Supporting Information

Unveiling the interaction profile of rosmarinic acid and its bioactive substructures with serum albumin

Christina Papaemmanouil¹, Maria V. Chatziathanasiadou¹, Christos Chatzigiannis¹, Eleni Chontzopoulou², Thomas Mavromoustakos², Simona Golic Grdadolnik³, Andreas G. Tzakos¹

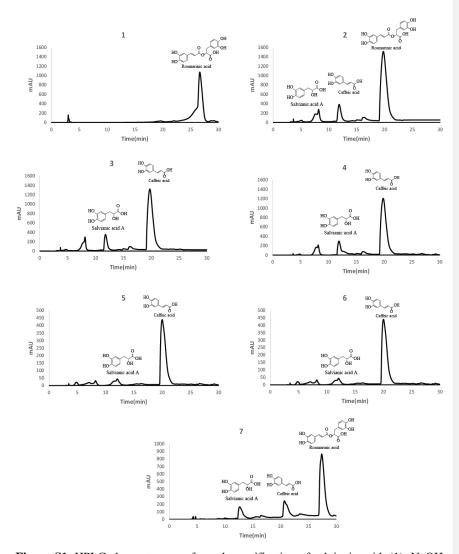
¹Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina 45110, Greece

²Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece

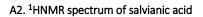
³Laboratory of Biomolecular Structure, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia

Table of Contents

A. Characterization of salvianic acid	
A1. HPLC chromatograms from the purification of salvianic acid	
A2. 1HNMR spectrum of salvianic acid	
A3. HSQC-HMBC spectrum of salvianic acid54	1
B. Stern-Volmer analysis of the fluorescence spectroscopic data	- \
C. Characterization of the BSA interaction with rosmarinic, caffeic and salvianic acid	_/
through STD and NOESY NMR	<u>;</u>
C1. Epitope mapping of the BSA interaction with caffeic and salvianic acid	<u>;</u>
C1a. Epitope mapping of the BSA-caffeic acid interaction	<u>;</u>
C1b. Epitope mapping of the BSA-salvianic acid interaction	;


1	Formatted: Font: Bold
	Formatted: Hyperlink, Font: Bold, English (United States), Check spelling and grammar
(Formatted: Font: Bold
	Formatted: Hyperlink, Font: Bold, English (United States), Check spelling and grammar
(Formatted: Font: Bold
	Formatted: Hyperlink, Font: Bold, English (United States), Check spelling and grammar
(Formatted: Font: Bold
(Formatted: Font: Bold
[Formatted: TOC 1
	Formatted: Default Paragraph Font, Greek, Check spelling and grammar

<u>C2. NOESY spectra of rosmarinic, caffeic and salvianic acid in the presence or absence of</u>
<u>BSA</u>
C2a. NOESY spectra of rosmarinic acid
C2b. NOESY spectra of caffeic acid109
C2c. NOESY spectra of salvianic acid
C3. STD NMR data of competitive experiments
C3a. STD NMR spectra and STD amplification factors of warfarin
C3b. STD NMR spectra and STD amplification factors of ibuprofen
B3c. STD amplification factors of rosmarinic acid in the presence of
warfarin/ibuprofen14 13
C3d. STD amplification factors of caffeic acid in the presence of warfarin/ibuprofen1544
C3e. STD amplification factors of salvianic acid in the presence of warfarin/ibuprofen
D. Isothermal titration calorimetry
E. Molecular Docking to the main active sites of BSA
E1. Interaction of rosmarinic acid with Sudlow site I
E3. Interaction of salvianic acid with Sudlow site I
E4. Interaction of warfarin with Sudlow site I
E5. Interaction of ibuprofen with Sudlow site II
A. Characterization of salvianic acid


Formatted: Font: (Default) +Body (Calibri)

A. Characterization of salvianic acid

A1. HPLC chromatograms from the purification of salvianic acid

Figure S1. HPLC chromatograms from the purification of salvianic acid. (1): NaOH 0.1 M, 1 h; (2): NaOH 1 M, 4 h; (3): NaOH 1 M, 8 h; (4): NaOH 1 M, 12 h; (5): NaOH 1 M, 4 h; (6): NaOH 1 M, 8 h; (7): NaOH 0.1 M, 4h; The desired product's elution time is at 12.6 min, caffeic acid is eluted at 21 min and non-hydrolyzed rosmarinic acid is eluted at 27 min with gradient elution system MeOH–H₂O containing 0.1percent TFA (40-100% MeOH).

