference between calculated and experimental data (\overline{N})	
	and standard deviation $(\sigma_{\overline{N}})$ are also provided	S17
S4	Trend deviation factor (Trend Dev.) for the a -ARM _{default} and a -ARM _{customized}	
	approaches, expressed as mean absolute error (MAE) and mean absolute devia-	
	tion (MAD) of the x=38 rhodopsins of the benchmark set	S25
S5	Main features of the comparative models	S27

S1 Details on the automation limits of the original ARM protocol in terms of the preparation of the ARM input Initial setup of the working PDB file ($\mathbb{Z} \approx 30 \text{ min}$)

- S1.1. The initial template, which is an X-ray structure or a comparative model in PDB format, is cleaned by manual deletion of the lines carrying irrelevant information, so as to extract the information associated with the coordinates of the residues belonging to the QM/MM model. For instance, the selection of the **opsin chain** is handled by manually removing the information on all other chains different from chain A. After this procedure, the Atom serial number and the Residue sequence number are not consecutive. So, those numerations are fixed manually by checking and changing each row of the template PDB file.
- S1.2. There is not a standard procedure to identify and select rotamers of a residue. Therefore, for each template structure, the identification of rotamers is made by searching manually residues with non standard four letters (instead of standard three-letter abbreviation) Residue name. For instance, in the case of the 1XIO^{S2} template, there are two different rotamers for the Lys 210 with Residue name ALys and BLys, and two different rotamers for the Retinal with Residue name ARET and BRET. This procedure is time demanding and error prone, since for each new model the user must do manually this search considering all 20 standard amino acids and, additionally, the retinal protonated Shiff base (rPSB) chromophore.
- S1.3. The selection of the rPSB is done manually, assuming the Retinal as default. Therefore, the information of the RET residue is kept, whereas the information of all other non standard residues (i.e. ions and membrane lipids) is removed by manually deleting the corresponding lines in the file.
- S1.4. The selection of the Lys residue covalenty linked to the rPSB, the primary (MC) and

secondary (SC) counter-ions is made by visual inspection.

Generation of the cavity file ($\Xi \approx 15 \text{ min}$)

S1.5. The generation of the cavity file is performed by using the CASTp^{S3} web-server. Thus, the general procedure for acquiring the ARM cavity file is: i) Upload the PDB file on the web-server page; ii) Submit the job and wait some time for the calculation; iii) Visualize the different pockets and select the one which contains both the rPSB and its linked Lys residue; iv) Write (manually) a list with the residues forming the cavity; v) Generate (manually) the cavity file. This procedure is time demanding and error prone due to the writing of the residues list.

Assignment of ionization states ($\Xi \approx 45 \text{ min}$)

S1.6. The ionization state of the residue side-chains is assigned through the calculation of their pK_a valuess and burying percentage, by manually launching the PROPKA3.1^{S4} software on the current PDB file. The results contained in the PROPKA output file are then analyzed by doing (manually) a series of operations. These involve manually checking if the difference between the calculated (pK_a^{Calc}) and model (pK_a^{Model}) pK_a values of each amino acid is higher than a shift value (usually 1.5 or 2.0), and if the burying percentage is higher than 55%. However, notice that there is no general consensus for the shift and burying values. Additionally, once the side-chains whose ionization state has to be changed are identified, such change (Asp \rightarrow ASH, Glu \rightarrow GLH, His \rightarrow {HID, HIE, HIP}, Lys \rightarrow LYD) is done by manually modifying the Residue name in the current PDB file.

Counter-ion placement ($\Xi \approx 180 \text{ min}$)

S1.7. The addition of both Cl⁻ and Na⁺ external counter-ions is necessary to obtain a globally neutral model. The corresponding procedure (Figure 3 in the main text) is handled by a series of manual steps which are time demanding and ambiguous (*i.e.*, subject to the personal user choice):

- S1.7.i. Open the working PDB file in a molecular visualization software and identify the rPSB, the covalently linked Lys residue, the MC and the SC.
- S1.7.ii. Define -visually- the inner (IS) and outer (OS) surfaces of the protein, based on the positions of both the chromophore and its covalently linked Lys residue. It is difficult (and not rigorous) to establish, visually, a correct criteria to define the border between the IS and the OS.
- S1.7.iii. Identify (visually) the positively (Arg, Lys, His) and negatively (Asp, Glu) charged amino acids in the IS and OS of the protein. For instance, if a residue side-chain is above the Lys-QM subsystem it is counted as a IS side-chain, otherwise it is counted as a OS side-chain. Write (manually) a list with the number of positively and negatively charged residues in each protein surface.
- S1.7.iv. Sum (manually) the number of IS and OS positive and negative side-chains of the list to calculate the charge in each region, in order to determine the number of Cl⁻ and Na⁺ external counter-ions to be added.
- S1.7.v. Identify (visually) the target residue side-chains near to which place the counterions. Place manually the Cl⁻ and Na⁺ ions (using a visualization software), save their coordinates in a new PDB file. Open the working PDB and the new PDB file in a text editor and add manually the coordinates of the counter-ion to the working PDB file using the correct format.
- S1.7.vi. Open the modified working PDB file to verify the correct placement of the inserted counter-ions.

S2 Workflow of the *a*-ARM protocol

Figure S1: Automatic Rhodopsin Modeling workflow. The new version (a-ARM) incorporates the original version of the ARM protocol further described in ref. S1. In ARM, N independent simulated annealing (SA) and molecular dynamics (MD) room-temperature relaxations are performed at the MM level using GROMACS on the cavity and the Lys-QM systems.

- S3 Detailed workflow of each step for the *a*-ARM automatic input generation
- S3.1 Step 1. Automatic identification of the protein chain, rPSB, chromophore bounded Lys, MC and SC

Figure S2: Step 1. Initial preparation of the input file. The red filled boxes represent tasks in which the user may interact with the program.

S3.2 Step 2: Automatic generation of the chromophore cavity

Figure S3: Step 2. Automatic generation of chromophore cavity. The code does not require the user's interaction during its execution.

S3.3 Step 3: Automatic assignment of ionization states

Figure S4: Step 3. Automatic assignment of ionization states. The red filled boxes represent tasks in which the user may interact with the program.

S3.4 Step 4: Automatic counter-ion placement

Figure S5: Step 4. Automatic selection of counter-ion placement. The code does not require the user's interaction during its execution.

S4 Automatic format conversion from LYR to RET plus LYS

Table S1: Correspondence between atom names in RET and LYR residues. The atom name of LYR and Lys covalently linked to the rPSB are consistent.

RET	LYR
C1	C17
C2	C16
C3	C15
$\tilde{C4}$	$\tilde{C}14$
$\widetilde{C5}$	C12
	C11
C_{7}	C_{10}
	C9
C9	C80
C10	C7
C11	C6
C12	C5
C13	C3
Č14	$\tilde{C}2$
$\tilde{C}15$	ČĪ
C16	C18
C10 C17	C10
O10	C19
U18	CI3
C19	US C8
C20	C4

S5 Features of the a-ARM QM/MM Models

									0	<i>i</i> -ARM Q	M/MM models	
Protein	PBD ID	Res.^{a}	Retinal	Linker	MC^{c}	SC	Rotamers	$_{\rm pH}$	Protonated	C	Counter-ions	Cavity
code	(Chain)	(Å)	conf. ^b	Lysine					residues	OS^d	IS^d	residues ^e
code	(enam)	(11)	com	Lybine				0-	ABM	0.5	15	rorduos
ASR_{AT} -1	$1 \times 10^{1} \text{S2}$	2.0	all-trans	210	Asp-75	—	BRET	5.6	ASH(198,217), GLH(36),	2 Na^+	7 Cl ⁻	73, 75 ,76,79,80,83,109,112,113,116,119,132,135,
ASR_{AT} -2	1XIO ^{S2}	2.0	all-trans	210	Asp-75	_	BRET	5.6	ASH(198,217), GLH(36),	2 Na^+	7 Cl ⁻	75 ,76,79,80,83,109,112,113,132,135,136,139,
	(A)						BLys-210(0.50)		HID(8,69)	+		176,179,180,183,198,202,209,210
ASR_{13C} -1	1XIO 52 (A)	2.0	13-cis	210	Asp-75		ARET ALys-210(0.50)	5.6	ASH(198,217), GLH(36), HID(8,69)	2 Na^+	7 Cl	73 ,75,76,79,80,83,109,112,113,116,132,135,136, 139,176,179,180,183, 198 ,202,209, 210
ASR_{13C} -2	1XIO ^{S2} (A)	2.0	13- cis	210	Asp-75		ARET BLys-210(0.50)	5.6	ASH(198,217), GLH(36), HID(8,69)	2 Na^+	7 Cl ⁻	73, 75 ,76,79,80,83,109,112,113,116,132,135,136, 139,176,179,180,183, 198 ,202,209, 210
\mathbf{bR}_{AT}	6G7H ^{S5} (A)	1.5	all-trans	216	Asp-212	Asp-85	AAsp-104(0.80) ALeu-15(0.57) ALeu-109(0.54)	5.6	ASH(85,96,115) GLH(194)	1 Cl ⁻	1 Cl ⁻	83,85,86,90,93,118,119,121,122,125,137,138,141, 142,145,182,185,186,189, 212 ,215, 216
\mathbf{bR}_{13C}	1X0S ^{S6} (A)	2.5	13- cis	216	Asp-212	Asp-85	_	5.2	ASH(85,96,115) GLH(194)	1 Cl ⁻	3 Cl-	83,85,86,90,93,118,119,121,122,125,134,137,138, 141,142,145,182,185,186,189,208, 212 ,215, 216
bathoRh	2G87 ^{S7} (A)	2.6	all-trans	296	Glu-113	Glu-181	_	2.6	ASH(83) HID(211) GLH(122,181,249)	2 Na^+	7 Cl ⁻	$\begin{array}{c} 86,91, \textbf{113}, 114, 117, 118, 121, 122, 125, 167, \textbf{181}, 186, \\ 187, 188, 189, 191, 207, 208, 211, 212, 216, 261, 265, 268, \\ 269, 272, 292, 295, \textbf{296}, 298 \end{array}$
BPR	4JQ6 ^{S8} (A)	2.3	all-trans	213	Asp-79	Asp-209	_	4.5	GLH(90,124)	4 Na^+	3 Cl-	77, 79 ,80,83,84,87,113,116,117,120,133,134,137, 138,141,180,183,184,187,205, 209 ,212, 213
${ m ChR}_{C1C2}$	3UG9 ^{S9} (A)	2.3	all-trans	296	Asp-292	Glu-162		6.0	ASH(195), GLH(121,122, 129,136,274), HID(173,288)	3C1-	6 Cl ⁻	162 ,163,166,167,170,195,198,199,202,216,217, 220, 221,224,225,227,228,229,262,265,266,269, 292 ,295, 296
Rh	1U19 ^{S10} (A)	2.2	11-cis	296	Glu-113	Glu-181	_	6.0	ASH(83) HID(211) GLH(122,181)	2 Na^+	6 Cl ⁻	$\begin{array}{c} 86,91, \textbf{113}, 114, 117, 118, 121, 122, 125, \textbf{181}, 186, 187, \\ 188, 189, 191, 207, 208, 211, 212, 216, 261, 262, 265, 266, \\ 268, 269, 272, 292, 295, \textbf{296}, 298 \end{array}$
\mathbf{SqRh}	2Z73 ^{S11} (A)	2.5	11-cis	305	Glu-180	—	_	6.6	ASH(80), HID(319)	1 Cl ⁻	7 Cl ⁻	80,83,87,111,112,115,116,119,120,123,177,180, 186,187,188,204,205,208,209,270,274,277,278, 281,301,304, 305
hMeOp	T: 2Z73 ^{S11} (A)	2.5	11-cis	274	Glu-149	_	_	6.6	ASH(50), HID(288,279)	1 Cl ⁻	15 Cl ⁻	$53,57,78,81,84,85,88,89,92,95,136,146, \textbf{149},155,\\156,157,169,173,174,177,178,181,182,185,236,239,\\240,243,244,246,247,270,273, \textbf{274}$
ASR_{AT} - D217E	$4TL3 {}^{S12}$ (A)	2.3	all-trans	210	75	-	-	5.6	ASH(198,217), GLH(36), HID(8)	-	7 Cl ⁻	73, 75 ,76,79,80,83,109,112,113,116,119,131,132,135, 136,139,176,179,180,183, 198 ,202,209, 210
Arch1	1UAZ ^{S13} (A)	3.4	all-trans	222	Asp-91	Asp-218		5.2	ASH(91,102,121), GLH(210)	3 Na^+	4 Cl ⁻	55,89, 91 ,92,95,96,99,102,121,124,125,127,128, 131,143,144,147,148,151,183,184,187,188,191, 192,195,214, 218 ,221, 222 ,225
Arch2	3WQJ ^{S14} (A)	1.8	all-trans	221	Asp-90	Asp-217	-	7.0	ASH (90,101,120), GLH(209)	3 Na^+	5 Cl-	88, 90 ,91,95,98,123,124,127,146,147,150,187, 190,191,194,213, 217 ,220, 221
ChR2	$\begin{array}{c} 6 \text{EID} \\ \text{(A)} \end{array}$	2.4	all-trans	257	Glu-123	Asp-253		def=7.4	GLH(90,101), HID(134,249)	2 Cl ⁻	9 Cl ⁻	121, 123 ,124,128,131,156,159,160,163,164,177, 178,181,182,185,186,188,189,223,224,226,227, 230, 253 ,256, 257
ChR2- C128T	$\begin{array}{c} 6 \text{EIG} {}^{\text{S15}} \\ \text{(A)} \end{array}$	2.7	all-trans	257	Glu-123	Asp-253		_ def=7.4	GLH(90,101), HID(134,249)	0 Cl-	7 Cl ⁻	$\begin{array}{c} 121, \textbf{123}, 124, 128, 131, 156, 159, 160, 163, 164, 177, \\ 178, 181, 182, 185, 186, 188, 189, 223, 224, 226, 227, \\ 230, \textbf{253}, 256, \textbf{257} \end{array}$
KR2-1	3X3C ^{S16} (A)	2.3	all-trans	255	Asp-116	Asp-251	AAsp-116(0.65) AGln-157(0.5)	8.0	_	8 Na ⁺	8 Cl ⁻	$\frac{110,113, \textbf{116}, 117, 120, 149, 150, 153, 171, 174, 175,}{178,215,218,219,222, \textbf{251}, 254, \textbf{255}}$
KR2-2	3X3C ^{S16} (A)	2.3	all-trans	255	Asp-116	Asp-251	A Asp-116(0.65) B Gln-157(0.5)	8.0		$8 Na^+$	8 Cl-	$110,113, 116, 117, 120, 149, 150, 153, 167, 168, 171, \\172, 174, 175, 178, 215, 218, 219, 222, 223, 247, 251,$
^a X-Ray diffra	action resoluti	ion. ^b R	Retinal conf	ormation	n. ^c Main (MC) and	second (SC) coun	ter-ions.	^d Extracellular (OS) and Intrac	ellular (IS	S) protein surfaces	. ^e In bold Lys, MC and SC.
						·	· · ·		· · ·	`		Continued on next page

