Legends of supplementary data

Supplementary Table 1. Randomly selected DNA sequences for RNA library.

Supplementary Table 2. The sequences of 51 unique RNAs bound to Sox2 after 12 cycles of SELEX. The enriched motifs are underlined.

Supplementary Table 3. Sequences for RNAs and DNAs used for binding assays. Substituted bases are underlined.

Supplementary Table 4. Primers used for plasmid constructions. The restriction sites are underlined. Sequence for FLAG tag is highlighted in bold face.

Supplementary Table 5. Oligos used for RNA SELEX library construction. The T7 promoter sequence is underlined.

Supplementary Table 6. Primers used for ChIP-qPCR.

Supplementary Table 7. Primers used for RT-PCR and qRT-PCR.

Supplementary Figure 1. Purification of Sox2. Purified Sox2 was separated with a 12% SDS-PAGE gel and subjected to Coomassie blue staining (CS) and Western blot (WB).

Supplementary Figure 2. PAR-CLIP RNA targets of Sox2 in HEK293T cells. (**A**) Genome distribution of RNA species identified by Sox2 PAR-CLIP sequencing. (**B**) Top motifs identified by DREME in PAR-CLIP targets. The "CCCY" (where Y is A or G) motif (framed in red) was identified in intronic regions with E-value=1.2e-011.

Supplementary Figure 3. Verification of RNA binding motif of Sox2. (**A**) Comparison of the binding activities of Sox2 and Sox2- Δ RBM to the 12th-24 and 12th-24 Mut6 RNAs. Concentrations of Sox2 constructs are labelled above each lane. The percentages of bound RNA are indicated under each lane. Free RNA and protein-RNA complex are marked. (**B**) Schematic representation of the various His₆-Sox2 constructs used for binding assays. (**C**) Coomassie blue staining of purified His₆-Sox2 constructs. M: protein marker and sizes are shown in kDa. (**D**-**E**) Comparison of the binding capacities of Sox2 constructs to the 12th-24 RNA and mutants thereof. Fractions of bound RNA (left panels) were determined by EMSAs (right panels) using densitometric analysis with the ImageQuantTL software. Concentrations of Sox2 constructs are labeled above each lane. Free RNA and protein-RNA complex are marked. Barplots represent the mean ± SD (n=3). (**F**) EMSAs to probe binding of Sox2(120-319) and Sox2(180-319) to the 12th-24 RNA and mutants thereof. Concentrations of Sox2 constructs are labeled above each lane. The percentages of Sox2 constructs are labelled above each lane. Free RNA and protein-RNA complex are marked. Barplots represent the mean ± SD (n=3). (**F**) EMSAs to probe binding of Sox2(120-319) and Sox2(180-319) to the 12th-24 RNA and mutants thereof. Concentrations of Sox2 constructs are labelled above each lane. The percentages of bound RNA are indicated under each lane. Free RNA and protein-RNA complexes are marked.

Supplementary Figure 4. Defining sequence determinants of the Sox2-RNA interaction. (A-G)

Secondary structures of the RNA constructs based on $12^{th}-24$ were predicted using Mfold (http://unafold.rna.albany.edu/?q=mfold). Mutated bases are highlighted in red. **Of note:** $12^{th}-24$ Mut6 is predicted to induce profound structural changes. EMSAs were performed with increasing concentrations of Sox2 (**H**) or Sox2- Δ RBM (**I**) and the $12^{th}-24$ RNA, Mut2, Mut4 and Mut5. Fractions of bound RNA are calculated. Barplots represent the mean ± SD (n=3).

Supplementary Figure 5. Characterizing exogenous constructs and pluripotency gene expression in reprogramming. (**A**) The relative transcript levels of exogenously expressed Oct4, Klf4, c-Myc, and Sox11 or Sox2 at day 4 of reprogramming were analyzed by qRT–PCR. Barplots represent the mean \pm SD (n=3). (**B**) The relative transcript levels of selected pluripotency markers were analyzed by qRT–PCR. Data are represented as mean \pm SD (n=3). ANOVA was used to assess significance (** P < 0.01).

Supplementary Figure 6. Characterizing the effects of Sox2- Δ RBM and Sox2- Δ HMG on intact Sox2 in reprogramming. (**A**) The relative transcript levels of exogenously expressed Oct4, Klf4, c-Myc, Sox2 at day 4 of reprogramming were analyzed by qRT–PCR. Barplots represent the mean ± SD (n=3). (**B**) The relative transcript levels of selected pluripotency markers were analyzed by qRT–PCR. Data are represented as mean ± SD (n=3). ANOVA was used to assess significance (* P < 0.05, ** P < 0.01).

