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1 Enumeration and completeness of sgRNA on-
and off- target sites by general short aligners

Although well-known, general purpose short read sequence aligners, such as
BWA (Li and Durbin, 2009) are commonly used by guide design tools to enu-
merate potential off-targets, this is not an optimal choice. In fact, using short
aligner is difficult and also fine-grained searches are not possible, for example is
not possible to use ambiguous nucleotide (IUPAC notation) or ”N” nucleotide.
Those details add difficulties in the use of short read aligners as CRISPR off-
targets search tools.

To test this we use a well-known guide (GAGTCCGAGCAGAAGAAGAA)
targeting the EMX1 gene. We count all the sites recovered by Cas-Offinder
(a brute force approach) and BWA, when using a up to 4 mismatches and
no DNA/RNA bulges and the well-known Cas9 PAM (NGG) (see Fig.S1A).
We show how searching with BWA using a guide with PAM (e.g. GAGTCC-
GAGCAGAAGAAGAANGG) may lead to unexpected results.

Before starting the search with BWA, we created an index of human reference
genome 19 (hg19), using the command:

bwa index hg19.fa

The alignment phase was performed with this command:

bwa aln -o 0 -m 20000000 -n 4 -k 4 -N -l 20 hg19.fa emx1.fa

The mapping with this command:

bwa samse -n 600000000000000000 hg19.fa 4mm.bwa.sai emx1.fa

Finally, we created a BED file with the regions recovered using samtool and
bedtools, with those commands:

samtools view -Sb 4mm.bwa.sam

bedtools bamtobed -i 4mm.bwa.bam
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For Cas-Offinder we performed the same analysis with the command (Cas-
OFFinder uses settings written into the guide file to perform the search):

cas-offinder emx1.guide G emx1.out

As shown in Fig. S1A, BWA finds 20 off-targets in common with Cas-
OFFinder and 7 unique off-targets. This behaviour can be explained by ana-
lyzing the file we input in BWA. It contains the sequence GAGTCCGAGCA-
GAAGAAGAANGG created adding the PAM ”NGG” to emx1 guide GAGTC-
CGAGCAGAAGAAGAA. BWA treats each ”N” nucleotide as a mismatch,
so each off-target returned by BWA has one mismatch more than the Cas-
OFFinder counterpart. Also, BWA tries to match the PAM sequence of the
guide to the genome. Due to this behaviour, BWA reports some off-targets
containing mismatches in the PAM sequence (in our example the 7 unique off-
targets) that are not reported by ad-hoc CRISPR off-targets search tools (such
as Cas-OFFinder in the example). To overcome these difficulties in the set-up
to perform an off-targets search with BWA, some tools (ie CRISPOR (Haeussler
et al., 2016)) first perform a search of all the occurrences of the guides (without
the PAM) and then, in each found site, checks the PAM compatibility. Taking
as example our input guide, CRISPOR first performs a search with BWA using
only the guide (GAGTCCGAGCAGAAGAAGAA) and than in the collection
of the targets, runs a filtering by extracting the sequences from the genome used
in the search and collecting only those containing the correct PAM (NGG, in
the example).

Importantly, we have confirmed that CRISPRitz recover all the sites recov-
ered by Cas-OFFINDER when executed with the command:

CRISPRitz search hg19.index pamNNN emx1.guide -mm 4 -r

2 CRISPRitz recovers complex DNA/RNA bulges
missed by CAS-Offinder

A well-known problem of CRISPR off-targets search tools is to efficiently enu-
merate all the possible off-targets that may occur during CRISPR wet-lab exper-
iments. One difficulty added to this problem is to efficiently enumerate off-target
targets containing bulges. In this section we show that CRISPRitz enumerates
more off-targets with bulges with respect to the number of off-targets found by
Cas-OFFinder. The two searches were run with the following thresholds: up to
4 mismatches, up to 2 DNA and 2 RNA bulges.

