Supporting Information

Influence of Co-Dosed Lipids from Biota Extracts on the Availability of Chemicals in *in vitro* Cell-Based Bioassays

Eva B. Reiter^{1*}, Annika Jahnke¹, Maria König¹, Ursula Siebert², Beate I. Escher^{1,3} 1Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany,

2Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761, Büsum, Germany, 3Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.

Table of Content

Figure SI 1. Schematic illustration of the three-phase system used for the present study. The chemical partitioning is described by the partition constants *K* between lipid, medium and cells. In this simplified model cell and medium components composed of water, proteins and lipids are integrated into one system parameter referred to as 'cell' and 'medium', respectively.

Figure SI 2. Chemical structures of the four test chemicals: **A.** benzo[a]pyrene, **B.** dichlorvos, **C.** PCB 126 and **D.** β-naphthoflavone.

Section SI 1. Additional information on the volume fractions of medium and cell components in the reporter gene cell lines and the cell numbers of the plated cells

AREc32 and AhR-CALUX cells were tested in 90% DMEM with Glutamax and 10% FBS. The volume fractions V*f* of the medium components water, protein and lipid are: V*f*water = 99.09, V*f*protein = 0.893 % and V*f*lipid = 0.0139 %.1

The volume fractions V*f* in the cell compartments water, protein and lipid are listed in Table SI 1.

Table SI 1. Evaluated number of plated cells and their average during the experiment in the 384-well plates for the two different reporter gene cell lines. Additionally, the volume fractions of the cell components water, protein and lipid are given.

aHenneberger et al.²

Figure SI 3. Workflow of the dosing procedure for spiked triolein (blue box) and blubber extracts sampled with PDMS (yellow box) to the bioassays.

Figure SI 4. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for Benzo[a]pyrene in AREc32 without pre-equilibration prior to dosing (0 h). All concentrations are nominal concentrations.

Figure SI 5. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for Benzo[a]pyrene in AREc32 with 24h pre-equilibration prior to dosing (24 h). All concentrations are nominal concentrations.

Figure SI 6. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for Dichlorvos in AREc32 without pre-equilibration prior to dosing (0 h). All concentrations are nominal concentrations.

Figure SI 7. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for Dichlorvos in AREc32 with 24h pre-equilibration prior to dosing (24 h). All concentrations are nominal concentrations.

Figure SI 8. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for PCB 126 in AhR-CALUX without pre-equilibration prior to dosing (0 h). All concentrations are nominal concentrations.

Figure SI 9. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for PCB 126 in AhR-CALUX with 24h pre-equilibration prior to dosing (24 h). All concentrations are nominal concentrations.

Figure SI 10. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for β-naphthoflavone in AhR-CALUX without pre-equilibration prior to dosing (0 h). All concentrations are nominal concentrations.

Figure SI 11. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for β-naphthoflavone in AhR-CALUX with 24h pre-equilibration prior to dosing (24 h). All concentrations are nominal concentrations.

Figure SI 12. Induction ratio IR (A) and the cell viability (B) of triolein blanks in the AREc32 assay for a Vf_{co-dosed triolein} of 4 %, which was the highest amount of co-dosed triolein.

Figure SI 13. Response relative to the agonist TCDD (A) and the cell viability (B) of triolein blanks in the AhR-CALUX assay for a V*f*co-dosed triolein of 4 %, which was the highest amount of co-dosed triolein.

Section SI 2. Information on the partition constants *K* **for the three-phase partitioning model**

If no literature data for *K*_{medium/w} and *K*_{cell/w} were available, the partition constants were calculated with equations SI 1 and SI 2 using bovine serum albumin (BSA) as a surrogate for proteins in cell and medium (*K*BSA/w) and the liposome/water partition constant *K*lip/w was used as a surrogate for lipids in cells and medium.

$$
K_{\text{medium/w}} = \frac{V_{\text{protein,medium}}}{V_{\text{medium}}} \cdot K_{\text{BSA/w}} + \frac{V_{\text{lipid,medium}}}{V_{\text{medium}}} \cdot K_{\text{lipid/w}} + \frac{V_{\text{water,medium}}}{V_{\text{medium}}}
$$
(S11)

$$
K_{\text{cell/w}} = \frac{V_{\text{protein,cell}}}{V_{\text{cell}}} \cdot K_{\text{BSA/w}} + \frac{V_{\text{lipid,cell}}}{V_{\text{cell}}} \cdot K_{\text{lipid/w}} + \frac{V_{\text{water,cell}}}{V_{\text{cell}}}
$$
(S12)