Supplementary Figure 7. Evaluation of the effects of RBM on Sox2-chromatin and Sox2-Oct4 interactions. (**A**) Chromatin immunoprecipitation (ChIP) analysis for Sox2 and Sox2-∆RBM on core pluripotent genes in reprogramming MEFs at day 4. Relative enrichments to IgG-ChIP control (upper panel) are shown. ChIP-Seq binding view of the above genes in MEFs after 48-hour infected with Oct4, Sox2, Klf4 and c-Myc, pre-iPSCs-1, pre-iPSCs-2 and mESCs are also shown [1]. Images were created with the Integrative Genomic Viewer (IGV) [2]. Data are normalized to total counts, and the scale rage is 0-20. The regions used for qPCR testing are highlighted under each panel. (**B**) MEF cells were transfected with FLAG₃-Sox2 along with Oct4, Klf4 and c-Myc. Co-immunoprecipitations were performed with IgG or anti-FLAG antibodies as shown on the top of each panel and immunoblots were done with anti-FLAG, anti-Sox2 and anti-Oct4.

Supplementary Figure 8. Comparison of gene expression and alternative splicing between reprogramming cells transduced with OKMS, OKM \triangle HMG and OKM \triangle RBM at day 12. (A) Heatmap depicting different expression of early ecto-, endo-, and mesodermal genes during reprogramming with Sox2, Sox2- \triangle HMG, and Sox2- \triangle RBM alongside OKM. (B) The Venn diagram comparing the alternatively spliced genes between OKMS versus OKM \triangle RBM and OKMS versus OKM \triangle HMG. (C) Scatterplot comparing exon inclusion changes in OKMS versus OKM \triangle HMG to those in OKMS versus OKM \triangle RBM. Pearson correlation coefficient value is shown in top right corner.

Supplementary Figure 9. RIP of indicated transcripts in mESC using anti-Sox2 antibody. RIP enrichment was measured by qRT–PCR, and values were compared to background immunoprecipitation measured by isotype IgG. ANOVA was used to assess statistical

significance (* P < 0.05, ** P < 0.01).

Supplementary Figure 10. Characterization of nucleotide composition around 5' splice sites. Nucleotide frequencies around the 5' splice sites of exons affected (n= 749) and unaffected by AS (n= 14,342). The exon sequences used are from **Figure 7E**.

Supplementary Figure 11. EMSAs to compare the binding activities of Sox2(180-319) (**A**), Sox2(120-319) (**B**) and Sox11 (**C**) to RNA probes derived from *Dnmt3b* and *Dicer1* mRNAs. Concentrations of Sox2 constructs are labelled above each lane. Free RNA and protein-RNA complex are marked.

Number	Sequence
1	GCGGGATGGTTAGGTGCGCCCTGTT
2	CGAGGTACACACTTAGGTTATATCG
3	AGTCTATCTTTCGTTCAAGATATGC
4	CATACCTCGCTCAAACTTGCCTCTG
5	TGCATCGGTCCTGCCTTGTCATCGA
6	TTTCCTAGCCCACTCCGAGCCTGGT
7	TTGGTATTCTTGATACATACATATT
8	CTAGGAGCCGACGAAGCATAAACGC
9	AGATGTTTGCTGCAATGGATCCGTT
10	TAGCGAATCTCCAAATCGTATTAGG
11	TTGACGAGCGCCTCGCAAAATCTCT
12	TAGCGTTTGTGTAAGGGCATCGGGC
13	TTTCAGGGGGGGGGGGTCAGTAGTTT
14	CGAATTGTGATGGCCTGTAACATTA
15	CATCTATCGGACGCATTGCAGGCGC
16	ACGCGTTGAGCCCCCGCCCACGCTT
17	TCCTAAGCTCCGTTATCTTCCCTCA

Supplementary Table 1. Randomly selected DNA sequences from the RNA library.

Supplementary Table 2. The sequences of 51 unique RNAs bound to Sox2 after 12 cycles of SELEX.