For Cas-OFFinder we run the command (CAS-OFFinder uses settings writ-
ten into the guide file to perform the search):

cas-offinder emx1.guide G emx1.out

For CRISPRitz the used command was:
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CRISPRitz search hg19.index pamNNN emx1.guide -index -mm 4 -bDNA

2 -bRNA 2 -r

As shwon in Fig. S1B, Cas-OFFinder returns a smaller number of to-
tal off-targets. In fact, Cas-OFFinder performs a filter to avoid collecting
all the off-targets containing ”jumps” between bulges, for example, this off-
target GAGTCaGAGCA − gA − cAcAAGTG is collected by CRISPRitz and
not by Cas-OFFinder. Cas-OFFinder does not take into account sequences with
matches/mismatches between two bulges. This behaviour can lead to the loss
of some possible off-targets, compromising the analysis.
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Figure S1: Enumeration and comparison of targets and off-targets by Cas-
OFFinder, BWA and CRISPRitz CRISPRitz. (A) Comparison between Cas-
OFFinder and BWA, showing the differences in terms of off-targets found with a
short aligner (BWA) and an ad-hoc software (CAS-OFFinder), enlightening the
necessity of dedicated software to perform in-silico CRISPR/Cas analysis. (B)
Comparison between Cas-OFFinder and CRISPRitz, showing the differences in
off-targets count when considering 2 bulges.

3 PAM search with Aho-Corasick algorithm

To efficiently find all the genome regions compatible with a given PAM, the
algorithm creates a small deterministic automata machine used to scan and
enumerate all the potential PAM matches in linear time (based on the length of
the PAM). The automata machine reduces the searching time complexity to the
minimum number of comparisons O(N), where N is the genome length (i.e., the
algorithm scans each nucleotide in the genome only once). Automata machines
are usually represented as extended graphs. In this work, the automata machine
is a rooted directed tree (also called trie) enriched with additional connections
among nodes (see Paper Fig. 2). Each path from the root to a leaf represents
a PAM. Paper Fig. 2 shows the patterns corresponding to the NGG PAM i.e.:
GGG, AGG, TGG, CGG, CCC, CCT, CCA, CCG. With this data structure,
the PAM search in the genome is performed by reading one nucleotide at a time
and by matching it with a node of the graph. If the nucleotide matches with one
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of those nodes, then the algorithm follows the corresponding path by moving
one node forward in the tree and one nucleotide in the genome. This node
traversal iteratively continues as long as the current genome nucleotide matches
the current node. If it is not possible to match the next available node, the
algorithm jumps back to the parent node of the graph by following special failure
edges (dashed lines in Paper Fig. 2) and the search continues from the parent
node. The paths following the failure edges reduce the number of comparisons
by allowing the search to restart from the longest common substring that could
be matched at that stage. Every time the graph visit, reaches a leaf node, the
algorithm saves the current index (i.e., the nucleotide position in the reference
genome) as it may represent the starting position of a candidate off-target site.
The full list of indices of candidate off-target sites is the output of the PAM
search. Of note, the indices are saved in two arrays that differentiate between
positive and negative strands.

4 Ternary Search Tree for efficient genome in-
dexing

CRISPRitz uses a ternary search tree (TST) data structure (Bentley and Sedgewick,
1998) to index genome for rapid bulge searches. In a TST, each node repre-
sents a nucleotide and can have a maximum of three children: left, center, and
right. The TST is built by inserting one candidate off-target sequence at a time,
where the insertion is implemented through a recursive search. Starting from
the first nucleotide of the candidate target sequence and from the TST root, the
algorithm compares if the two nucleotide match, if they match, the comparison
continues to the next nucleotide on the candidate target sequence and descend
in the TST through the center child node and no new node is added to the TST.
If the nucleotide pair between the center child node and the nucleotide from the
candidate off-target sequence do not match, then the algorithm verifies the lexi-
cographical order of the nucleotide on the candidate target. If it is smaller than
the current nucleotide in the TST node, the search recursively continues to the
left child, otherwise if the candidate target nucleotide is lexicographical greater,
the search recursively continues to the right child. Finally, if the node in the
chosen direction does not exist, a new node is inserted in the TST with the
current nucleotide of the candidate target sequence. Every genomic sequence
inserted in the TST is 2 characters longer than the PAM sequence to allow for
searches with up to two DNA bulges. For example, for the PAM in Paper Fig.
2, the tool inserts a string of length 25 nucleotides (23 nucleotides for the guide
plus PAM sequence as well as an additional two nucleotides for DNA bulges).
The additional nucleotides represent the appropriate PAM flanking (upstream
or downstream) sequence in the reference genome. Paper Fig. 4, shows an ex-
ample of TST construction, by considering three strings (candidate off-target
sites) named CT1, CT2, and CT3. The algorithm first inserts CT1, which is
represented (by construction) by the central vertical path of the TST. The algo-
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rithm then inserts CT2 by visiting the first seven central nodes (corresponding
to the common prefix with CT1). Since the eighth base (C) does not match
with G, a new left child is created (since C < G). The procedure recursively
completes the insertion by forming the left vertical path of the TST. CT3 is
similarly inserted, by sharing a common prefix of length three after which a
new branch is created on the right starting from T (T > A).

