Α

Supplementary Figure S1: Design and validation of CRISPR/Cas9 mediated deletions of -35 kb and -44 kb regulatory elements. UCSC genome browser graphic showing the schematic for the design of the CRISPR/Cas9 deletion of -35 kb CRE (A) and -44 kb CRE (B). The gRNAs used (red) and the target regions are shown above the sequences of two deletion clones for each CRE. The exact positions of the cuts in the 2 alleles are indicated by black arrows and were validated by sequencing from the external primers (Suppl. Table S1).

Supplementary Figure S2: Deletion of the -35 kb or the -44 kb CRE from the *CFTR* locus has a major impact on locus architecture. 4C-seq interaction profiles of the same WT, Δ -35 kb (Clone #6 and Δ -44 kb (Clone #4) 16HBE14o- clones shown in Fig.4, using viewpoints at the -20.9 kb and the +48.9 kb 3' TAD boundary. Data from a single representative clone are shown, and were consistent with an independent replica clone for both deletions.

Supplementary Figure S3: Design and validation of CRISPR/Cas9 mediated -20.9 kb <u>CRE deletion in 16HBE14o-.</u> UCSC genome browser graphic showing the schematic for the design of the CRISPR/Cas9 deletion of -20.9 CRE. The gRNAs used (red) and the target regions are shown above the sequences of two deletion clones. The exact positions of the cuts in the 2 alleles are indicated by black arrows and were validated by sequencing using the external primers shown in Suppl. Table S1.

Supplementary Figure S4: Removal of the -20.9 kb CRE alters *CFTR* gene expression and chromatin conformation in 16HBE14o- cells. A) *CFTR* gene expression measured by RT-qPCR in two Δ -20.9 kb clones compared to 2 non-targeted WT clones from the same experiment. Results are the average of 3 independent experiments. Error bars represent S.E.M. B) 4C-seq interaction profiles of Δ -20.9 kb clone #19 with viewpoints at *CFTR* promoter (top) and the -80.1 kb 5' TAD boundary (below). Data from a single representative clone are shown, and were consistent in a replica clone. C) Deletion of the -35kb CRE decreases CTCF occupancy at the adjacent -20.9 kb insulator element. CTCF ChIP-qPCR analysis in a non-targeted WT (grey) and -35 kb deletion clone (# 6, black) in 16HBE14o- cells. CTCF occupancy was assayed at the -80.1 kb, -35 kb, -20.9 kb, +6.8 kb and +48.9 kb binding sites and the promoter (-2 kb). The graph shows % input values normalized to IgG and relative to CTCF occupancy at the +48.9 kb invariant site. Error bars represent S.E.M., n=3.

Supplementary Figure S5: <u>The impact of SV40 integration on RNAPII recruitment.</u> The UCSC genome browser image defines the insertion site of the SV40 genome in intron 6 of *CFTR* gene [35]. ChIP-seq shows RNAPII occupancy adjacent to this insertion in 16HBE14o- cells (olive green), but not in Calu3 cells (teal). Both RNAPII ChIP-seq experiments were performed in 2 replicates and data are shown as IDR plots.

Supplementary Figure S6: The -35 and -44 kb CREs may produce low abundance eRNAs. A) qRT-PCR of eRNAs generated from the -44 and -35 kb CREs normalized to the lowest values (an average of control 1 and control 2, which showed almost negligible eRNA levels), set to 1. The ncRNA upstream of KMT2E gene was used as the positive control. The error bars indicate the S.E.M and n=4. B) UCSC genome browser images showing the location of the qRT-PCR products below the 16HBE14o- H3K27Ac and RNAPII ChIP-seq data for -35 kb (above) and -44 kb (below).

Supplementary Tables

Supplementary Table S1: List of gRNA sequences and PCR primers used for the generation and validation of -35 kb, -44 kb and -20.9 kb CRISPR/Cas9 deletion clones in 16HBE14o-.