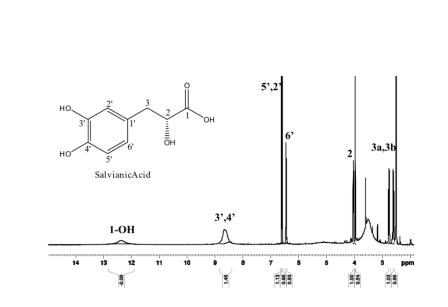


Figure S2. ¹HNMR spectrum of salvianic acid in DMSO-d₆, 298K, recorded at 500 MHz.

A3. HSQC-HMBC spectrum of salvianic acid

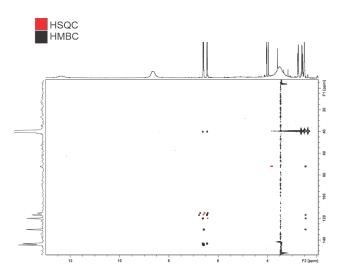


Figure S3. HSQC-HMBC overlay of salvianic acid in DMSO-d₆, 298K, recorded at 500 MHz.

B. Stern-Volmer analysis of the fluorescence spectroscopic data

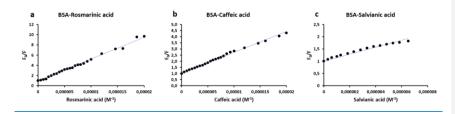
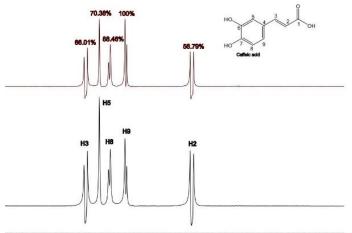


Figure S34. F_0/F as a function of A) Rosmarinic B) Caffeic and C) Salvianic acid concentration for the calculation of the Stern–Volmer quenching constant, K_{SV} at room temperature.

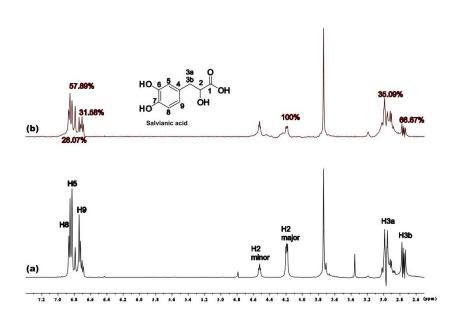
Table <u>S1</u>. The quenching constants of BSA in the presence of rosmarinic, caffeic and salvianic acid.


Compound	$K_{SV}(10^4 L mol^{-1})$	$K_{q}(10^{13} \text{ L mol}^{-1} \text{ s}^{-1})$	<u>R</u> ²	-
Rosmarinic acid	<u>42.4</u>	<u>4.2</u>	<u>0.99</u>	•
Caffeic acid	<u>17.1</u>	<u>1.7</u>	<u>0.99</u>	•
Salvianic acid	<u>14.3</u>	<u>1,4</u>	0.95	•

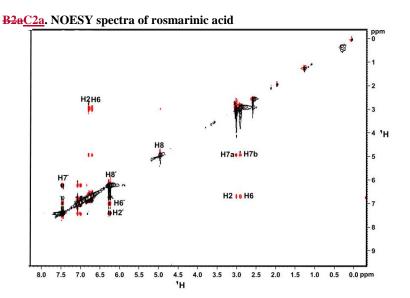
Formatted: Subscript
Formatted: Centered
Formatted: Not Superscript/ Subscript
Formatted: Superscript
Formatted Table
Formatted: Superscript
Formatted: Not Superscript/ Subscript
Formatted: Subscript
Formatted: Superscript
Formatted: Superscript
Formatted: Superscript
Formatted: Superscript
Formatted: Centered
Formatted: Centered
Formatted: Centered

B<u>C</u>. Characterization of the BSA interaction with rosmarinic, caffeic and salvianic acid through STD and NOESY NMR.