5 Ternary Search Tree for efficient genome search

The candidate off-target site search is a function that recursively visits the TST,
in a similar manner as during the TST construction, described in the previous
section. With the constructed TST, the search is performed in two different
ways, the first only considers mismatches (hereafter referred to as ’mismatch-
search’), and the second considers mismatches in which bulges are permitted
(hereafter referred to as ’mismatch-bulge-search’). In the mismatch-search type,
it is not possible to reach Any leaf of the TST by construction (see Section 2.4)
and every candidate off-target site is written only once (a candidate off-target
site cannot be saved, for example, with 2 mismatches and with 4 mismatches
considering the same guide and the same genomic position). The mismatch-
search type stops either when the pattern (the candidate off-target site) has
been found or when the number of maximum mismatches has been exceeded
(the pattern, or candidate off-target site, is not reported). In the mismatch-
bulge-search type, mismatches and bulges are permitted for candidate off-target
sites (see Fig. 4 for an example). To avoid computationally expensive search
iterations on the same branch, the algorithm implements a recursive approach
that tries all possible combinations of results a candidate off-target site can
generate. Those combinations are tested recursively on the TST branch at run-
time, avoiding an iterative search restarting every time from the TST root. For
example, if the target guide is CCCAACCC, two possible combinations with
bulges that share trace-backs in the recursion are CCCA-ACCC and CCCAA-
CCC, since they share the common prefix CCCA. Every time an off-target site
has been saved, the algorithm computes a recursive trace-back and tests further
combination of mismatches and bulges on the same branch.

6 Guides comparison and results analysis be-
tween reference genome and enriched geneome
with variants

Fig. S2 and S3 show the different behaviour of two guides extracted from the
therapeutic dataset for targeting CCR5. The images are divide in three plots.
The first plot, the radar chart, is created to help the user to assess the guide
behaviour, compared to the Gecko Library v2. By looking at the area formed
by the point on the y-axis, the user can quickly evaluate the guide behaviour in
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Figure S2: A complete graphical visualization of a CCR5 guide with 4 mis-
matches allowed. The guide considered is TCAGTTTACACCCGATCCAC.
This is a good guide, with respect to the radar chart and the table, compared
to all others guides of the Gecko Library. This is visible from the small area
in the radar chart and from the position values close to 0 in the table and, for
example, in the exons region, the guide shows a y value of 0.1 and an off-target
count of 2.
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Figure S3: A complete graphical visualization of a CCR5 guide with 4 mis-
matches allowed. The guide considered is CACCCGATCCACTGGGGAGC.
This is a medium guide, with respect to the radar chart and the table, com-
pared to all others guides of the Gecko Library. This is visible from the medium
area in the radar chart and from the position values range from to 0.12 to 0.97
in the table and, for example, in the exons region, the guide shows a y value of
0.71 and an off-target count of 11.
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Figure S4: A complete graphical visualization of a CCR5 as reported in Fig.
S2 but using for the CTCF annotation only putative binding sites within peaks
predicted by a motif model from the Jaspar database (Khan et al., 2017). Com-
paring this analysis with the one in Fig. S2we observe a decrease from 2 to 0
due to the use of a more precise CTCF annotation.
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Figure S5: A complete graphical visualization of a CCR5 guide as reported in
Fig. S3 but using for the CTCF annotation only putative binding sites within
peaks predicted by a motif model from the Jaspar database (Khan et al., 2017).
Comparing this analysis with the one in Fig. S3 we observe a net decrease from
8 to 0 due to the use of a more precise CTCF annotation.
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Figure S6: Visual representation of CRISPRitz results. (A) and (B) show be-
haviours of 2 guides from the CCR5 set (hg19 enriched genome, with up to
4 mismatches and 1 DNA and 1 RNA bulge). (A) and (B) were created by
comparing results from the CCR5 dataset with the previous computed results
based on the Gecko Library v2, as explained in Paper Section 2.6. (C) Barplot
to show the relative increase in the count of off-targets when accounting for
genetic variants from the 1000 Genomes project.