Table S2: Main features of the *a*-ARM QM/MM models for the rhodopsins in the benchmark set.

Table S2 — continued from previo	us page
----------------------------------	---------

									a	-ARM Q	M/MM models	
Protein	PBD ID	Res. ^a	Retinal	Linker	MC^{c}	\mathbf{SC}	Rotamers	$_{\rm pH}$	Protonated	, (Counter-ions	Cavity
code	(Chain)	(Å)	conf. ^b	Lysine					residues	OS^a	IS^{a}	residues ^e
NM-R3	5B2N ^{S17} (A)	1.6	all-trans	235	Cl-	Asp-231	_	8.0	-	7 Na ⁺	7 Cl ⁻	254,255 2,3,5,6,29,75,76,85,87,88,89,90,91,92,93,94, 96,97,99,103,106,135,136,139,140,143,144, 146,153,154,157,158,160,161,164,201,204, 205,208,209,223,227,231,234,235
CIR	$5G28^{S18}$ (A)	1.6	all-trans	235	Cl-	Asp-231		6.0		6 Na^+	7 Cl ⁻	3,5,91,92,95,96,99,103,106,135,136,139,143, 146,153,154,157,158,160,161,164,201,204,205, 207,208,209,223,227, 23 1,234, 235,403
SR-II	1JGJ ^{S19} (A)	2.4	all-trans	205	Asp-201	Asp-75	-	5.3	ASH(75,193)	2 Cl^-	1 Cl-	73, 75 ,76,77,80,83,108,109,112,126,127,130, 131,134,171,174,175,178,197, 201 ,204,205
SqbathoRh	3AYM ^{S20}	2.8	all-trans	305	180	—	-	6.6	ASH(80), HID(319)	1 Cl ⁻	7 Cl ⁻	$\begin{array}{c} 80,83,87,111,112,115,116,119,120,177,180,\\ 186,187,188,204,205,209,270,274,277,\\ 278,301,304,305 \end{array}$
AARh	T:1U19 ^{S10} (A)	2.2	11-cis	296	113	181	_	6.0	ASH(83), HID(211) GLH(122,181)	2 Na^+	7 Cl ⁻	86, 113 ,114,117,118,121,122,125,167, 181 , 186,187,188,189,191,207,208,211,212,261, 265,268,269,272,292,295, 296 ,298
BCone	T:1U19 ^{S10} (A)	2.2	11-cis	293	Glu-110	Glu-178	_	6.0	GLH(178)	10 Cl ⁻	5 Cl ⁻	$\begin{array}{l} 52,75,76,79,80,82,83,110,111,113,114,115,116,\\ 117,118,119,120,121,122,123,125,158,178,184,\\ 185,186,188,204,205,208,209,212,213,216,217,\\ 255,258,259,262,263,265,266,267,269,270,289,\\ 292,293,295,296,299,300 \end{array}$
GCone	T:1U19 ^{S10} (A)	2.2	11-cis	312	Glu-129	Glu-102	-	6.0	ASH(99), GLH(102,150), HID(197), LYD(200)	5 Cl ⁻	11 Cl ⁻	$\begin{array}{c} \textbf{129}, 130, 133, 134, 137, 138, 141, 184, 192, 194, 197,\\ 202, 203, 204, 205, 206, 207, 216, 219, 220, 223, 224,\\ 227, 228, 277, 278, 281, 282, 284, 285, 288, 289, 292,\\ 308, 311, \textbf{312} \end{array}$
RCone	T:1U19 ^{S10} (A)	2.2	11-cis	293	Glu-110	Glu-83	_	6.0	ASH(80), GLH(83), HID(178)	4 Cl ⁻	11 Cl ⁻	$\begin{array}{l} 41,44,48, \textbf{83}, 84,87,88, \textbf{110}, \textbf{111}, \textbf{114}, \textbf{115}, \textbf{117}, \textbf{118},\\ 119,122,164,178,183,184,185,186,188,189,201,\\ 204,205,208,209,210,213,258,259,262,263,265,\\ 266,268,269,270,271,272,273,275,280,284,285,\\ 288,289,292,2\textbf{293},295,296 \end{array}$
mMeOp	T: 2Z73 ^{S11} (A)	2.5	11-cis	283	Glu-160	-	-	6.6	ASH (61), HID(297)	1 Cl ⁻	17 Cl ⁻	$\begin{array}{c} 22,25,26,61,64,65,68,69,91,92,95,96,99,100,\\ 103,157, \textbf{160},166,167,168,180,184,185,188,\\ 189,248,252,253,255,256,279,282,\textbf{283},286 \end{array}$
\mathbf{PoXeR}_{AT}	T:1XIO ^{S2} (A)	2.0	all-trans	209	Asp-74	Asp-108	-	5.6	ASH(108,216), GLH(35)	2 Na^+	6 Cl ⁻	$72, 74, 75, 79, 82, 108, 111, 112, 115, 118, 130, \\131, 134, 135, 138, 175, 178, 179, 182, 201, 208, 209$
\mathbf{PoXeR}_{13C}	T:1XIO ^{S2} (A)	2.0	all-trans	209	Asp-74	Asp-108	-	5.6	ASH(108,216), GLH(35)	2 Na^+	6 Cl ⁻	$72, \textbf{74}, 75, 78, 79, 82, \textbf{108}, 111, 112, 115, 118, \\130, 131, 134, 135, 138, 175, 178, 179, 182, 201, 208, \textbf{209}$
KR2-2 ^(c)	3X3C ^{S16} (A)	2.3	all-trans	255	Asp-116	Asp-251	AAsp-116(0.65) BGln-157(0.5)	8.0	ASH(251)	7 Na^+	8 Cl ⁻	110,113, 116 ,117,120,149,150,153,167,168,171, 172,174,175,178,215,218,219,222,223,247, 251 , 254, 255
BPR ^(c)	4JQ6 ^{S8} (A)	2.3	all-trans	213	79	209	-	4.5	GLH(90)	4 Na^+	1 Cl-	77, 79 ,80,83,84,87,116,117,120,133,134,137,138, 141,180,183,184,187,205, 209 ,212, 213
RCone ^(c)	T:1U19 ^{S10} (A)	2.2	11-cis	293	Glu-110	Glu-83	_	6	ASH(80), GLH(110), HID(178)	4 Cl ⁻	10 Cl ⁻	$\begin{array}{c} 41,44,48, \textbf{83}, 84,87,88, \textbf{110},111,114,115,117,118,\\ 119,122,164,178,183,184,185,186,188,189,\\ 201,204,205,208,209,210,213,258,259,262,\\ 263,265,266,268,269,270,271,272,273,275,\\ 280,284,285,288,289,292,2\textbf{293},295,296 \end{array}$
$\mathbf{bR}_{AT}^{(\mathbf{c})}$	6G7H ^{S5} (A)	1.5	all-trans	216	85	212	$\begin{array}{c} AAsp-104(0.80) \\ ALeu-15(0.57) \\ ALeu-109(0.54) \end{array}$	5.6	ASH(212,96,115) GLH(194)	1 Cl ⁻	1 Cl^-	83, 85 ,86,90,93,118,119,121,122,125,137,138, 141,142,145,182,185,186,189, 212 ,215, 216
$bR_{AT}^{(c-2)}$	6G7H ^{S5} (A)	1.5	all-trans	216	85	212	$\begin{array}{c} AAsp-104(0.80) \\ ALeu-15(0.57) \\ ALeu-109(0.54) \end{array}$	5.6	ASH(212,96,115) GLH(194)	1 Cl ⁻	1 Cl ⁻	83, 85 ,86,90,93, <u>96,115</u> ,118,119,121,122,125, 137,138,141,142,145,182,185,186,189, 212 , 215, 216
ChR_{C1C2}^{c}	3UG9 ^{S9} (A)	2.3	all-trans	296	292	162	-	5.2	ASH(195), GLH(121,122, 220,221,129,136,140,162,274), HID(173, 288)	5Cl-	6 Cl ⁻ 269, 292 ,295, 296	162 ,163,166,167,170,195,198,199,202,216,217, 224,225,227,228,229,262,265,266,
$\mathbf{ChR2}^{(c)}$	$6EID {S15} (A)$	2.4	all-trans	257	Glu-123	Asp-253	_	$5.2 \\ def=7.4$	ASH(156,253),GLH(83,90, 101),HID(134,249)	5 Cl^-	10 Cl-	$\begin{array}{l}90,121, \textbf{123}, 124, 128, 131, 1\overline{56}, 1\overline{59}, 1\overline{60}, 1\overline{63}, 1\overline{64}, 177,\\178, 181, 182, 185, 186, 188, 189, 223, 224, 226, 227,\end{array}$
^a X-Ray diffra	action resolut	ion. ^b I	Retinal conf	ormatio	n. ^c Main	(MC) and	second (SC) cour	ter-ions.	^d Extracellular (OS) and Intrac	ellular (I	S) protein surfaces.	^e In bold Lys, MC and SC.
												Continued on next page