Name	Sequence (5'-3')		
-35 kb 5' gRNA	GACACTCAAGAAGTGAACAG		
-35 kb 3' gRNA	AACAAATTACATGTACATCC		
-44 kb 5' gRNA	AAGTGTTTAGAAAAGTGTCA		
-44 kb 3' gRNA	GATATCAGACAACAAGTCTA		
-35 kb validation PCR Fwd External	AGGTGAAAAGGCGAAGAAGAAA		
-35 kb validation PCR Rev External	CTGTAACCAACAAGGACCTC		
-35 kb validation PCR Fwd Internal	CAACTGCTCACGTAAATGGGTA		
-44 kb validation PCR Fwd External	CTATCCAGGAGGGCAGGAAAC		
-44 kb validation PCR Rev External	GTCTCCTACATCATCCTTTCAC		
-44 kb validation PCR Rev Internal	ACTCAGGAACTAGGAAGAAGAGC		
-20.9 kb 5'gRNA	Yang <i>et al</i> , 2016		
-20.9 kb 3' gRNA	Yang <i>et al</i> , 2016		
-20.9 kb validation PCR Fwd External	GCTCAACGTAGGTTTGGC		
-20.9 kb validation PCR Rev External	ACAGGCAAAAATCCAGGTTG		
-20.9 kb validation PCR Fwd Internal	CCGGGATGTTGTTTGAAGCTT		

Supplementary Table S2: Primers for ChIP-qPCR and RT-qPCR

Taqman RT-qPCR primer sets	Sequences	
CFTR exon 5 F	AGCTGTCAAGCCGTGTTCTAGATA	
CFTR exon 6 R ATGAGGAGTGCCACTTGCAA		
CFTR exon 5/6 probe	CACACGAAATGTGCCAATGCAAGTCCTT	
B2M F	AAGTGGGATCGAGACATGTAAG	
B2M R	GCAAGCAAGCAGAATTTGGA	
B2M probe	5- /56-JOEN/TCA TGG AGG /ZEN/TTT GAA GAT	
	GCC GCA /3IABkFQ/ -3	

SYBR RT-qPCR primer sets	Sequences	
-44 kb_1 F	TGCTTGGTTCGCTGATGACA	
-44 kb_1 R	TCAGGAACTAGGAAGAAGAGCC	
-44 kb_2 F	GGGAGCAAGTGTAGAATCAGGAA	
-44 kb_2 R	TCAACTGGGGCTGGCTAAAA	
-44 kb_3 F	AGTCACAAGCTTTATTCCTGGC	
-44 kb_3 R	GGCATTCTGACCCACTCCAG	
-35 kb_1 F	AGATGTCACCCCTAGACCTGT	
-35 kb_1 R	AAGAGGGTTGATGGTGTGCT	
-35 kb_3 F	CACATTTATCAGCACCAGCC	
-35 kb_3 R	AGTTCTCTGCTCTTGGGTTC	
-35 kb_4 F	CTTCCAGCAGAGCATGACACA	

-35 kb_4 R	CCACCACTTGGGCTTTTTCAC	
-35 kb_5 F	GAAGTGCCTCAACTGCTCAC	
-35 kb_5 R	TGTAAGAACAACCGAACCCGA	
-35 kb RNAPII F	ATCTACCTTACCCTGCTGTCCATT	
-35 kb RNAPII R	TCTGAATTATCAGCCCACAGTCA	
KMT2E F	CCAGCTATGACCAGGGTTCAC	
KMT2E R	TCTGCATGGTGGGTTCAGTAT	
-35_6 F (Control 1)	AGAGAGTTGAACTTTGGTATGGC	
-35_6 R (Control 1)	GTAGGGAAAGCCTACACTCTCA	
-35_7 F (Control 2)	GCCATCAGTATCATCCGTTTC	
-35_7 R (Control 2)	GTAAAGGGGAATGGGGAGTT	