different genomic regions. The second plot, the table, is created to summarized
the guide behaviour in a more schematic way, showing the actual position of
each point in the y-axis of the radar chart and showing the actual count. The
third plot, the motif barplot, represents the motif matrix of the guide, showing
the count of every nucleotide in every base-pair to quickly assess mutational
preferences. To improve the readability, every column is normalized against
the maximal value of the entire plot. Fig. S4 and S5 show the same analysis
reported in Fig. S2 and S3 changing the annotation for the CTCF binding sites,
previously based on ChIP-seq peaks from ENCODE to predicted binding sites
by a motif model. To this end, we used FIMO (Grant et al., 2011), with default
settings and a Position Weight Matrix (PWM) model from the Jaspar database
(Khan et al., 2017) to find all the putative binding sites within the CTCF peaks.
As expected, we found that fewer putative off-targets overlapping with CTCF
binding sites predicted by the PWM. More precisely, testing the guides targeting
CCR5 ( 4 mismatches, no bulges and the enriched hg19 genome), we found that
the number of targets in CTCF peaks with no motif restriction to binding sites
are 1045 in the reference genome and 1642 in the enriched variant genome;
instead when considering the predicted binding sites based on the PWM model
we obtain only 73 in hg19 reference and 104 in hg19 variant genome. We believe
this analysis should better reflect the potential disruption of CTCF binding sites,
and that the peak based annotation may overestimate this effect. Therefore we
provided the PWM based annotation by default in CRISPRitz.

We also include an analysis, presented in Fig. S6 to show the general be-
haviour of CCR5 guide dataset when including bulges in the search. The com-
parison was computed allowing up to 4 mismatches and 1 DNA plus 1 RNA
bulge. The figure shows how dramatic may be the differences between two po-
tential guides targeting the same gene. This figure also illustrates the increase
in terms of putative off-target sites when using an enriched genome with respect
to a reference genome.
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Figure S7: Scalability comparison between CRISPRitzand Cas-OFFinder.

7 Software Scalability and performance evalua-
tion as function of the number of discovered
off-targets

Fig. S7 shows the scalability of CRISPRitz compared to Cas-OFFinder by vary-
ing the number of CPU cores (from 2 to 8) used for the guide search (mismatch
threshold of 3, 4, and 5). The figure shows that both the tools scale very well
over the number of CPU cores used for the computation. By doubling the num-
ber of cores, the obtained speedup is almost linear (' 1.8). This underlines the
portability of CRISPRitz to parallel architectures. The tests were performed
with the random dataset containing 1000 guides, on a machine equipped with
an Intel(R) Xeon(R) CPU E5-2650 v4 with 8 cores, clocked at 2200 Mhz and 64
GBs RAM, and the Ubuntu operating system (version 16.04). Table S1 reports
execution time of CRISPRitz and Cas-OFFinder as a function of the number
of discovered off-targets per guide. We have sampled 3 groups of 10 guides
(based on the hg19 reference genome) with similar but increasing number of
off-targets (50, 10000 and 1000000). On this dataset, we run CRISPRitz and
Cas-OFFinder with 2 cores, 4 mismatches and no bulges. This analysis shows
that the number of the off-targets per guide has almost no impact on the exe-
cution time. Notably, the speed-up of CRISPRitz over Cas-OFFinder is always
close to 2.5x.
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Software 50 Off-Targets 10000 Off-Targets 1000000 Off-Targets
CRISPRitz 71.82 81.86 82.93

Cas-OFFinder 200.80 201.38 211.53

Table S1: Execution time of CRISPRitz and Cas-OFFinder as a function of
the number of discovered off-targets per guide. We have sampled 3 groups of 10
guides (based on the hg19 reference genome) with similar but increasing number
of off-targets (50, 10000 and 1000000). On this dataset, we run CRISPRitz
and Cas-OFFinder with 2 cores, 4 mismatches and no bulges. This analysis
shows that the number of the off-targets per guide has almost no impact on
the execution time. Notably, the speed-up of CRISPRitz over Cas-OFFinder is
always close to 2.5x.