Table S2 — continued from previous p	page
--------------------------------------	------

										a-ARM Q	M/MM models	
Protein	PBD ID	Res.^{a}	Retinal	Linker	MC^{c}	\mathbf{SC}	Rotamers	$_{\rm pH}$	Protonated		Counter-ions	Cavity
code	(Chain)	(Å)	conf. ^b	Lysine					residues	OS^d	IS^d	$residues^{e}$
												230, 253 ,256, 257
ChR2-	$6 EIG^{S15}$	2.7	all-trans	257	Glu-123	Asp-253	-	5.2	ASH(156,253), GLH(82,90,	4 Cl^-	8 Cl ⁻	$121, {\bf 123}, 124, 128, 131, 156, 159, 160, 163, 164, 177,$
$C128T^{(c)}$	(A)							def=7.4	235), 97,101, HID(134,249)			178,181,182,185,186,188,189,223,224,226,227, 230,253,256,257
							a-ARM _c	ustomized	d (Effect of chain and pH)			
ASR_{AT} -1	$1 \mathrm{XIO}^{\mathrm{S2}}$	2.0	all-trans	210	75	-	BRET	7.4	GLH(36),	3 Na^+	6 C1 ⁻	73, 75, 76, 79, 80, 83, 109, 112, 113, 116, 119, 132,
(c-pH)	(A)						ALys-210		HID(8,69)			135, 136, 139, 176, 179, 180, 183, 198, 202, 209, 210
ASR_{13C} -2	1XIO S2	2.0	all-trans	210	75	-	ARET	7.4	GLH(36),	3 Na^+	6 Cl ⁻	73,75,76,79,80,83,109,112,113,116,119,131,132,
(c-pH)	(A)						BLys-210		HID(8,69)			135, 136, 139, 176, 179, 180, 183, 198, 202, 209, 210
bR ^{c-pH}	$1 X0 S^{S6}$	2.5	13-cis	216	85	212	-	7.4	ASH(96)	1 Na^+	3 C1 ⁻	83,85,86,90,93,118,119,121,122,125,134,137,138,
130	(A)								GLH(194)			141, 142, 145, 182, 185, 186, 189, 208, 212 , 215, 216
bR_{AT}^{c-pH}	6 G7H S5	1.5	all-trans	216	85	212	AAsp-104(0.80)	7.4	ASH(96)	1 Cl^-	1 Na^+	83,85,86,90,93,118,119,121,122,125,137,138,141,
AI	(A)						ALeu-15(0.57)		GLH(194)			142,145,182,185,186,189, 212 ,215, 216
							ALeu-109(0.54)					
bathoRh	$2G87^{S7}$	7.4	all-trans	296	113	181	-	6.0	ASH(83) HID(211)	2 Na^+	6 Cl ⁻	$86, 91, \boldsymbol{113}, 114, 117, 118, 121, 122, 125, 167, \boldsymbol{181}, 186,$
(c-pH)	(A)								GLH(122,181)			$187, 188, 189, 191, 207, 208, 211, 212, 216, 261, 265, 268, \\269, 272, 292, 295, \textbf{296}, 298$
$bathoRh^{(c)}$	$2G87^{S7}$	2.6	all-trans	296	113	181	-	6.0	ASH(83) HID(211)	2 Na^+	6 Cl ⁻	86,91, 113 , 114, 117, 118, 121, 122, 125, 167, 181 , 186,
	(B)								GLH(122,181)			187, 188, 189, 191, 207, 208, 211, 212, 216, 261, 265, 268,
												269,272,292,295, 296 ,298
BPR ^(c-2)	4JQ6 88	2.3	all-trans	213	79	209	-	4.5	GLH(90)	4 Na^+	3 C1	77, 79, 80, 83, 84, 87, 113, 116, 117, 120, 133, 134, 137,
	(B)											138,141,180,183,184,187,205, 209 ,212, 213
BPR	$4JQ6^{50}$	2.3	all-trans	213	79	209	-	4.5	GLH(90)	5 Na '	3 Cl	77, 79, 80, 83, 84, 87, 113, 116, 117, 120, 133, 134, 137,
(c-pH-2)	(B)											138,141,180,183,184,187,205, 209 ,212, 213
Rh ^(c)	1U19 510	2.2	11-cis	296	113	181	-	6.0	ASH(83) HID(211)	2 Na^+	6 Cl ⁻	83,86,91, 113 ,114,117,118,121,122,125, 181 ,186,
	(B)								GLH(122,181)			187,188,189,191,207,208,211,212,216,261,265,268,
D1 (C- DH-2)	11110 S10	0.0		000	110	101		2.0		o N +	a C1=	209,272,292,293,298
Rn /	(B)	2.2	11-cis	296	113	181	_	6.0	ASH(83) HID(211) GLH(122)	3 Na '	6 CI	83,80,91, 113 ,114,117,118,121,122,120, 181 ,180, 187 188 189 191 207 208 211 212 216 261 265
	(1)								0111(122)			268.269.272.292.295. 296 .298
SaRh ^c	$2Z73^{S11}$	2.5	11-cis	305	180	_	_	6.6	ASH(80), HID(319)	1 Cl^-	7 Cl ⁻	80.83.87.111.112.115.116.119.120.123.177. 180 .
	(B)								(),()			186,187,188,204,205,209,270,274,277,
												278,281,305
^a X-Ray diffrac	tion resolut	ion. ^b R	Retinal conf	ormation	n. ^c Main (MC) and	second (SC) coun	ter-ions.	^d Extracellular (OS) and Intrae	cellular (IS	5) protein surface	s. ^e In bold Lys, MC and SC.

S6 Summary of the ARM QM/MM calculations

Table S3: Summary of the ten *a*-ARM QM/MM calculations performed for the rhodopsins in the benchmark set. Computed total ground state (S₀) and first excitation (S₁) energies, transition oscillator strength (f_{Osc}), first vertical excitation energy (ΔE_{S1-S0}) and maximum absorption wavelength (λ_{max}^a). Statistical parameters such as average (\overline{N}), difference between calculated and experimental data ($|\overline{N}|$) and standard deviation ($\sigma_{\overline{N}}$) are also provided.

Seed	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)
						a	$-ARM_{defaul}$	t							
		\mathbf{A}	\mathbf{SR}_{AT}	-1			ASR			\mathbf{ASR}_{13C} -1					
Exp.				52.0	550				52.0	550				53.2	537
1	-871.944185	-871.858715	1.18	53.6	533	-871.856669	-871.769865	1.20	54.5	525	-871.971106	-871.883658	1.04	54.9	521
2	-871.933753	-871.852485	1.35	51.0	561	-871.844720	-871.759667	1.50	53.4	536	-871.967357	-871.878575	1.07	55.7	513
3	-871.933966	-871.852626	1.37	51.0	560	-871.845887	-871.761754	1.33	52.8	542	-871.971365	-871.883857	1.02	54.9	521
4	-871.944074	-871.858426	1.20	53.7	532	-871.844557	-871.751744	1.01	58.2	491	-871.970919	-871.883975	1.03	54.6	524
5	-871.935622	-871.854422	1.34	51.0	561	-871.849651	-871.767147	1.35	51.8	552	-871.967134	-871.878920	1.06	55.4	517
6	-871.933380	-871.852472	1.35	50.8	563	-871.845719	-871.761747	1.33	52.7	543	-871.973374	-871.887370	1.00	54.0	530
7	-871.944236	-871.858925	1.36	53.5	534	-871.863471	-871.776729	1.19	54.4	525	-871.971356	-871.884159	1.02	54.7	523
8	-871.944192	-871.858789	1.19	53.6	534	-871.854097	-871.772424	1.36	51.2	558	-871.967466	-871.879496	1.06	55.2	518
9	-871.933903	-871.852946	1.23	50.8	563	-871.845296	-871.759678	1.34	53.7	532	-871.967513	-871.879555	1.06	55.2	518
10	-871.926741	-871.841506	1.36	53.5	535	-871.847536	-871.756189	0.94	57.3	${499}$	-871.966980	-871.878895	1.06	55.3	_ 517
\overline{N}				52.3	548				54.0	530				55.0	520
\overline{N}				0.3	-2				2.0	-20				1.8	-17
$\sigma_{\overline{N}}$				1.4	15				2.2	21				0.5	5
		AS	\mathbf{SR}_{13C}	-2			\mathbf{bR}		\mathbf{bR}_{13C}						
Exp.				53.2	537				50.3	568				52.2	547
1	-871.957306	-871.870880	1.08	54.2	527	-871.767543	-871.682740	1.25	53.2	537	-871.603497	-871.518338	0.92	53.4	535
2	-871.957423	-871.870771	1.08	54.4	526	-871.767442	-871.682983	1.24	53.0	539	-871.603873	-871.519224	0.94	53.1	538
3	-871.957467	-871.871043	1.08	54.2	527	-871.767725	-871.682885	1.25	53.2	537	-871.604253	-871.519692	0.96	53.1	539
4	-871.956444	-871.871834	1.08	53.1	539	-871.767713	-871.682729	1.25	53.3	536	-871.603550	-871.518503	0.93	53.4	536
5	-871.957499	-871.870947	1.08	54.3	526	-871.767371	-871.682922	1.24	53.0	540	-871.604049	-871.519412	0.95	53.1	538
6	-871.957305	-871.870681	1.09	54.4	526	-871.767501	-871.682631	1.25	53.3	537	-871.603728	-871.518714	0.93	53.3	536
7	-871.956807	-871.869975	1.09	54.5	525	-871.767560	-871.682855	1.24	53.2	538	-871.603783	-871.518817	0.94	53.3	536
8	-871.957236	-871.870434	1.08	54.5	525	-871.767651	-871.683245	1.25	53.0	540	-871.604010	-871.519093	0.94	53.3	537
9	-871.951108	-871.864478	1.03	54.4	526	-871.767701	-871.682689	1.25	53.3	536	-871.603528	-871.518515	0.92	53.3	536
10	-871.956932	<u>-871.870643</u>	1.08	54.1	528	-871.767647	-871.683130	1.25	53.0	$_{539}$	-871.603293	-871.518417	0.94	53.3	_ 537
\overline{N}				54.2	528				53.2	538				53.3	537
\overline{N}				1.0	-10				2.9	-30				1.1	-10
$\sigma_{\overline{N}}$				0.4	4				0.1	2				0.1	1
													Conti	nued on nex	t page