B1C1. Epitope mapping of the BSA interaction with caffeic and salvianic acid


BlaCla. Epitope mapping of the BSA-caffeic acid interaction

0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.8 6.9 6.8 6.7 6.4 6.5 6.4 6.3 6.2 6.1 6.6 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.6 (ppm)


Figure S4<u>S5</u>**.** (a) ¹H NMR reference spectrum of the complex caffeic acid (2 mM)-BSA (20 μ M) in Tris- d_{11} buffer 10 mM, pH=7.4 with 600 μ l D₂O. (b) STD difference NMR spectrum of the complex caffeic acid-BSA. The percentage values show the STD_{AMP} for all the protons of caffeic acid.

B1bC1b. Epitope mapping of the BSA-salvianic acid interaction

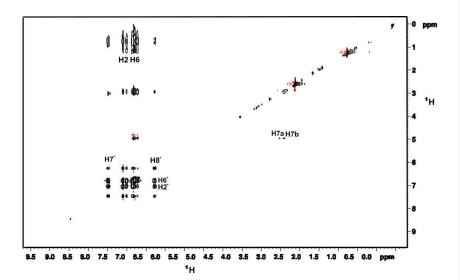


Figure S5<u>S6</u>**.** (a) ¹H NMR reference spectrum of the complex salvianic acid (2 mM)-BSA (20 μ M) in Tris- d_{11} buffer 10 mM, pH=7.4 with 600 μ L D₂O. (b) STD difference NMR spectrum of the complex salvianic acid-BSA. The percentage values show the STD_{AMP} for all the protons of salvianic acid.

B2<u>C2</u>. NOESY spectra of rosmarinic, caffeic and salvianic acid in the presence or absence of BSA

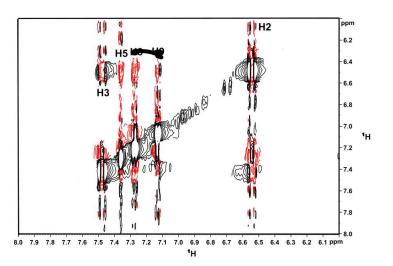


Figure <u>8687</u>. Expanded region of NOESY spectrum of the rosmarinic acid, recorded with mixing time of 800 ms at 500 MHz, showing the presence of <u>negative positive</u> NOEs of free ligand (different sign than the diagonal).



Figure S7<u>S8</u>. Expanded region of tr- NOESY spectrum of the complex rosmarinic acid-BSA, recorded with mixing time of 800 ms at 500 MHz, showing the presence of <u>positive-negative</u> NOEs of bound ligand (same sign as the diagonal).

B2bC2b. NOESY spectra of caffeic acid

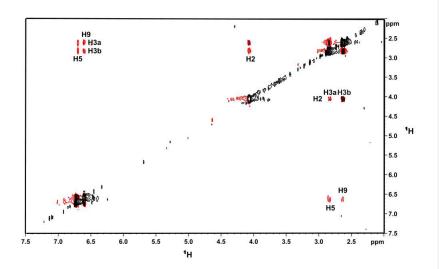


Figure <u>S8S9</u>. Expanded region of NOESY spectrum of the caffeic acid, recorded with mixing time of 800 ms at 500 MHz, showing the presence of <u>negative positive</u> NOEs of free ligand (different sign than the diagonal).

Figure <u>S9S10</u>. Expanded region of tr- NOESY spectrum of the complex caffeic acid-BSA, recorded with mixing time of 800 ms at 500 MHz, showing the presence of <u>positive-negative</u> NOEs of bound ligand (same sign as the diagonal).

B2cC2c. NOESY spectra of salvianic acid

Figure S10S11. Expanded region of NOESY spectrum of the salvianic acid, recorded with mixing time of 800 ms at 500 MHz, showing the presence of <u>negative positive</u> NOEs of the free ligand (different sign than the diagonal).

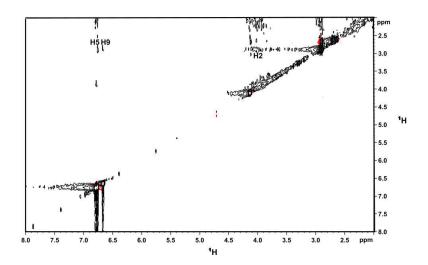
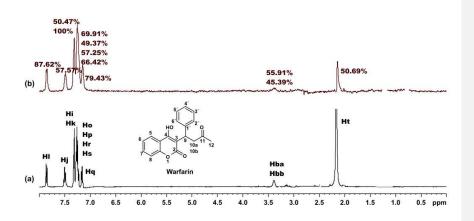
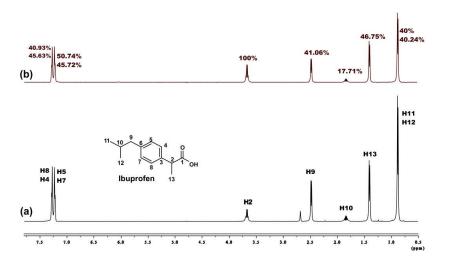