8 Time Comparison between CRISPRitz and other
CRISPR/Cas analysis software

We compared CRISPRitz with other 7 software (Cas-OFFinder (Bae et al.,
2014), Flashfry (McKenna and Shendure, 2018), Off-spotter (Pliatsika and Rigout-
sos, 2015), CRISPOR (Haeussler et al., 2016), CHOPCHOP (Montague et al.,
2014), CRISPRseek (Zhu et al., 2014), and CRISPRtool (Lessard et al., 2017))
which perform off-target analysis and guide design. The tests were executed
on a machine equipped with an Intel(R) Xeon(R) CPU E5-2650 v4, clocked
at 2200 Mhz and 64 GBs RAM, and the Ubuntu operating system (version
16.04). Experiments were run with 2 core on CRISPRitz and Cas-OFFinder
because they support the parallel execution, and 1 core on all the others, to
better reflect a typical mid-size personal computer. We used the random gen-
erated dataset of 1000 guides as described in Section 2.7. In Table S2 the guide
search is performed with 3, 4, 5 mismatches and no bulges on the hg19 reference.
As expected, the software that run a pre-processing step to build a database
containing candidate targets outperform all the other software if more than
one guide is searched. Among the tools that support only searches with mis-
matches and are based on a precomputed index, Flashfry is the fastest followed
by Off-Spotter and CHOPCHOP. However, among the software that can per-
form an online search without a pre-processing step, CRISPRitz is the fastest.
Table S3 reports the search running time allowing mismatches on the hg19
enriched genome with variants from the 1000 Genome project encoded using
the IUPAC notation (see Section 2.3 in Paper). CRISPRitz and CRISPRtool
are the only 2 software capable of accounting for genetic variants during the
search. CRISPRitz outperforms CRISPRtool in every test reaching a speed-up
of 35x when using 5 mismatches. In Table S4 we show the results searching
with 3, 4, 5 mismatches, 1 DNA and 1 RNA bulges using the hg19 reference.
CRISPRitz and Cas-OFFinder are the only 2 software that can perform this
search since the other tools dont support the incorporation of bulges. In this
case, CRISPRitz indexes the reference genome to perform analysis with bulges
(see Section 2.4). This step is independent of the guide to search and performed

12



only once. CRISPRitz outperforms Cas-OFFinder in every test reaching 74x of
speed-up in the 3 mismatches case. Notably, the time required by CRISPRitz
to build the database and run 1 search is about 40x less of the time than Cas-
OFFinder takes to perform 1 search. In Table S5, the guide search is run with
3, 4, 5 mismatches, 1 DNA and 1 RNA bulges and using the hg19 enriched
genome as defined before. The only software capable of performing this analy-
sis is CRISPRitz.
Finally, Table S6 summarizes the features, limitations, and capabilities of the
existing software. Several software share the same capabilities and limitations.
Only CRISPRitz and Cas-OFFinder perform bulge analysis. Only CRISPRitz
and CRISPRtool can search using reference genomes and accounting for ge-
netic variants. We believe this extensive comparison highlights the utility and
flexibility of CRISPRitz in performing exhaustive and complete searches using
enriched genomes, any number of mismatches and bulges, support for arbitrary
PAM, activity and off-target scores and providing visual reports based on user
defined functional annotations.

Software 3 MM 4 MM 5 MM DB Time RAM
CRISPRitz 2890,51 3154,05 3402,73 - 4,26

CAS-OFFinder 7063,56 8969,93 10721,75 - 0,77
FlashFry 40,49 58,44 106,95 3268,29 1,43

OFF-Spotter 114,34 182,28 499,64 743,41 38,09
CRISPOR 5133,99 6160,78 7392,93 3742,59 64,71

CHOPCHOP 1791,01 ND ND 6744,57 57,41
CRISPRseek 97283,42 100135,78 104152,26 - 65,28
CRISPRtool 20599,78 49637,65 109127,31 - 10