Gerd	C. E	0	£	AE		e 33 - con	C Ensure	fprev	lous page	\a	C. E	C. E	c	AE	\a
Seed	S_0 Energy	S_1 Energy	JOsc	ΔE_{S1-S0}	λ_{max}^{-}	S ₀ Energy	S_1 Energy	JOsc	ΔE_{S1-S0}	λ_{max}^{-}	S_0 Energy	S_1 Energy	JOsc	ΔE_{S1-S0}	λ_{max}
(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)	-	(kcal/mol)	(nm)	(a.u.)	(a.u.)	•	(kcal/mol)	(nm)
		ba	athoR	.h			BP	'n				R.	h		
Exp.				54.0	529				58.3	490				57.4	498
1	-871.796873	-871.707343	0.98	56.2	509	-872.092199	-871.990725	0.58	63.7	449	-871.891394	-871.799897	0.84	57.4	498
2	-871.796733	-871.706755	0.96	56.5	506	-872.092759	-871.991196	0.58	63.7	449	-871.891409	-871.799801	0.83	57.5	497
3	-871.797014	-871.707182	0.97	56.4	507	-872.092370	-871.990778	0.57	63.7	448	-871.898920	-871.807462	0.86	57.4	498
4	-871.796624	-871.707482	0.96	55.9	511	-872.091715	-871.990006	0.62	63.8	448	-871.899099	-871.806950	0.88	57.8	494
5	-871.796767	-871.706736	0.96	56.5	506	-872.093278	-871.991460	0.60	63.9	447	-871.892134	-871.800452	0.87	57.5	497
6	-871.797696	-871.709396	0.94	55.4	516	-872.091774	-871.990248	0.57	63.7	449	-871.891939	-871.799669	0.88	57.9	494
7	-871.796909	-871.707454	0.97	56.1	509	-872.092212	-871.990614	0.56	63.8	448	-871.904687	-871.810782	0.97	58.9	485
8	-871.796941	-871.707383	0.97	56.2	509	-872.102907	-872.000990	0.56	64.0	447	-871.900020	-871.809660	0.89	56.7	504
9	-871.833285	-871.743574	0.95	56.3	508	-872.092288	-871.990441	0.57	63.9	447	-871.898517	-871.807389	0.85	57.2	500
10	-871.803384	-871.713400	0.96	56.5	506	-872.089566	-871.988996	0.47	63.1	453	-871.913411	-871.819366	0.84	59.0	484
<u>-</u> -									<u>-</u>						
				30.2	509				03.7	449				57.7	495
<i>I</i> V				2.2	-20				5.4	-42				0.3	-3
$\sigma_{\overline{N}}$			~ ~ .	0.3	3			-	0.2	2				0.7	6
			SqRh				hMe	eOp				Arc	:h1		
Exp.				58.5	489				60.4	473				50.3	568
1	-871.781252	-871.684407	0.80	60.8	470	-871.853694	-871.759998	0.82	58.8	486	-872.150995	-872.071861	1.21	49.7	576
2	-871.780822	-871.684020	0.80	60.7	471	-871.869263	-871.770231	0.82	62.1	460	-872.134891	-872.056149	1.24	49.4	579
3	-871.781270	-871.684471	0.79	60.7	471	-871.868814	-871.769820	0.82	62.1	460	-872.136583	-872.053532	1.17	52.1	549
4	-871.781391	-871.684430	0.81	60.8	470	-871.868208	-871.773950	0.79	59.1	483	-872.138577	-872.059637	1.22	49.5	577
5	-871.781655	-871.684338	0.80	61.1	468	-871.863313	-871.764403	0.76	62.1	461	-872.146883	-872.062362	1.12	53.0	539
6	-871.781443	-871.684495	0.81	60.8	470	-871.874067	-871.773095	0.80	63.4	451	-872.134260	-872.054198	1.22	50.2	569
7	-871.794665	-871.697108	0.79	61.2	467	-871.874090	-871.779508	0.78	59.4	482	-872.134575	-872.053348	1.25	51.0	561
8	-871.780941	-871.684046	0.79	60.8	470	-871.869458	-871.770278	0.81	62.2	459	-872.140807	-872.061822	1.24	49.6	577
9	-871.784194	-871.687478	0.79	60.7	471	-871.862633	-871.764304	0.79	61.7	463	-872.138292	-872.058605	1.22	50.0	572
10	-871.780898	-871.683688	0.80	61.0	469	-871.862633	-871.764304	0.79	61.7	463	-872.137357	-872.057714	1.37	50.0	572
										407					
1				60.9	470				01.3	407				50.5	307
N				2.4	-19				0.9	-6				0.1	-1
$\sigma_{\overline{N}}$				0.2	1				1.6	12				1.2	13
		د	Arch2				KR	2-1				KR	2-2		
Exp.				52.0	550				54.5	525				54.5	525
1	-871.742904	-871.656377	1.22	54.3	527	-871.718190	-871.605973	1.41	70.4	406	-871.881846	-871.771102	1.40	69.5	411
2	-871.761918	-871.673860	1.20	55.3	517	-871.718749	-871.608831	1.48	69.0	415	-871.881184	-871.771286	1.44	69.0	415
3	-871.762079	-871.675040	1.23	54.6	523	-871.718610	-871.608609	1.47	69.0	414	-871.855753	-871.742680	1.39	71.0	403
4	-871.762469	-871.675202	1.23	54.8	522	-871.744476	-871.633994	1.46	69.3	412	-871.855530	-871.742981	1.40	70.6	405
5	-871.761993	-871.674503	1.22	54.9	521	-871.718288	-871.605364	1.45	70.9	403	-871.882383	-871.771524	1.40	69.6	411
6	-871.761602	-871.675097	1.23	54.3	527	-871.722030	-871.612339	1.50	68.8	415	-871.880793	-871.770146	1.42	69.4	412
7	-871.762087	-871.674610	1.23	54.9	521	-871.720750	-871.610400	1.47	69.2	413	-871.882213	-871.771985	1.42	69.2	413
8	-871.760968	-871.675668	1.28	53.5	534	-871.718202	-871.605145	1.43	70.9	403	-871.882437	-871.772269	1.42	69.1	414
9	-871.761597	-871.674473	1.22	54.7	523	-871.718346	-871.605827	1.45	70.6	405	-871.882394	-871.772118	1.41	69.2	413
10	-871.761788	-871.676601	1.28	53.5	535	-871.718550	-871.605579	1.44	70.9	403	-871.884082	-871.773926	1.42	69.1	414
$-\frac{1}{N}$					 525				69.9	400				69.6	 /11
				04.0 0 F	020 0E				15 4	40 <i>3</i> 11 <i>2</i>				15 1	411 117
110				2.0 0.6	-20 C				10.4	-110				10.1	-114
$\sigma_{\overline{N}}$				0.0	0				0.9	Э			C	0.7	4
1													Conti	nued on nex	r page

	Table S3 — continued from previous page														
Seed	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S ₀ Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)
		Ν	IM-R	.3			Cl	R				SR	·II		
Exp.				55.3	517				55.3	517				57.5	497
1	-876.392982	-876.303493	1.01	56.2	509	-873.188913	-873.100453	1.03	55.5	515	-871.779169	-871.690861	1.34	55.4	516
2	-876.372855	-876.283400	1.01	56.1	509	-873.182300	-873.094205	1.04	55.3	517	-871.759098	-871.666148	1.08	58.3	490
3	-876.372546	-876.283065	1.03	56.1	509	-873.182851	-873.095165	1.05	55.0	520	-871.758769	-871.665717	1.11	58.4	490
4	-876.372837	-876.283238	1.01	56.2	509	-873.182582	-873.094987	1.06	55.0	520	-871.763071	-871.670262	1.05	58.2	491
5	-876.408427	-876.318916	1.01	56.2	509	-873.182400	-873.094480	1.06	55.2	518	-871.758942	-871.666012	1.11	58.3	490
6	-876.370355	-876.280882	1.02	56.1	509	-873.182740	-873.095376	1.06	54.8	522	-871.763904	-871.671291	1.07	58.1	492
7	-876.372139	-876.282507	1.01	56.2	508	-873.212629	-873.124515	1.04	55.3	517	-871.763796	-871.671999	1.13	57.6	496
8	-876.372005	-876.282495	1.03	56.2	509	-873.181733	-873.093633	1.05	55.3	517	-871.758395	-871.665243	1.06	58.5	489
9	-876.373257	-876.283571	1.00	56.3	508	-873.182667	-873.095100	1.05	54.9	520	-871.759259	-871.666292	1.12	58.3	490
10 -	-876.374500	-876.284775	_1.01		508	-873.193237	-873.105228	1.04	<u>55.2</u>	_518_	-871.759809	-871.666608	1.06	58.5	_ 489
\overline{N}				56.2	509				55.2	518				58.0	493
\overline{N}				0.9	-8				-0.1	1				0.5	-4
$\sigma_{\overline{N}}$				0.1	0				0.2	2				0.9	8
			\mathbf{hR}_{C10}	C2			Ch	R2				ChR2-0	C1281	С	
Exp.				62.4	458				60.8	470				59.0	485
1	-871.870140	-871.745569	0.09	78.2	366	-871.815311	-871.691014	1.27	78.0	367	-871.888276	-871.760576	0.06	80.1	357
2	-871.870150	-871.744864	0.08	78.6	364	-871.836024	-871.703610	0.12	83.1	344	-871.880425	-871.753332	0.05	79.8	359
3	-871.851757	-871.727240	0.09	78.1	366	-871.812075	-871.689091	1.28	77.2	370	-871.880270	-871.754419	0.06	79.0	362
4	-871.869494	-871.750353	0.14	74.8	382	-871.817542	-871.685661	0.19	82.8	345	-871.877818	-871.751407	0.06	79.3	360
5	-871.870223	-871.746189	0.10	77.8	367	-871.808973	-871.680495	0.30	80.6	355	-871.880116	-871.753757	0.06	79.3	361
6	-871.869556	-871.750803	0.15	74.5	384	-871.811952	-871.687923	1.30	77.8	367	-871.879732	-871.752082	0.04	80.1	357
7	-871.870109	-871.744002	0.06	79.1	361	-871.816012	-871.684373	0.17	82.6	346	-871.881191	-871.754768	0.05	79.3	360
8	-871.867595	-871.753277	0.25	71.7	399	-871.811320	-871.686689	1.26	78.2	366	-871.878693	-871.754416	0.12	78.0	367
9	-871.878344	-871.753321	0.08	78.5	364	-871.811518	-871.686410	0.76	78.5	364	-871.879972	-871.753295	0.05	79.5	360
10	-871.870245	-871.746581	0.10	77.6	368	-871.808973	-871.680495	0.30	80.6	$_{355}$	-871.877364	-871.746319	0.04	82.2	_ <u>348</u> .
\overline{N}				76.9	372				79.9	358				79.7	359
\overline{N}				14.5	-86				19.1	-112				20.7	-126
$\sigma_{\overline{N}}$				2.4	12				2.3	10				1.1	5
		\mathbf{Sql}	oatho	$\mathbf{R}\mathbf{h}$			AA	Rh				BCo	one		
Exp.				54.0	530				56.3	508				66.5	430
1	-871.748231	-871.660335	1.11	55.2	518	-871.789121	-871.695758	0.76	58.6	488	-872.457790	-872.349377	0.64	68.0	420
2	-871.751087	-871.662346	1.08	55.7	513	-871.788471	-871.695800	0.80	58.2	492	-872.456892	-872.348952	0.65	67.7	422
3	-871.748516	-871.660100	1.09	55.5	515	-871.787995	-871.692800	0.78	59.7	479	-872.456799	-872.348877	0.65	67.7	422
4	-871.748338	-871.659719	1.09	55.6	514	-871.787008	-871.693466	0.75	58.7	487	-872.456879	-872.348875	0.65	67.8	422
5	-871.748410	-871.659807	1.09	55.6	514	-871.787422	-871.692558	0.78	59.5	480	-872.456762	-872.348799	0.65	67.7	422
6	-871.750155	-871.661742	1.07	55.5	515	-871.788294	-871.696173	0.77	57.8	495	-872.457026	-872.348829	0.64	67.9	421
7	-871.748545	-871.659990	1.08	55.6	515	-871.788960	-871.695320	0.80	58.8	487	-872.456634	-872.348732	0.65	67.7	422
8	-871.748344	-871.660163	1.06	55.3	517	-871.785832	-871.690178	0.95	60.0	476	-872.458406	-872.350480	0.55	67.7	422
9	-871.748545	-871.660065	1.09	55.5	515	-871.786932	-871.693274	0.74	58.8	486	-872.456810	-872.348924	0.65	67.7	422
10	-871.748304	-871.659689	1.09	55.6	514	-871.787764	-871.692417	0.78	59.8	_478_	-872.458263	872.349787	0.64	68.1	_ 420 .
\overline{N}				55.5	515				59.0	485				67.8	422
\overline{N}				1.6	-15				2.7	-23				1.3	-9
$\sigma_{\overline{N}}$				0.2	1				0.7	6				0.1	1
													Conti	nued on nex	t page