For chemicals where no *K*BSA/w, *K*lip/w and *K*triolein/w were available, these partition constants were predicted with polyparameter linear-solvation energy relationships (PP-LFER), shown in equation SI 3 from Endo et al., 4 equation SI 4 from Endo et al.⁵ and equation SI 5 from Abraham et al.⁶ to estimate *K*BSA/w, *Klip/w*, and *Ktriolein/w*.

$$
log K_{BSA/w} = 0.35 + 0.28 \cdot L - 0.46 \cdot S + 0.2 \cdot A - 3.18 \cdot B + 1.84 \cdot V
$$
 (SI 3)

$$
\log K_{\text{lip/w}} = 0.53 + 0.49 \cdot L - 0.93 \cdot S + 0.18 \cdot A - 3.75 \cdot B + 1.73 \cdot V \tag{S1 4}
$$

$$
log K_{\text{triolein/w}} = 0.531 + 3.522 \cdot V - 1.191 \cdot S - 3.110 \cdot A - 3.913 \cdot B + 0.856 \cdot E \qquad (SI 5)
$$

The parameters described by the logarithm of the hexadecane-air partition constant (L), polarizability/dipolarity parameter (S), effective hydrogen H-bond acidity (A) and basicity (B), molar volume (V) and excess molar refraction (E) were taken from the UFZ-LSER database⁷ (Table SI 3).

For evaluation of the general hydrophobicity dependence, simple linear models were applied to calculate log K_{BSAW} and log $K_{lip/W}$ from the log K_{ow} with equation SI 6 from Endo et al.⁴ and equation SI 7 from Endo et al.⁵

$$
log K_{BSA/w} = 0.71 \cdot log K_{ow} + 0.42
$$
 (SI 6)

$$
log K_{lip/w} = 1.01 \cdot log K_{ow} + 0.12
$$
 (SI 7)

Table SI 3. Partition constants (*K*) of the four test chemicals between octanol/water, BSA/water, liposome/water, triolein/water, medium/water and cell/water.

^aMiller et al.⁸; ^bHenneberger et al.¹; ^cVan der Heijden et al.⁹; ^dequation SI 5⁶;
^eKawamoto and Urano¹⁰; ^fcalculated with equation SI 3⁴; ^gequation SI 4⁵; ^hequation SI 6; lequation SI 7; Sabljic et al.¹¹; ^kQuinn et al.¹²; lestimated with OPERA (CompTox Chemistry Dashboard).¹³

Table SI 4. Detailed descriptors for polyparameter linear-solvation energy relationships (PP-LFER) prediction for benzo[a]pyrene, dichlorvos, PCB 126 and β-naphthoflavone from the UFZ LSER database.7

Section SI 3. Sensitivity analysis of the three-phase partitioning model

To estimate the uncertainties from the main variable factors *K*BSA/w, *Klip/w* and *Ktriolein/w* of the three-phase model (equation 7 in the main text), we conducted a common local sensitivity analysis as a robustness check. As K_{medium/w} and K_{cell/w} were predicted with the *K*BSA/w and *K*lip/w (equation SI 1 and SI 2), these constants were not included to the sensitivity analysis. One of the partition constants *K* in Table 1 were increased and decreased by 10 %, 30 % and 50 % (∆*K*), while the others were kept unchanged, resulting in changes of the modeled EC (ΔEC_{nom}). The relative change of these parameters (model elasticity) was calculated with equation SI 8, averaged over all scenarios and test chemicals and is depicted in [Figure SI 14.](#page-18-0)

model elasticity =
$$
\frac{\Delta EC_{\text{nom}}}{EC_{\text{nom}}} \cdot \left(\frac{\Delta K}{K}\right)^{-1}
$$
 (S1 8)

Figure SI 14. Model elasticity of the partition constants *K* used to calculate the modeled EC (*K*BSA/w, *K*medium/w and *K*triolein/w), calculated with equation SI 8.

Figure SI 15. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for non-equilibrated blubber samples 1-12 (0 h). All concentrations are nominal concentrations. Blubber 1-8 from dugong, blubber 9 from ringed seal, blubber 10 from grey seal and blubber 11 and 12 from harbour porpoise.

Figure SI 16. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for 24 h pre-equilibrated blubber samples 1-12 (24 h). All concentrations are nominal concentrations. Blubber 1-8 from dugong, blubber 9 from ringed seal, blubber 10 from grey seal and blubber 11 and 12 from harbour porpoise.

Figure SI 17. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for non-equilibrated PDMS Blanks (0 h).

Figure SI 18. Concentration-effect curves on logarithmic and linear scales including cytotoxicity for 24 h pre-equilibrated PDMS Blanks (24 h).