Table S2: Running time for searches with only mismatches (3,4 or 5) on the
reference genome (hg19). To simulate a common laptop as a execution platform,
the searches were run on a virtual machine using 2 cores for CRISPRitz and
Cas-OFFinder (to account for their parallel support), and 1 core for the others.
Time are expressed in seconds and RAM consumption in GBytes.
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Software 3 MM 4 MM 5 MM DB Time RAM
CRISPRitz 2835,65 3078,14 3300,39 - 5,06

CAS-OFFinder - - - - -
FlashFry - - - - -

OFF-Spotter - - - - -
CRISPOR - - - - -

CHOPCHOP - - - - -
CRISPRseek - - - - -
CRISPRtool 24534,67 56345,76 116437,56 - 11,23

Table S3: Running time for searches with mismatches (3,4 or 5 mismatches)
on enriched genome (hg19) with genetic variants. Variants are from the 1000
Genome Project. To simulate a common laptop as a execution platform, the
searches were run on a virtual machine using 2 cores for CRISPRitz and Cas-
OFFinder (to account for their parallel support), and 1 core for the others.
Time are expressed in seconds and RAM consumption in GBytes.

Software 3 MM 4 MM 5 MM DB Time RAM
CRISPRitz 2132,54 14258,46 52687,21 1832,24 7,12

CAS-OFFinder 158853,74 201561,34 245363,59 - 2,17
FlashFry - - - - -

OFF-Spotter - - - - -
CRISPOR - - - - -

CHOPCHOP - - - - -
CRISPRseek - - - - -
CRISPRtool - - - - -

Table S4: Running time for searches with mismatches (3,4 or 5) and bulges
(1 DNA and 1 RNA bulges) on the reference genome (hg19). To simulate a
common laptop as a execution platform, the searches were run on a virtual
machine using 2 cores for CRISPRitz and Cas-OFFinder (to account for their
parallel support), and 1 core for the others. Time are expressed in seconds and
RAM consumption in GBytes.
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Software 3 MM 4 MM 5 MM DB Time RAM
CRISPRitz 8627,13 57475,97 210748,84 1832,24 8,17

CAS-OFFinder - - - - -
FlashFry - - - - -

OFF-Spotter - - - - -
CRISPOR - - - - -

CHOPCHOP - - - - -
CRISPRseek - - - - -
CRISPRtool - - - - -

Table S5: Running time for searches with mismatches (3,4 or 5) and bulges
(1 DNA and 1 RNA bulges) on enriched genome (hg19) with genetic variants.
Variants are from the 1000 Genome Project. To simulate a common laptop as
a execution platform, the searches were run on a virtual machine using 2 cores
for CRISPRitz and Cas-OFFinder (to account for their parallel support), and
1 core for the others. Time are expressed in seconds and RAM consumption in
GBytes.
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Software MM Bulges Enzymes Genomes IUPAC Score Annotation

CRISPRitz 0-Any 0-Any User specified
Every fasta genome

in UCSC format
Yes

Doench2016azimuth,
CFD

Any

CAS-OFFinder 0-Any 0-Any User specified
Every fasta genome

in UCSC format
No None None

FlashFry 0-Any None SpCas9, Cpf1
Every fasta genome

in UCSC format
No

Hsu2013,
Doench2014,

Doench2016azimuth,
Moreno-Mateos

Any

OFF-Spotter 0-5 None

SpCas9NGG,
SpCas9NAG,

saCas9,
CjCas9

GRCh38,
GRCh37,
GRCm38,

w303

No User customizable Any

CRISPOR 0-5 None

SpCas9,
saCas9,
CjCas9,

Cpf1

Every fasta genome
in UCSC format

No

MIT, CFD,
Doench2016azimuth,

Doench2016old,
Chari, Xu,
Wu-Crispr,

Doench2014,
Wang,

Moreno-Mateos,
Azimuth in-Vitro,

CCTop,
deepCpf1,

Najm et al 2018

Any

CHOPCHOP 0-3 None User specified
very fasta genome
in UCSC format

No

Doench2016azimuth,
Chari, Xu,

Doench2014,
Moreno-Mateos

Any

CRISPRseek 0-Any None User specified
All BSgenome

available
No Hsu 2013 mRNA exons

CRISPRtool 0-Any None User specified
All BSgenome

available
Yes

Sanjan2014,
Hsu2013,

CFD
None

Table S6: Software features comparison.
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