Figure <u>S11S12</u>. Expanded region of tr- NOESY spectrum of the complex salvianic acid-BSA, recorded with mixing time of 800 ms at 500 MHz, showing the presence of <u>positive-negative</u> NOEs of bound ligand (same sign as the diagonal).


B3C3. STD NMR data of competitive experiments

B3aC3a. STD NMR spectra and STD amplification factors of warfarin

Figure S12<u>S13</u>**.** (a) ¹H NMR reference spectrum of the complex warfarin (2 mM)-BSA (50 μ M) in PBS buffer 10 mM, pH=7.4 with 600 μ l D₂O. (b) STD difference NMR spectrum of the complex warfarin-BSA.

B3bC3b. STD NMR spectra and STD amplification factors of ibuprofen

Figure S13S14. (a) ¹H NMR reference spectrum of the complex ibuprofen (2 mM)-BSA (20 μ M) in Tris-d₁₁ buffer 10 mM, pH=7.4 with 600 μ L D₂O. (b) STD difference NMR spectrum of the complex ibuprofen-BSA.

B3c. STD amplification factors of rosmarinic acid in the presence of warfarin/ibuprofen

 State
 State

 Table
 State

 Table
 State

 State
 State

 Warfarin.
 State

	STDAMP factors for Rosmarinic Acid						
Proton/Concentrati	0 mM warfarin	2 mM warfarin	4 mM warfarin	6 mM warfarin	8 mM warfarin		
on							
H7′	27.32%	26.54%	24.87%	22.32%	20.85%		
H5′	22.25%	21.32%	19.98%	17.65%	16.39%		
H2′	27.45%	26.39%	22.88%	23.33%	18.91%		
H6′	22.65%	21.31%	20.83%	19.47%	18.09%		
H2	34.87%	34.60%	28.91%	22.87%	22.01%		

H5	19.09%	18.09%	14.51%	13.80%	13.31%
H6	24.20%	23.53%	17.66%	15.57%	7.79%
H8	4.12%	4.08%	0	0	0
H7a	12.32%	11.87%	5.11%	4.91%	3.35%
H7b	20.32%	19.85%	12.99%	11.98%	9.86%

Table S2S3. STD_{AMP} factors occurring from the titrations of rosmarinic acid with

ibuprofen.

1

		STD _{AMP} of Ros	marinic acid
Protons/Concentration	0 mM	2 mM	4 mM ibuprofen
	ibuprofen	ibuprofen	
H7′	1.30%	2.86%	2.94%
H5′	4.20%	5.41%	6.08%
H2'	2.91%	3.55%	3.98%
H6´	3.05%	3.31%	3.40%
H8′	1.90%	2.54%	2.65%
H2	4.10%	4.51%	5.06%
H5	2.09%	2.44%	2.53%
H6	3.20%	3.46%	3.99%
H8	0.08%	0.11%	0.15%
H7a	0.21%	0.54%	0.82%
H7b	0.86%	1.04%	1.39%

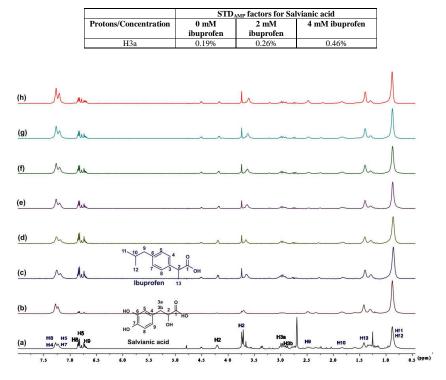
B3dC3d. STD amplification factors of caffeic acid in the presence of warfarin/ibuprofen

Table $\$3\underline{\$4}$. STD_{AMP} factors occurring from the titrations of caffeic acid with warfarin.