ChIP-qPCR primer sets	Sequences	
-80.1 kb F	GGGCATTCAAAGAAAAGCAGAAAGC	
-80.1 kb R	ACCCCAGTACAGAGACGTGACA	
-44 kb F	AGTGAGATTAGTTGTCTCTTTTGGAGATAA	
-44 kb R	CCCTTGACTATTTTGTGCACATG	
-35 kb F	ATCTACCTTACCCTGCTGTCCATT	
-35 kb R	TCTGAATTATCAGCCCACAGTCA	
-20.9 kb F	CCGGGATGTTGTTTGAAGCTT	
-20.9 kb R	TTTAAATAGTTGAATAGAGGACGAGATACTTT	
Promoter -4 kb F	TTCCACAGTACAAGGGCAACC	
Promoter -4 kb R	CAGATTAAGTTAGGGTCTCTCTACCTCAG	
Promoter -3.4 kb F	AGAAGCACCCAGCACATT	
Promoter -3.4 kb R	AAGAGCGAGGATGAGTAGGA	
Promoter -2 kb F	TTGAACAATTTTCTGGTGGATAAGTC	
Promoter -2 kb R	ATGCACTAATTGCGACATGATATTC	
Intron 1 F	TCATTGTCAACTGTCAGGTAGCAA	
Intron 1 R	CAGAGTTAGGATTCCAGCCAGG	
Intron 10 F	TGCTTTATTGAATGGCATTACCTCTA	
Intron 10 R	AGATGCTTGTGGTAAGGGAGGAG	
Intron 23 F	CCCTATGGTTTAGTCACAAGGAAGTT	
Intron 23 R	GGCTCAAAAGCCTGAACAGAA	
+6.8 kb F	TCTTCTTTCCCATTCACCTTTGTC	
+6.8 kb R	TTTTGGTTTCATTTATCAGCACATC	
11p13 F	TCCTTCCAGGTTTTGGCTCC	
11p13 R	GCCCCAGATCAGGAGAGAGA	
M6PR F	CGCCTTTTCTGGTTGCCTTT	
M6PR R	ACCCTCTTCACTCGAACCCT	
+48.9 F	GGCATCAGCCAGTCAAGGTT	
+48.9 R	AGCAGAGGGCAAAGTGGTACTT	

Supplementary Table S3

Luciferase mutagenesis primer	Sequence
pZL350 – CEBPβ	cccacaggaatgctctggagcacaaatTCTCGAGcagaattagccctaccttgaagcaagtgg
mutant	

Supplementary Table S4: Restriction enzyme pairs and primer sequences used for 4C library generation.

Viewpoint	Primary	Secondary	Reading primer	Non-reading primer
	enzyme	enzyme		
CFTR	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
promoter			CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
No barcode			CTTCCGATCTGCACTTACTAT	TTCTTTGGATATTG
			ATGCAGGCATG	С
CFTR	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
promoter			CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
AT			CTTCCGATCTATGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
CFTR	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
promoter			CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
GA			CTTCCGATCTGAGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
CFTR	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
promoter			CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
GC			CTTCCGATCTGCGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
-80.1 kb	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
No barcode			CACTCTTTCCCTACACGACGCT	CATACGACTGGTAG
			CTTCCGATCTACTGAGAACTT	CTTTTGGTTGAATG
			ACAGGGCAGTC	
-80.1 kb	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
GA			CACTCTTTCCCTACACGACGCT	CATACGACTGGTAG
			CTTCCGATCTGAACTGAGAAC	CTTTTGGTTGAATG
			TTACAGGGCAGTC	
-80.1 kb	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
AT			CACTCTTTCCCTACACGACGCT	CATACGACTGGTAG
			CTTCCGATCTATACTGAGAAC	CTTTTGGTTGAATG
			TTACAGGGCAGTC	
-80.1 kb	NlallI	Csp6l	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
AG			CACTCTTTCCCTACACGACGCT	CATACGACTGGTAG
			CTTCCGATCTAGACTGAGAAC	CTTTTGGTTGAATG
			TTACAGGGCAGTC	
-20.9	NlallI	Dpnll	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
No barcode			CACTCTTTCCCTACACGACGCT	CATACGACAAAGTG
			CTTCCGATCTTTAACAAAGTT	AGCTATTTTGTTTT

			TAGGTAAATGACCA	СТС
-20.9 kb	NlallI	Dpnll	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
AT			CACTCTTTCCCTACACGACGCT	CATACGACAAAGTG
			CTTCCGATCTATTTAACAAAG	AGCTATTTTGTTTT
			TTTAGGTAAATGACCA	СТС
+48.9 kb	NlallI	Dpnll	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
No barcode			CACTCTTTCCCTACACGACGCT	CATACGATGGAACA
			CTTCCGATCTGAGTGAGCTTG	TCGTCAGTGGAAG
			AAAGCCATG	
+48.9 kb	NlallI	Dpnll	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
AT			CACTCTTTCCCTACACGACGCT	CATACGATGGAACA
			CTTCCGATCTATGAGTGAGCT	TCGTCAGTGGAAG
			TGAAAGCCATG	