	Table S3 — continued from previous page														
Seed	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
(N)	(a.u.)	(a.u.)	~~	$(\rm kcal/mol)$	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)	_	(kcal/mol)	(nm)
		(² Cone	9			RCo	one				mMe	eOp		
Exp.				53.4	535				49.7	575			- 	61.2	467
1	-871.823983	-871.738519	0.96	53.6	533	-871.878069	-871.784867	0.82	58.5	489	-871.885083	-871.786096	0.77	62.1	460
2	-871.820043	-871.730651	0.77	56.1	510	-871.879581	-871.782602	0.70	60.9	470	-871.865266	-871.765590	0.77	62.5	457
3	-871.823720	-871.735980	0.82	55.1	519	-871.869267	-871.782100	0.78	54.7	523	-871.873858	-8/1.//4306	0.76	62.5	458
4	-871.849355	-871.761965	0.90	54.8	521	-871.885543	-871.792020	0.82	58.7	487	-871.864992	-8/1./052/1	0.76	62.6	457
о С	-871.834350	-8/1./43110	0.87	57.3	499	-8/1.8/4031	-8/1./81221	0.82	58.0	488	-8/1.803020	-8/1./04039	0.77	02.5	458
0 7	-8/1.830348	-8/1./40/11	0.97	53.Z	037 500	-8/1.8/4001	-8/1./81004	0.79	58.7 50.4	487	-8/1.8/9812	-8/1./80249	0.77	02.5 62.6	458
(-8/1.823103	-8/1./33003	0.76	00.0 52.7	506	-8/1.8//48/	-8/1./82892	0.70	59.4	481	-8/1.8/4444	-8/1.//4010	0.76	02.0 62.7	450
8	-8(1.82081)	-8/1./40184	0.95	03.7 E4 9	032 500	-8/1.8/4/48	-8/1./81293	0.82	58.0 50.1	488	-8/1.803421	-8/1./03455	0.76	02.7 62.7	450
9	-071.020133	-0/1./00020	1.07	04.0 55.2	022 517	-011.019133	-0/1./00004	0.70	59.1	404	-0/1.003421	-0/1./03400	0.70	62.6	456
	-871.850080	-011.100590				-0/1.0/4031	-0/1./01221	0.82	<u>08.0</u>	_400_	-0/1.0/5599	-0/1.//5/00	0.70		- 400 -
N				55.0	520				58.6	489				62.5	457
N				1.6	-15				8.9	-87				1.3	-10
$\sigma_{\overline{N}}$				1.3	12				1.5	13				0.2	1
		Po	$\mathbf{XeR}_{\mathcal{F}}$	AT			PoXe	\mathbf{R}_{13C}				Rh-A	292S		
Exp.				50.3	568			1 0 0	52.1	549			-	58.5	489
1	-871.669668	-871.589645	1.48	50.2	569	-871.753876	-871.667334	1.08	54.3	526	-871.809414	-871.716900	0.87	58.1	492
2	-871.664002	-871.583714	1.48	50.4	567	-871.753676	-871.667115	1.07	54.3	526	-871.824426	-871.730355	0.85	59.0	484
3	-871.663689	-871.581688	1.46	51.5	556	-871.757462	-871.670750	1.07	54.4	525	-871.804696	-871.711665	0.87	58.4	490
4	-871.671756	-871.591043	1.47	50.6	565	-871.761107	-871.674443	1.07	54.4	526	-871.805081	-871.712002	0.87	58.4	490
5	-871.664440	-871.584516	1.58	50.2	570	-871.753713	-871.667134	1.08	54.3	526	-871.805352	-871.711734	0.86	58.7	487
6	-871.662765	-8/1.581424	1.51	51.0	560	-871.739208	-871.651960	1.08	54.7	522	-871.802251	-8/1./08188	0.84	59.0	484
1	-871.672916	-871.592235	1.45	50.6	565	-871.759283	-871.672828	1.08	54.3	527	-871.822613	-8/1./28/5/	0.85	58.9	485
8	-8/1.0/3209	-8/1.594130	1.40	49.6	570	-8/1./04380	-8/1.00/4/8	1.07	54.5	524	-871.803083	-8/1./11891	0.87	08.0 F0.7	489
9	-071.000940	-0/1.000140	1.47	50.7	504	-071.757402	-071.070700	1.07	54.4	525	-071.002904	-0/1./09334	0.84	00.1	401
	-871.009499	-011.009590	_1.4(_	00.5		-8/1./55/00	-8/1.008/51	1.00		_324_	-871.804950		0.80	00.0	_ 480
N				50.5	566				54.4	525				58.7	487
N				0.2	-2				2.3	-24				0.1	-2
$\sigma_{\overline{N}}$				0.5	6				0.1	1				0.3	3
		$\mathbf{R}\mathbf{h}$	-A269	9 T			Rh-E	133D				Rh-E	122Q		
Exp.				55.6	514				56.1	510				59.6	480
1	-871.825649	-871.737189	0.92	55.5	515	-871.753815	-871.664801	0.87	55.9	512	-871.800783	-871.706540	0.79	59.1	483
2	-871.838544	-871.748022	0.89	56.8	503	-871.753617	-871.665207	0.92	55.5	515	-871.799270	-871.704077	0.83	59.7	479
3	-871.828123	-871.738697	0.89	56.1	510	-871.753702	-871.665287	0.92	55.5	515	-871.799827	-871.704259	0.77	60.0	477
4	-871.824428	-871.734210	0.91	56.6	505	-871.754417	-871.666875	0.90	54.9	520	-871.814554	-871.717645	0.76	60.8	470
5	-871.841457	-871.750825	0.88	56.9	503	-871.753203	-871.664739	0.91	55.5	515	-871.811682	-871.716775	0.79	59.6	480
6	-871.824293	-871.734484	0.90	56.4	507	-871.753398	-871.664855	0.91	55.6	515	-871.811155	-871.715410	0.81	60.1	476
1	-8/1.825649	-8/1.73/189	0.92	55.5 EE F	515	-8/1.754538	-8/1.00/00/	0.90	54.5	524	-8/1.800921	-8/1.706214	0.83	59.4	481
8	-8/1.825049	-8/1./3/189	0.92	00.0 EE E	010 E1E		-0(1.000117	0.92	00.0 EE C	010 515	-8/1.800004	-0/1./03944	0.78	0U.3	4(4
9	-8/1.825049	-0/1./3/189	0.92	00.0 56 9	515 502	-8/1./53048	-0/1.005090	0.92	00.0 55 5	010 515	-8/1.812525	-0/1./15966	0.97	00.0 60.1	476
	-0/1.000044	-011.140022										-0/1./20101	0.01		- 410 -
N				56.2	509				55.4	516				60.0	477
N				0.6	-5				-0.7	6				0.4	-3
$\sigma_{\overline{N}}$				0.6	6				0.4	3				0.5	4
1													Conti	nued on nex	t page