	STDAMP factors for Rosmarinic Acid							
Proton/Concentrati	0 mM warfarin	2 mM warfarin	4 mM warfarin	6 mM warfarin	8 mM warfarin			
on								
H3	26.43%	25.7%	22.68%	18.32%	4.95%			
H5	26.43%	25.19%	10.68%	9.80%	3.99%			
H8	12.65%	11.44%	9.41%	8.21%	8.18%			
H9	14.87%	13.15%	11.19%	11.14%	9.02%			
H2	15.32%	14.44%	4.95%	4.68%	4.37%			

Table <u>84</u><u>85</u>. STD_{AMP} factors occurring from the titrations of caffeic acid with ibuprofen.</u>

	STD _{AMP} factors for Caffeic acid					
Protons/Concentration	0 mM	2 mM	4 mM ibuprofen			
	ibuprofen	ibuprofen				
H3	11.48%	12.43%	23.10%			
H5	19.65%	20.17%	21.62%			
H8	30.54%	31.63%	38.82%			
H9	25.76%	28.83%	35.23%			
H2	22.87%	23.40%	38.41%			


B3eC3e. STD amplification factors of salvianic acid in the presence of warfarin/ibuprofen

	STD _{AMP} factors for Salvianic acid					
Proton/Concentration	concentration 0 mM warfarin 2 mM warfarin		4 mM warfarin			
H8	25.11%	0	0			
H5	27.94%	0	0			
Н9	30%	0	0			
H2	33.78%	0	0			
U20	12 40%	0	0			

Table <u>\$556</u>. STD_{AMP} factors occurring from the titrations of salvianic acid with

warfarin.

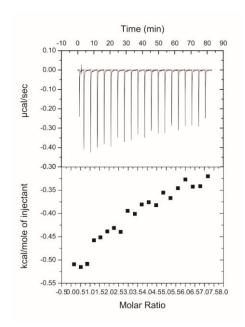
Table <u>S6S7</u>. STD_{AMP} factors occurring from the titrations of salvianic acid with ibuprofen.

Figure S14S15. (a) ¹H NMR reference spectrum of the complex ibuprofen (2 mM)-BSA (20 μ M), including salvianic acid 0.2 mM, in Tris-d₁₁ buffer 10 mM, pH=7.4 with 600 μ l D₂O. STD difference NMR spectrum of the complex ibuprofen-BSA, including:

(b) 0.2 mM salvianic acid (c) 0.4 mM salvianic acid (d) 0.8 mM salvianic acid (e) 1


mM salvianic acid (f) 1.5 mM salvianic acid (g) 2 mM salvianic acid (h) 3 mM salvianic

acid.


Table S758. STD $_{AMP}$ factors occurring from the titrations of the complex ibuprofen-BSA with salvianic acid.

		STD _{AMP} of Salvianic acid					
Proton/Concentration	0.2 mM	0.4 mM	0.8 mM	1 mM	1.50 mM	2 mM	3 mM
H8	0.03%	0.06%	0.10%	0.14%	0.17%	0.19%	1.31%
H5	0.05%	0.07%0.	0.10%	0.16%	0.21%	0.22%	1.63%
H9	0.05%	0.06%	0.09%	0.14%	0.19%	0.20%	1.18%
H2 minor	0%	0.08%	0.13%	0.17%	0.23%	0.23%	2.64%
H2 major	0%	0.03%	0.09%	0.10%	0.13%	0.15%	1.17%
H3a	0.01%	0.02%	0.04%	0.04%	0.10%	0.36%	0.96%
H3b	0.01%	0.02%	0.02%	0.07%	0.11%	0.15%	0.83%

Graph S1. STD_{AMP} factor values of representative protons of Ibuprofen, from the complex Ibuprofen (2 mM)- BSA (20 μ M), which is titrated with salvianic acid.

CD. Isothermal titration calorimetry

Figure S15S16. Isothermal titration calorimetry measurement for the interaction of BSA with Salvianic acid. The isotherm plot (up) and the integrated curve (down) are presented.

<u>DE</u>. Molecular Docking to the main active sites of BSA

 Same set and state of the studied molecules in Sudlow site I in BSA.