Table SI 5. Mean effect concentrations EC_{IR1.5} and the volume fraction Vf of lipid at the $EC_{IR1.5}$ and inhibitory concentrations $IC₁₀$ for cytotoxicity from blubber samples 1-12 and their associated SE are derived from the linear regression of the concentrationeffect relationships shown in Figures SI 13 to SI 16. The label 'without pre-equilibration' refers to dosing directly after resuspension of the extract and medium and 'with 24h pre-equilibration' means that the blubber extract was pre-equilibrated with the medium for 24 h prior to dosing in dosing vials. For more information, see the main text. Blubber 1-8 from dugong, blubber 9 from ringed seal, blubber 10 from grey seal and blubber 11 and 12 from harbour porpoise.

Figure SI 19. Extended representation of the relationship between EC_{IR1.5} and V f_{lipid} for blubber samples 1-10 (Figure 3, main text), showing additionally the '0 h' dosing. Twenty-four additional blubber samples from dugongs (white circles, '0 h' dosing, legend "other") are also included in the plot. They were extracted with PDMS analogously to the blubber samples 1-10 during previous experiments (unpublished). In some cases, the SE bars are smaller than the symbols.

References

1. Henneberger, L.; Mühlenbrink, M.; König, M.; Schlichting, R.; Fischer, F. C.; Escher, B. I., Quantification of freely dissolved effect concentrations in in vitro cellbased bioassays. *Arch Toxicol* **2019,** *93*, (8), 2295-2305.

2. Henneberger, L.; Mühlenbrink, M.; Fischer, F. C.; Escher, B. I., C18-Coated Solid-Phase Microextraction Fibers for the Quantification of Partitioning of Organic Acids to Proteins, Lipids, and Cells. *Chem Res Toxicol* **2019,** *32*, (1), 168-178.

3. Escher, B. I.; Glauch, L.; König, M.; Mayer, P.; Schlichting, R., Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Used for High-Throughput Screening. *Chem Res Toxicol* **2019,** *32*, (8), 1646-1655.

4. Endo, S.; Goss, K. U., Serum albumin binding of structurally diverse neutral organic compounds: data and models. *Chem Res Toxicol* **2011,** *24*, (12), 2293-301.

5. Endo, S.; Escher, B. I.; Goss, K. U., Capacities of membrane lipids to accumulate neutral organic chemicals. *Environ Sci Technol* **2011,** *45*, (14), 5912-21.

6. Abraham, M. H.; Acree, W. E., Jr., Equations for water-triolein partition coefficients for neutral species; comparison with other water-solvent partitions, and environmental and toxicological processes. *Chemosphere* **2016,** *154*, 48-54.

7. Ulrich, N.; Endo, S.; Brown, T. N.; Watanabe, N.; Bronner, G.; Abraham, M. H.; Goss, K. U., UFZ-LSER database v 3.2, Helmholtz Centre for Environmental Research-UFZ, Leipzig,Germany, (accessed August 29, 2019); [http://www.ufz.de/lserd.](http://www.ufz.de/lserd) **2017**.

8. Miller, M. M.; Wasik, S. P.; Huang, G. L.; Shiu, W. Y.; Mackay, D., Relationships between octanol-water partition coefficient and aqueous solubility. *Environ Sci Technol* **1985,** *19*, (6), 522-9.

9. van der Heijden, S. A.; Jonker, M. T., Evaluation of liposome-water partitioning for predicting bioaccumulation potential of hydrophobic organic chemicals. *Environ Sci Technol* **2009,** *43*, (23), 8854-9.

S27

10. Kawamoto, K.; Urano, K., Parameters for predicting fate of organochlorine pesticides in the environment (II) Adsorption constant to soil. *Chemosphere* **1989,** *19*, (8), 1223-1231.

11. Sabljic, A.; Gusten, H.; Hermens, J.; Opperhuizen, A., Modeling Octanol Water Partition-Coefficients by Molecular Topology - Chlorinated Benzenes and Biphenyls. *Environ Sci Technol* **1993,** *27*, (7), 1394-1402.

12. Quinn, C. L.; van der Heijden, S. A.; Wania, F.; Jonker, M. T., Partitioning of polychlorinated biphenyls into human cells and adipose tissues: evaluation of octanol, triolein, and liposomes as surrogates. *Environ Sci Technol* **2014,** *48*, (10), 5920-8.

13. Williams, A. J.; Grulke, C. M.; Edwards, J.; McEachran, A. D.; Mansouri, K.; Baker, N. C.; Patlewicz, G.; Shah, I.; Wambaugh, J. F.; Judson, R. S.; Richard, A. M., The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. *J Cheminform* **2017,** *9*, (1), 61.