	Table S3 — continued from previous page														
Seed	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S ₀ Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)
		Rh	-F261	1 Y			Rh-C	390S			1	Rh-'I	'94S		
Exp.			0.01	56.1	510				58.4	489			-	57.9	494
1	-871.816196	-871.725707	0.91	56.8	504	-871.921780	-871.831392	0.92	56.7	504	-871.770032	-871.678556	0.87	57.4	498
2	-871.815563	-871.725817	0.93	56.3	508	-871.914877	-871.823459	0.89	57.4	498	-871.770404	-871.677284	0.86	58.4	489
3	-871.816175	-871.725522	0.91	56.9	503	-871.929366	-871.838246	0.86	57.2	500	-871.770444	-871.677505	0.86	58.3	490
4	-871.815776	-871.725423	0.92	56.7	504	-871.938941	-871.849893	0.93	55.9	512	-871.770373	-871.678239	0.88	57.8	495
5	-871.815410	-871.725893	0.94	56.2	509	-871.930656	-871.840075	0.90	56.8	503	-8/1.782211	-871.689712	0.83	58.0	493
6	-871.815180	-8/1.726224	0.90	55.8	512	-871.922076	-871.830402	0.91	57.5	497	-8/1.7/1338	-871.681823	0.87	56.2	509
7	-871.822480	-871.732189	0.92	56.7	505	-871.917704	-871.826860	0.95	57.0	502	-871.782302	-871.689309	0.87	58.4	490
8	-871.815286	-8/1.7264/7	0.92	55.7	513	-8/1.9160/3	-871.827523	0.93	55.6	515	-871.774594	-871.681385	0.86	58.5	489
9	-8/1.810//2	-8/1./301//	0.94	54.3 56.9	520	-871.937800	-8/1.840130	0.88	57.5 56.4	497	-8/1.//0/01	-8/1.0//028	0.85	58.4	489
	-8/1.815358	-8/1./20838			<u>509</u>	-8/1.940414	-8/1.850529	_0.89	<u>50.4</u>	_507_	-8/1.//0621	8/1.0//483	0.80		- 489
N				56.2	509				56.8	504				58.0	493
$ \overline{N} $				0.1	-1				-1.6	15				0.1	-1
$\sigma_{\overline{N}}$				0.8	7				0.7	6				0.7	6
		Rh	-T118	8A			Rh-W	265Y				Rh-W	265F		
Exp.				59.1	484				59.2	483				59.6	480
1	-871.694563	-871.599190	0.87	59.8	478	-871.814494	-871.719463	0.84	59.6	479	-871.774650	-871.679353	0.85	59.8	478
2	-871.694419	-871.599121	0.86	59.8	478	-871.809860	-871.714640	0.85	59.8	479	-871.775609	-871.679323	0.82	60.4	473
3	-871.694311	-871.599251	0.86	59.7	479	-871.795375	-871.702927	0.89	58.0	493	-871.776987	-871.682557	0.84	59.3	483
4	-871.694043	-871.598584	0.88	59.9	477	-871.798040	-871.704184	0.88	58.9	485	-871.775420	-871.679402	0.83	60.3	475
5	-871.694469	-871.599018	0.83	59.9	477	-871.808482	-871.714765	0.88	58.8	486	-871.775999	-871.679993	0.82	60.2	475
6	-871.709362	-871.613468	0.87	60.2	475	-871.799573	-871.706572	0.86	58.4	490	-871.776224	-871.680139	0.81	60.3	474
7	-871.707837	-871.612874	0.87	59.6	480	-871.814696	-871.721797	0.85	58.3	490	-871.775309	-871.680158	0.85	59.7	479
8	-871.694493	-871.599014	0.86	59.9	477	-871.796773	-871.701996	0.99	59.5	481	-871.775819	-871.679532	0.80	60.4	473
9	-871.694177	-871.599129	0.85	59.6	479	-871.799709	-871.706752	0.87	58.3	490	-871.775124	-871.680246	0.86	59.5	480
10	-871.694452	<u>-871.601071</u>	0.86	58.6	488	<u>-871.797972</u>	-871.704619	0.89	<u>58.6</u>	_488_	-871.775765	-871.679432	0.82	60.4	473
\overline{N}				59.7	479				58.8	486				60.0	476
\overline{N}				0.6	-5				-0.4	3				0.4	-4
$\sigma_{\overline{N}}$				0.4	4				0.6	5				0.4	3
		Rh-D8	83N-E	E122Q		R	kh-A292S-A	295S-	A299C			\mathbf{ASR}_{AT} -	D217	E	
Exp.				60.2	475				59.1	484				51.8	552
1	-872.060033	-871.964370	0.78	60.0	476	-871.975981	-871.881896	0.86	59.0	484	-871.930459	-871.846962	1.26	52.4	546
2	-872.062205	-871.964112	0.77	61.6	464	-871.971764	-871.878114	0.87	58.8	487	-871.913533	-871.829757	1.27	52.6	544
3	-872.068860	-871.972036	0.77	60.8	471	-871.973050	-871.878846	0.87	59.1	484	-871.930620	-871.847204	1.26	52.3	546
4	-872.062291	-871.964201	0.74	61.6	465	-871.955098	-871.862576	0.87	58.1	492	-871.930394	-871.846940	1.26	52.4	546
5	-872.070497	-871.974612	0.80	60.2	475	-871.974425	-871.882216	0.87	57.9	494	-871.930497	-871.846922	1.26	52.4	545
6	-872.068335	-871.971752	0.74	60.6	472	-871.954187	-871.862017	0.87	57.8	494	-871.930819	-871.847506	1.28	52.3	547
7	-872.067357	-871.969521	0.74	61.4	466	-871.972978	-871.878222	0.82	59.5	481	-871.930529	-871.847320	1.26	52.2	548
8	-872.068999	-871.971163	0.77	61.4	466	-871.952733	-871.860769	0.87	57.7	495	-871.922630	-871.844577	1.45	49.0	584
9	-872.069687	-871.971518	0.75	61.6	464	-871.952913	-871.859142	0.86	58.8	486	-871.930904	-871.847895	1.28	52.1	549
10	-872.062174	-871.963799	0.74	61.7	463	-871.964745	-871.870067	0.84	59.4	_481_	-871.931503	871.848618	1.29	52.0	_ 550
\overline{N}				61.1	468				58.6	488				52.0	550
\overline{N}				0.9	-7				-0.5	4				0.2	-2
$\sigma_{\overline{N}}$				0.6	5				0.7	5				1.1	12
/N						1					1		Conti	nued on nex	t page

					Tabl	le S 3 — con	tinued from	prev	ious page						
Seed	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)
						a-A	$RM_{customiz}$	red							
		K	$\mathbf{R2-2}^{()}$	c)		BPR ^(c)				r	RCor	ie ^(c)			
Exp.				54.5	525				58.3	490				49.7	575
1	-871.806421	-871.718965	1.13	54.9	521	-872.093507	-872.002334	0.72	57.2	500	-871.765053	-871.680551	1.10	53.0	539
2	-871.791326	-871.702123	0.87	56.0	511	-872.100809	-872.009175	0.73	57.5	497	-871.754866	-871.675919	1.16	49.5	577
3	-871.817554	-871.728126	0.86	56.1	509	-872.106426	-872.015214	0.77	57.2	500	-871.768755	-871.688682	1.06	50.2	569
4	-8/1.816829	-8/1./2/536	0.86	56.0	510	-872.094144	-872.002679	0.74	57.4	498	-8/1./54665	-8/1.0/05/5	1.15	49.0	583
5	-871.779909	-8/1.689883	1.00	56.5	506	-872.094386	-872.003224	0.76	57.2	500	-8/1./5262/	-8/1.6/4553	1.15	49.0	584
67	-8/1.816854	-8/1.72/560	0.86	56.0	510	-872.086504	-8/1.995213	0.76	57.3	499	-871.745093	-8/1.004008	0.99	50.5	567
7	-8/1./910/2	-8/1.701981	0.88	55.9	511	-872.086485	-8/1.995451	0.76	57.1	501	-871.763063	-8/1.083131	1.20	50.2	570
8	-8/1./91012	-8/1./02218	0.89	00. <i>(</i>	513	-872.098137	-872.000042	0.74	57.5 56.4	497	-8/1./54005	-8/1.0/0302	1.15	49.0	283
9	-0/1.010090	-0/1./2/200	0.07	50.1	510	-012.091010	-072.001000	0.70	50.4	507	-011.104004	-0/1.0/042/	1.10	49.1	505
	-0/1.010090	-0/1./2/205	_0.87_			-812.090504	-872.005594	_0.70	<u>37.1</u>	_301_	-0/1./04000	-8/1.0/5919	1.10	49.0	_ <u>= = -</u> -
\underline{N}				55.9	511				57.2	500				49.9	573
N				1.4	-14				-1.1	10				0.2	-2
$\sigma_{\overline{N}}$				0.4	4				0.3	3				1.2	14
		C	$h \mathbf{R}_{C10}^{(\mathbf{c})}$	72			\mathbf{ChR}	2 ^(c)				ChR2-C	128T ⁽	(c)	
Exp.				62.4	458				60.8	470				59.0	485
1	-871.766869	-871.665904	0.64	63.4	451	-871.966578	-871.869065	0.80	61.2	467	-871.968173	-871.873554	0.94	59.4	482
2	-871.765234	-871.662713	0.57	64.3	444	-871.959771	-871.858873	0.78	63.3	452	-871.968639	-871.874623	0.98	59.0	485
3	-871.766757	-871.665228	0.63	63.7	449	-871.966354	-871.868754	0.79	61.2	467	-871.975749	-871.881662	0.94	59.0	484
4	-871.766078	-871.664917	0.63	63.5	450	-871.966776	-871.869326	0.81	61.2	468	-871.968681	-871.873604	0.96	59.7	479
5	-871.765935	-871.666631	0.72	62.3	459	-871.960907	-871.859742	0.75	63.5	450	-871.968570	-871.874403	0.95	59.1	484
6	-871.766677	-871.665276	0.63	63.6	449	-871.959581	-871.858404	0.72	63.5	450	-871.968575	-871.874466	0.95	59.1	484
7	-871.765845	-871.662488	0.57	64.9	441	-871.967420	-871.869935	0.88	61.2	467	-871.974295	-871.880181	0.90	59.1	484
8	-871.766857	-871.665751	0.65	63.4	451	-871.959226	-871.858047	0.64	63.5	450	-871.965017	-871.870650	0.96	59.2	483
9	-871.766838	-871.665506	0.64	63.6	450	-871.936490	-871.839350	0.89	61.0	469	-871.968436	-871.874313	0.96	59.1	484
10	-871.765786	-871.662497	0.57	64.8	441	-871.960510	-871.859972	0.67	63.1	_453_	-871.969026	871.873936_	0.95	59.7	_ 479 _
\overline{N}				63.8	449				62.3	459				59.2	483
\overline{N}				1.4	-9				1.5	-11				0.2	-2
$\sigma_{\overline{N}}$				0.8	5				1.2	9				0.3	2
			$\mathbf{b}\mathbf{R}_{\mathbf{t}}^{(c)}$				$\mathbf{b}\mathbf{R}_{\mathbf{c}}^{(t)}$	c-2)							
Exp.				50.3	568			T	50.3	568					
1	-871.749782	-871.669143	1.43	50.6	565.0275404	-872.054117	-871.973964	1.38	50.3	568					
2	-871.748107	-871.667915	1.43	50.3	568.1787667	-872.052652	-871.972753	1.37	50.1	570					
3	-871.748042	-871.667100	1.43	50.8	562.9133129	-872.052420	-871.972882	1.40	49.9	573					
4	-871.747525	-871.666578	1.42	50.8	562.8774994	-872.052928	-871.971979	1.38	50.8	563					
5	-871.748246	-871.667982	1.44	50.4	567.6712091	-872.055789	-871.975009	1.36	50.7	564					
6	-871.747018	-871.666745	1.43	50.4	567.59929	-872.055729	-871.974957	1.36	50.7	564					
7	-871.747316	-871.666612	1.43	50.6	564.5677742	-872.056266	-871.975792	1.37	50.5	566					
8	-871.747537	-871.666875	1.42	50.6	564.8664286	-872.054117	-871.973964	1.38	50.3	568					
9	-871.757220	-871.675159	1.39	51.5	555.2339365	-872.055797	-871.975020	1.35	50.7	564					
10	-871.747892	-871.667378	1.43	50.5	565.903774	-872.060348	-871.980071	1.37	50.4	568					
$-\frac{-}{N}$				50.7					50.4	567					
$\overline{ N }$				0.4	-4				0.1	-1					
1-1				5.1	т	<u> </u>			0.1	1	<u> </u>		Conti	nued on nev	t nage