Bovine Serum Albumin	Sudlow Site I – Site IIA
(PDB:4F5S)	Docking Score (kcal/mol)
Rosmarinic acid	-13.545
Caffeic acid	-11.583
Salvianic acid	-9.849
Warfarin	-9.922
Ibuprofen	-6.048

D1E1. Interaction of rosmarinic acid with Sudlow site I

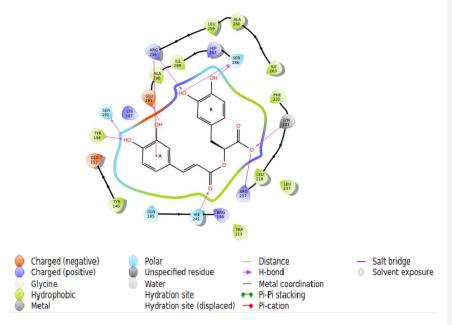


Figure <u>\$16\$17</u>. Binding interactions of rosmarinic acid in Sudlow site I of BSA.

D3E3. Interaction of salvianic acid with Sudlow site I

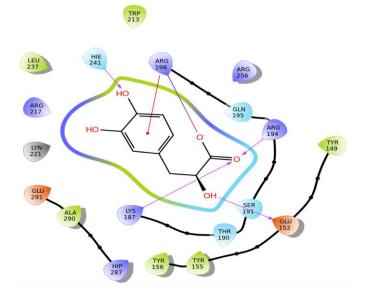
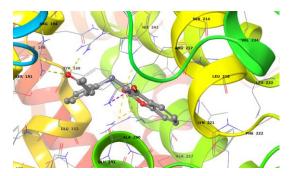



Figure <u>\$17</u><u>\$18</u>. Binding interactions of salvianic acid in Sudlow site I of BSA.

D4E4. Interaction of warfarin with Sudlow site I

Warfarin shows a very favored binding value (Docking Score = -9.922 kcal / mol) in Sudlow site I (**Table S859**). Warfarin in its best pose conformation (**Figure S18S19**, **S19S20**) forms H – bonds with four residues of the protein (Arg194, Arg198, His241, Arg256). In addition, the formation of a salt bridge between Arg217 and the enol group of the ligand contributes to the stabilization of the molecule in the binding site. Importantly, there are strong coulombic interactions between Sudlow site I and warfarin and this makes the molecule to adopt preferable binding to this site.

Figure S18S19. Best pose of warfarin in Sudlow site I. The four favorable hydrogen bonds, the salt bridge between Arg217 and the enol group of the ligand can explain its highly favorable binding.

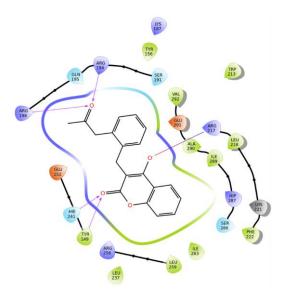
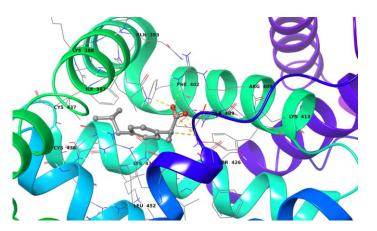



Figure <u>\$19\$20</u>. Binding interactions of warfarin in Sudlow site I of BSA.

D5E5. Interaction of ibuprofen with Sudlow site II

Docking calculations, using empirical scoring functions, expressed a value of free energy binding in Sudlow site II equal to -9.769 kcal / mol (**Table** S8<u>S9</u>). Ibuprofen

in its best pose conformation (**Figure** S20S21, S21S22) forms H – bonds with three residues of the protein (Ser488, Asn390, Arg409). In addition, the formation of the salt bridge between the carboxylic group of the ligand and Lys413 plays a key – role in the stabilization of the complex. In the low value of free energy, the orientation of the aromatic ring towards the hydrophobic residues (i.e. Leu452, Leu456, Leu406, Leu429, Val432, Cys391, Cys436, Cys437, Phe394, Phe402) plays an important role too.

Figure <u>S20S21</u>**.** Best pose of ibuprofen in Sudlow site II. The three favorable hydrogen bonds and the salt bridge formed between Lys413 and the carboxylic group of the ligand can explain its highly favorable binding.

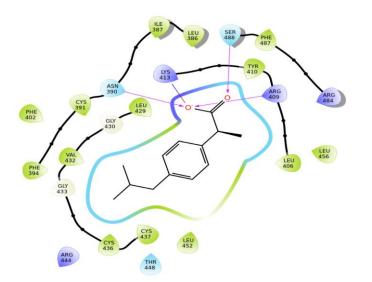


Figure <u>S21S22</u>. Binding interactions of ibuprofen in Sudlow site II of BSA.