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Seed	S ₀ Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S ₀ Energy	S_1 Energy	fosc	ΔE_{S1-S0}	λ^a_{max}	S ₀ Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
$\sigma_{\overline{X}}$ Normalization of PI Normalization of PI Normalin and PI Normaline and PI	(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)	-	$(\rm kcal/mol)$	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)
	$\sigma_{\overline{N}}$				0.3	4				0.3	3					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						a-A	$\mathrm{RM}_{\mathrm{customize}}$	ed (Effect of	' chair	and pH)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ASR	$_{AT}$ -1(c-pH)			\mathbf{ASR}_{13C}	-2 ^{(c-pI}	I)			$\mathbf{bR}_{1}^{\mathbf{c}}$	-рН 3С		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Exp.				52.0	550				53.2	537				52.2	547
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-872.011057	-871.916625	0.97	59.3	483	-872.030188	-871.934729	1.10	59.9	477	-872.304485	-872.203163	0.62	63.6	450
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	-872.010414	-871.916614	0.95	58.9	486	-872.024819	-871.930528	0.96	59.2	483	-872.300505	-872.199325	0.64	63.5	450
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	-872.009242	-871.915443	1.00	58.9	486	-872.024947	-871.930541	0.92	59.2	483	-872.288999	-872.188334	0.66	63.2	453
	4	-872.009660	-871.916203	0.98	58.6	488	-872.024825	-871.930716	0.95	59.1	484	-872.289389	-872.188806	0.67	63.1	453
	5	-871.997217	-871.906871	1.19	56.7	504	-872.025047	-871.930507	0.93	59.3	482	-872.288866	-872.188332	0.68	63.1	453
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	-872.009659	-871.915884	0.98	58.8	486	-872.025166	-871.930423	0.93	59.5	481	-872.30111	-872.200178	0.65	63.3	451
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	-872.001978	-871.905460	0.85	60.6	472	-872.057313	-871.964260	0.93	58.4	490	-872.294073	-872.193273	0.64	63.3	452
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	-872.012484	-871.917874	0.94	59.4	482	-872.025158	-871.930510	0.93	59.4	481	-872.288968	-872.188371	0.63	63.1	453
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	-872.009637	-871.915918	0.96	58.8	486	-872.057181	-871.964433	0.92	58.2	491	-872.288981	-872.188391	0.64	63.1	453
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	-872.009541	-871.914735	1.01	59.5	481	-872.024881	-871.930195	0.95	<u>59.4</u>	_481_	-872.294849	872.19439 _	0.67	63	_ 454 _
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\overline{N}				59.0	485				59.2	483				63.2	452
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\overline{N}				7.0	-65				6.0	-54				11.0	-95
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sigma_{\overline{N}}$				1.0	8				0.5	4				0.2	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			bl	R ^{(c-pI}	I)			bathoR	h ^{(c-pH}	[)			batho	Rh ^(c)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Exp.				50.3	568				54	529				54	529
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-871.892865	-871.790117	0.65	64.5	443	-871.806085	-871.716416	0.92	56.3	508	-871.931	-871.844269	1.08	54.4	525
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	-871.892663	-871.790024	0.65	64.4	444	-871.785693	-871.69443	0.93	57.3	499	-871.916126	-871.830093	1.17	54	530
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	-871.892744	-871.790225	0.66	64.3	444	-871.780228	-871.689937	0.97	56.7	505	-871.911142	-871.825087	1.09	54	529
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	-871.892706	-871.789216	0.71	64.9	440	-871.803163	-871.712138	0.95	57.1	501	-871.916011	-871.831531	1.06	53	539
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-871.892778	-871.790061	0.65	64.5	444	-871.778822	-871.687377	0.91	57.4	498	-871.911302	-871.825178	1.09	54	529
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	-871.892712	-871.790196	0.66	64.3	444	-871.780053	-871.689403	0.96	56.9	503	-871.927654	-871.841412	1.08	54.1	528
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	-871.892806	-871.790431	0.65	64.2	445	-871.779492	-871.688817	0.86	56.9	502	-871.916213	-871.829872	1.15	54.2	528
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	-871.892654	-871.790464	0.65	64.1	446	-871.81367	-871.721809	0.81	57.6	496	-871.911089	-871.825008	1.08	54	529
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	-871.891477	-871.791638	0.69	62.6	456	-871.785693	-871.69443	0.93	57.3	499	-871.927479	-871.841084	1.09	54.2	527
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	-871.892663	-871.790024	0.65	64.4	444	-871.778822	-871.687377	0.91	57.4	_498_	-871.915855	-871.829806	1.09	54	_ 530
$\begin{array}{ $	\overline{N}				64.2	445				57.1	501				54.0	529
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\overline{N}				13.9	-123				3.1	-28				0.0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sigma_{\overline{M}}$				0.6	4				0.4	4				0.4	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			B	PR(c-	2)			BPR ^{(c}	-pH-2)				Rh	(c)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Exp.				58.3	490				58.3	490				57.4	498
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	-872.092199	-871.990725	0.58	63.7	449	-872.141865	-872.051133	0.86	56.9	502	-871.960867	-871.871577	0.94	56	510
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-872.092759	-871.991196	0.58	63.7	449	-872.133237	-872.042133	0.89	57.2	500	-871.95992	-871.86997	1.11	56.4	507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	-872.09237	-871.990778	0.57	63.7	448	-872.14175	-872.051126	0.86	56.9	503	-871.972581	-871.882799	0.89	56.3	507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	-872.091715	-871.990006	0.62	63.8	448	-872.141611	-872.050852	0.86	57	502	-871.960032	-871.870863	1.1	56	511
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	-872.093278	-871.99146	0.60	63.9	447	-872.133057	-872.041955	0.88	57.2	500	-871.961765	-871.873231	0.96	55.6	515
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	-872.091774	-871.990248	0.57	63.7	449	-872.132986	-872.042078	0.87	57	501	-871.971835	-871.882364	0.93	56.1	509
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	-872.092212	-871.990614	0.56	63.8	448	-872.140381	-872.049827	0.86	56.8	503	-871.964434	-871.875355	1.12	55.9	511
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	-872.102907	-872.00099	0.56	64.0	447	-872.133413	-872.042384	0.89	57.1	501	-871.960524	-871.873657	0.94	54.5	525
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	-872.092288	-871.990441	0.57	63.9	447	-872.141516	-872.050709	0.85	57	502	-871.971679	-871.884234	0.94	54.9	521
N 63.7 449 57.0 501 55.8 512 Continued on next page Continued on nex	10	-872.089566	-871.988996	0.47	63.1	453	-872.133237	-872.042133	0.89	57.2	_500_	-871.969553	-871.879925	0.93	56.2	_ 508 _
Continued on next page	\overline{N}				63.7	449				57.0	501				55.8	$512^{}$
Continued on next page							1			-	-	1		Conti	nued on nex	t page

Seed	S_0 Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S ₀ Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}	S ₀ Energy	S_1 Energy	f_{Osc}	ΔE_{S1-S0}	λ^a_{max}
(N)	(a.u.)	(a.u.)		(kcal/mol)	(nm)	(a.u.)	(a.u.)		$(\rm kcal/mol)$	(nm)	(a.u.)	(a.u.)		(kcal/mol)	(nm)
\overline{N}				5.4	-42				-1.3	11				-1.6	14
$\sigma_{\overline{N}}$				0.2	2				0.1	1				0.6	6
		R	h ^{c-pH-}	·2			SqF	th ^c							
Exp.				57.4	498				58.5	489					
1	-872.001068	-871.897257	0.75	65.1	439	-871.756918	-871.662109	0.82	59.5	481					
2	-872.000111	-871.897181	0.68	64.6	443	-871.758008	-871.663224	0.83	59.5	481					
3	-872.000981	-871.897183	0.74	65.1	439	-871.757519	-871.663524	0.84	59	485					
4	-872.000954	-871.897406	0.74	65.0	440	-871.757079	-871.662262	0.83	59.5	481					
5	-872.001058	-871.897215	0.75	65.2	439	-871.757597	-871.66267	0.82	59.6	480					
6	-872.000881	-871.896998	0.74	65.2	439	-871.757229	-871.662417	0.82	59.5	481					
7	-872.001147	-871.897332	0.75	65.1	439	-871.757272	-871.662533	0.82	59.4	481					
8	-872.000922	-871.897069	0.74	65.2	439	-871.756828	-871.66209	0.82	59.4	481					
9	-872.001094	-871.897164	0.74	65.2	438	-871.757211	-871.663164	0.84	59	484					
10	-872.009042	-871.906454	0.75	64.4	444	-871.756865	-871.66208	0.82	59.5	_481_					
\overline{N}				65.0	440				59.4	482					
\overline{N}				7.6	-58				0.9	-7					
$\sigma_{\overline{N}}$				0.3	2				0.2	2					

Table S3 — continued from previous page

				a-ARM _{defaul}	t		a-ARM _{customiz}	zed
Rhodopsin	$\Delta E_{\rm S1-S0}^{Exp}$	$\delta_{x,Exp}^{Rh,Exp}\Delta E_{\rm S1-S0}{}^{a}$	$\Delta E_{\rm S1-S0}$	$\delta_{x,Calc}^{Rh,Calc} \Delta E_{\rm S1-S0}{}^{b}$	Trend Dev. ^c	$\Delta E_{\rm S1-S0}$	$\delta_{x,Calc}^{Rh,Calc} \Delta E_{\rm S1-S0}{}^{b}$	Trend Dev. ^c
Rh	57.4	0.0	57.7	0.0	0.0	57.7	0.0	0.0
bathoRh	54.0	3.4	56.1	1.6	1.8	56.1	1.6	1.8
SqRh	58.5	1.1	60.9	3.2	2.1	60.9	3.2	2.1
BPR	58.3	0.9	63.7	6.0	5.1	57.0	0.7	0.2
ASR_{AT} -1	52.1	5.3	52.4	5.3	0.0	52.4	5.3	0.0
ASR_{13C} -2	53.2	4.2	54.2	3.5	0.7	54.2	3.5	0.7
bR_{AT}	50.3	7.1	53.2	4.5	2.6	50.6	7.1	0.0
bR_{13C}	52.2	5.2	53.3	4.4	0.8	53.3	4.4	0.8
ChR_{C1C2}	62.4	5.0	76.9	19.2	14.2	63.8	6.1	1.1
hMeOp	60.4	3.0	61.2	3.5	0.5	61.2	3.5	0.5
BCone	66.5	9.1	67.8	10.1	1.0	67.8	10.1	1.0
GCone	53.4	4.0	55.0	2.7	1.3	55.0	2.7	1.3
RCone	49.7	7.7	58.5	0.8	6.9	49.9	7.8	0.1
mMeOp	61.2	3.8	62.3	4.6	0.8	62.3	4.6	0.8
SqbaRh	54.0	3.4	55.5	2.2	1.2	55.5	2.2	1.2
SR-II	57.5	0.1	58.0	0.3	0.2	58.0	0.3	0.2
ASR_{AT} -D217E	52.0	5.4	51.8	5.9	0.5	51.8	5.9	0.5
Arch1	50.3	7.1	50.5	7.2	0.1	50.5	7.2	0.1
AARh	56.3	1.1	58.9	1.2	0.1	58.9	1.2	0.1
Arch2	52.0	5.4	54.5	3.2	2.2	54.5	3.2	2.2
ChR2	60.8	3.4	79.9	22.2	18.8	63.3	5.6	2.2
ChR2-C128T	59.0	1.6	79.7	22.0	20.4	59.2	1.5	0.1
KR2-2	54.4	3.0	69.4	11.7	8.7	55.9	1.8	1.2
$PoXeR_{AT}$	50.3	7.1	50.5	7.2	0.1	50.5	7.2	0.1
$PoXeR_{13C}$	52.1	5.3	54.3	3.4	1.9	54.3	3.4	1.9
NM-R3	55.3	2.1	56.1	1.6	0.5	56.1	1.6	0.5
CIR	55.3	2.1	55.2	2.5	0.4	55.2	2.5	0.4
F261Y	56.1	1.3	56.2	1.5	0.2	56.2	1.5	0.2
T94S	57.9	0.5	58.0	0.3	0.2	58.0	0.3	0.2
A292S	58.5	1.1	58.7	1.0	0.1	58.7	1.0	0.1
W265Y	59.0	1.6	58.8	1.1	0.5	58.8	1.1	0.5
W265F	59.6	2.2	60.0	2.3	0.1	60.0	2.3	0.1
T118A	59.1	1.7	59.7	2.0	0.3	59.7	2.0	0.3
G90S	58.4	1.0	57.1	0.6	0.4	57.1	0.6	0.4
E122Q	59.6	2.2	60.0	2.3	0.1	60.0	2.3	0.1
A269T	55.6	1.8	56.1	1.6	0.2	56.1	1.6	0.2
E113D	56.1	1.3	55.4	2.3	1.0	55.4	2.3	1.0
D83N/E122Q	60.2	2.8	60.9	3.2	0.4	60.9	3.2	0.4
A292S/A295S/A299C	59.1	1.7	58.6	0.9	0.8	58.6	0.9	0.8
MAE of Trend Dev.			1		2.5			0.7
MAD of Trend Dev.					1.2			0.5

Table S4: Trend deviation factor (||Trend Dev.||) for the a-ARM_{default} and a-ARM_{customized} approaches, expressed as mean absolute error (MAE) and mean absolute deviation (MAD) of the x=38 rhodopsins of the benchmark set.

 $\begin{array}{c} 1.2 \\ \hline a \text{Difference between the experimental } \Delta E_{\text{S1-S0}}^{Exp} \text{ of each of the x rhodopsins with respect to experimental value of Rh } (\delta_{x,Exp}^{Rh,Exp} \Delta E_{\text{S1-S0}}). \\ \hline b \text{Difference between the calculated } \Delta E_{\text{S1-S0}} \text{ of each of the x rhodopsins with respect to calculated value of Rh } (\delta_{x,Calc}^{Rh,Calc} \Delta E_{\text{S1-S0}}). \\ \hline c ||\text{Trend Dev.}|| = |(\delta_{x,Exp}^{Rh,Exp} \Delta E_{\text{S1-S0}}) \cdot (\delta_{x,Calc}^{Rh,Calc} \Delta E_{\text{S1-S0}})| \\ \end{array}$

S7 Details of the employed comparative modelling protocol for AARh, PoXeR, hMeOp, mMeOp and BCone, GCone, RCone

Comparative modeling was carried out by means of the software MODELLER 1.[?] Sequence identity between target and template protein dictated the modeling strategy. In that respect, values 70% without gaps allowed simple substitution of mutated amino acid side chains while transferring the coordinates of all main chain and of conserved side chain atoms. That was the case of AARh, characterized by 93% of sequence identity to the template, bovine rhodopsin. The same approach was used for modeling PoXeR, in spite of a sequence identity to the Anabaena sensory rhodopsin template lower than the threshold above (i.e. 51%). The reason was that the modeled PoXeR primary sequence aligned without gaps to the sequence of the template and almost all mutated positions point towards the membrane or the extracellular and intracellular water (i.e. only 8 out of the 106 mutated positions point towards the core of the helix bundle).

The same approach was used for modeling PoXeR, whose primary sequence aligned without gaps to the sequence of the Anabaena sensory rhodopsin template, mutated amino acids lying far from the retinal binding site. The other models, i.e. those of human cone opsins (based on bovine rhodopsin) and of mouse melanopsin (based on squid rhodopsin) were achieved by a high degree of model refinement upon randomizing all the Cartesian coordinates of standard residues in the initial model, which produced multiple models from the same alignment (i.e. 250 for each cone opsin and 100 for mouse melanopsin). For each run, the top twenty models, characterized by the lowest values of the MODELLER objective function (which means lowest degree of restraint violation) were subjected to quality checks, which verified the correctness of main chain conformation, leading to selection of one or more models. For each run, the top twenty models were selected, characterized by the lowest values of the MODELLER objective function (which means lowest degree of restraint violation). The set of selected models were subjected to quality checks, which verified the correctness of main chain conformation, leading the correctness of main chain conformation, leading to selection of one or more models. For each run, the top to selection of one or more models.

For all modeled opsins, side chains were subjected to automatic adjustment if in non-allowed conformation by using three different backbone-independent and backbone-dependent rotamer libraries. Care was put in keeping as much as possible the conformation of conserved amino acids in the template retinal binding site. Water molecules in conserved amino acid environments were transferred from the template structure to the final model(s) of the target protein.

Code	Protein	Template PDB	Chain	% Identity ^a	N. Water ^{b}
AARh	Ancestral Archosaur	$1U19^{S10}$	А	93	21
Bcone	Blue Cone opsin	$1U19^{S10}$	А	44	14
Gcone	Green Cone opsin	$1U19^{S10}$	А	41	10
Rcone	Red Cone opsin	$1U19^{S10}$	А	40	10
mMeOp	Mouse melanopsin	$2Z73^{S11}$	А	45	8
$PoXeR_{13C}$	Sensory rhodopsin	4TL3?	\mathbf{B}^{c}	51	5
$PoXeR_{AT}$	Sensory rhodopsin	4TL3?	\mathbf{B}^{c}	51	5

Table S5: Main features of the comparative models

^aPercentage of sequence identity computed as a ratio between the number of aligned positions.

^bNumber of water molecules translated from the template to the target structures as topologically equivalent. ^cFor $PoXe_{R13}$ and $PoXeR_{AT}$ we selected chain B, rather chain A, because is slightly more complete.

S8 Further details on the assignment of ionizable residues protonation state

As reported in the main text at the end of Section 2.2.3, PROPKA data may not always give a realistic (*i.e.*, conforming to available experimental data or current consensus) results. This is mostly felt with regard to histidines, which show a pK_a value often close to the imposed pH, and thus, it is often unclear which is their actual protonation state. Taking a leaf from the previous ARM work,^{S1} we decided to modulate the assignment of the protonation state to ionizable residues as follows. Doing so, we were able to obtain protonation states more in line with currently accepted data.^{S1}

Concerning Asp, Glu, Arg and Lys residues, we followed the indication given by the computed charge (as reported in Equation 5), as long as the residue's corresponding buried percentage was higher than 55%. For His residues, we applied the further condition that the computed shift value ($\Delta p K_a$) is higher than 1.6 pH units.

Nevertheless, we would like to stress once more the importance of employing the correct protonation state for ionizable residues, and to follow the available experimental data whenever it is possible, as illustrated in Sections 3.2 and, particularly, 3.2.4.

S9 Notes

Figures of molecular structures were generated with PyMOL (http://www.pymol.org)

References

- (S1) Melaccio, F.; del Carmen Marín, M.; Valentini, A.; Montisci, F.; Rinaldi, S.; Cherubini, M.; Yang, X.; Kato, Y.; Stenrup, M.; Orozco-González, Y.; Ferre, N.; Luk, H. L.; Kandori, H.; Olivucci, M. Toward Automatic Rhodopsin Modeling as a Tool for High-Throughput Computational Photobiology. *JCTC* **2016**, *12*, 6020–6034.
- (S2) Vogeley, L.; Sineshchekov, O. A.; Trivedi, V. D.; Sasaki, J.; Spudich, J. L.; Luecke, H. Anabaena Sensory Rhodopsin: A Photochromic Color Sensor at 2.0 Å. Science 2004, 306, 1390–1393.
- (S3) Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTP 3.0: Computed Atlas of Surface Topography of Proteins. *Nucleic Acids Res* 2018, 46, W363–W367.
- (S4) Olsson, M. H.; Søndergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pK_a Predictions. J. Chem. Theory Comput. 2011, 7, 525–537.
- (S5) Nogly, P.; Weinert, T.; James, D.; Carbajo, S.; Ozerov, D.; Furrer, A.; Gashi, D.; Borin, V.; Skopintsev, P.; Jaeger, K.; Nass, K.; Bath, P.; Bosman, R.; Koglin, J.; Seaberg, M.; Lane, T.; Kekilli, D.; Brnle, S.; Tanaka, T.; Wu, W.; Milne, C.; White, T.; Barty, A.; Weierstall, U.; Panneels, V.; Nango, E.; Iwata, S.; Hunter, M.; Schapiro, I.; Schertler, G.; Neutze, R.; Standfuss, J. Retinal Isomerization in Bacteriorhodopsin Captured by a Femtosecond X-Ray Laser. *Science* 2018, eaat0094.
- (S6) Nishikawa, T.; Murakami, M.; Kouyama, T. Crystal Structure of the 13-cis Isomer of Bacteriorhodopsin in the Dark-Adapted State. J. Mol. Biol. 2005, 352, 319–328.
- (S7) Nakamichi, H.; Okada, T. Crystallographic Analysis of Primary Visual Photochemistry. Angew. Chem. 2006, 118, 4376–4379.
- (S8) Ran, T.; Ozorowski, G.; Gao, Y.; Sineshchekov, O. A.; Wang, W.; Spudich, J. L.;

Luecke, H. Cross-Protomer Interaction with the Photoactive Site in Oligomeric Proteorhodopsin Complexes. *Acta Crystallogr. D* **2013**, *69*, 1965–1980.

- (S9) Kato, H. E.; Zhang, F.; Yizhar, O.; Ramakrishnan, C.; Nishizawa, T.; Hirata, K.; Ito, J.; Aita, Y.; Tsukazaki, T.; Hayashi, S.; Hegemann, P.; Maturana, A. D.; Ishitani, R.; Deisseroth, K.; Nureki, O. Crystal structure of the channelrhodopsin light-gated cation channel. *Nature* **2012**, *482*, 369.
- (S10) Okada, T.; Sugihara, M.; Bondar, A. N.; Elstner, M.; Entel, P.; Buss, V. The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2 Å crystal structure. J. Mol. Biol. 2004, 342, 571–583.
- (S11) Murakami, M.; Kouyama, T. Crystal Structure of Squid Rhodopsin. Nature 2008, 453, 363–367.
- (S12) Dong, B.; Sánchez-Magraner, L.; Luecke, H. Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights. *Biophys. J.* 2016, 111, 963–972.
- (S13) Enami, N.; Yoshimura, K.; Murakami, M.; Okumura, H.; Ihara, K.; Kouyama, T. Crystal Structures of Archaerhodopsin-1 and -2: Common Structural Motif in Archaeal Lightdriven Proton Pumps. J. Mol. Biol. 2006, 358, 675–685.
- (S14) Kouyama, T.; Fujii, R.; Kanada, S.; Nakanishi, T.; Chan, S. K.; Murakami, M. Structure of Archaerhodopsin-2 at 1.8 Å Resolution. Acta Crystallogr. D 2014, 70, 2692–2701.
- (S15) Volkov, O.; Kovalev, K.; Polovinkin, V.; Borshchevskiy, V.; Bamann, C.; Astashkin, R.; Marin, E.; Popov, A.; Balandin, T.; Willbold, D.; Büldt, G.; Bamberg, E.; Gordeliy, V. Structural insights into ion conduction by channelrhodopsin 2. *Science* 2017, 358, eaan8862.
- (S16) Kato, H. E.; Inoue, K.; Abe-Yoshizumi, R.; Kato, Y.; Ono, H.; Konno, M.; Hososhima, S.; Ishizuka, T.; Hoque, M. R.; Kunitomo, H.; Ito, J.; Yoshizawa, S.; Yamashita, K.; Take-

moto, M.; Nishizawa, T.; Taniguchi, R.; Kogure, K.; Maturana, A. D.; Iino, Y.; Yawo, H.; Ishitani, R.; Kandori, H.; Nureki, O. Structural Basis for Na⁺ Transport Mechanism by a Light-Driven Na⁺ Pump. *Nature* **2015**, *521*, 48–53.

- (S17) Hosaka, T.; Yoshizawa, S.; Nakajima, Y.; Ohsawa, N.; Hato, M.; DeLong, E. F.; Kogure, K.; Yokoyama, S.; Kimura-Someya, T.; Iwasaki, W.; Shirouzu, M. Structural Mechanism for Light-Driven Transport by a New Type of Chloride Ion Pump, *Nonlabens marinus* Rhodopsin-3. J. Biol. Chem. **2016**, 291, 17488–17495.
- (S18) Kim, K.; Kwon, S.-K.; Jun, S.-H.; Cha, J. S.; Kim, H.; Lee, W.; Kim, J. F.; Cho, H.-S. Crystal Structure and Functional Characterization of a Light-Driven Chloride Pump Having an NTQ Motif. *Nat. Commun.* **2016**, *7*, 12677–12687.
- (S19) Luecke, H.; Schobert, B.; Lanyi, J. K.; Spudich, E. N.; Spudich, J. L. Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights Into Color Tuning and Transducer Interaction. *Science* 2001, 293, 1499–1503.
- (S20) Murakami, M.; Kouyama, T. Crystallographic Analysis of the Primary Photochemical Reaction of Squid Rhodopsin. J. Mol. Biol. 2011, 413, 615–627.