NO.	Sequence
12 th -1	UGACU <u>CCC</u> ACAUUAUU <u>CGUG</u> GUACA
12 th -2	GCCAG <u>CCC</u> AUAUUGG <u>CGCU</u> CCUUGU
12 th -3	GCCGG <u>CCC</u> AGA <u>GGCG</u> UACAUCAGUC
12 th -4	UUGACGCUGCG <u>CCC</u> UCA <u>CGCC</u> UUGU
12 th -5	GACUCG <u>CCC</u> CCUCACGUCC <u>CCCU</u> GA
12 th -6	CCAAGU <u>CCC</u> GC <u>CGGG</u> AUUUUGCCUA
12 th -7	GCUCUG <u>CCC</u> ACGU <u>GGCG</u> UUUUCUAC
12 th -8	GCGGUUUG <u>CCCAUGCUACGCG</u> UGUA
12 th -9	GCGGUCCG <u>CCCAUGCCUUCGCG</u> UCA
12 th -10	GCGGUUCG <u>CCCAUGCCUCGCG</u> CCAU
12 th -11	GCGGUUCG <u>CCCAGCCUCGCG</u> UCAUA
12 th -12	GCGGUUCG <u>CCC</u> AGCCU <u>UGCG</u> UCAUG
12 th -13	GCGGUUCG <u>CCC</u> AGCCU <u>CGCG</u> UCAUG
12 th -14	GCAACGA <u>CGCC</u> CUA <u>CCC</u> U <u>CCCU</u> CCC
12 th -15	GCGGCAAG <u>CCC</u> AUACU <u>CGCG</u> UUCAA
12 th -16	GG <u>CGCG</u> GUAAG <u>CCC</u> CAGU <u>CGCG</u> CCG
12 th -17	GCCGG <u>CCC</u> GCAAUAGG <u>CGCU</u> ACUUC
12 th -18	GCGCCGG <u>CCC</u> CCAGG <u>CGCU</u> AGUUUC
12 th -19	UDDDD <u>UDDD</u> DDDUUD <u>DDD</u> DDDDDD
12 th -20	UCAGCCGGUG <u>CCC</u> G <u>CACG</u> GAUGGAA
12 th -21	A <u>CGCG</u> GGC <u>CCC</u> UC <u>CGCG</u> CUCUUAUC
12 th -22	GCGGUGU <u>CCC</u> GCU <u>CGCG</u> CUACUUCA
12 th -23	ACGCCUUG <u>CCC</u> AUAAGCGG <u>CGCU</u> AU
12 th -24	<u>CGCG</u> GCUUG <u>CCC</u> UAU <u>CGCG</u> GUGUAG
12 th -25	CCCCGUAC <u>CCC</u> UCGG <u>CGGG</u> UAUUCA
12 th -26	ACGCUCGG <u>CCC</u> ACGUCGG <u>CGCU</u> AAA
12 th -27	GCGGUA <u>CCC</u> CC <u>CGCG</u> UUUGCGAAUU
12 th -28	G <u>CGCG</u> GG <u>CCC</u> AAGCUUC <u>CGCG</u> CUGG
12 th -29	CG <u>CGCG</u> GG <u>CCC</u> AUUGAAC <u>CGCG</u> CAU
12 th -30	GCGGAAAG <u>CCC</u> ACAUAU <u>CGCG</u> UCAU
12 th -31	G <u>CGCG</u> GAAAG <u>CCC</u> ACCUU <u>CGCG</u> CUC
12 th -32	G <u>CGCG</u> GAAUG <u>CCC</u> GAAU <u>CGCG</u> CGCA
12 th -33	G <u>CGCG</u> GAAGU <u>CCC</u> AUGAUU <u>CGCG</u> CA
12 th -34	G <u>CGCG</u> GAAUU <u>CCC</u> AUGUCU <u>CGCG</u> CA

12 th -35	CGCGGAAACCCAGACUCGCGGCCCA
12 th -36	<u>CGCG</u> GAAG <u>CCC</u> UGAGU <u>CGCG</u> GUAGG
12 th -37	<u>CGCG</u> GAAG <u>CCC</u> UGAAU <u>CGCG</u> GUAGG
12 th -38	<u>CGCG</u> GAAG <u>CCC</u> AAUGUU <u>CGCG</u> GGAA
12 th -39	GCGGAAA <u>CCC</u> AUACUU <u>CGCG</u> UUCAA
12 th -40	GCGGUGG <u>CCC</u> AGUAGC <u>CGCU</u> AAGAA
12 th -41	<u>CGCG</u> GUACG <u>CCC</u> AUACUU <u>CGCG</u> GGG
12 th -42	GCGGUAG <u>CCC</u> AGUU <u>CGCG</u> CUCUUCA
12 th -43	C <u>CGCG</u> GAAA <u>CCC</u> ACACCU <u>CGCG</u> GGC
12 th -44	GCGGUACG <u>CCC</u> CAU <u>CGCG</u> UUCUGAG
12 th -45	CGCGGAAACCCACAUCGCGGUAUGA
12 th -46	CCCGGAAG <u>CCC</u> AGAU <u>CGGG</u> GUGUUA
12 th -47	CCCCGAAG <u>CCC</u> AGAU <u>CGGG</u> GUGUUA
12 th -48	A <u>CGCG</u> GAAG <u>CCC</u> AGGU <u>CGCG</u> CUUUA
12 th -49	A <u>CGCG</u> GAAA <u>CCC</u> AGGU <u>CGCG</u> CUUUA
12 th -50	GCGGUACG <u>CCC</u> AGCUU <u>CGCU</u> UCGUG
12 th -51	G <u>CGCG</u> GUAAG <u>CCC</u> CAU <u>CGCG</u> CUACU

The enriched motifs are underlined.

Name	Sequence
12 th -15	5'-GCGGCAAGCCCAUACUCGCGUUCAA-3'
12 th -24	5'-CGCGGCUUGCCCUAUCGCGGUGUAG-3'
12 th -24 Mut1	5'- <u>UAUA</u> GCUUGCCCUAUCGCGGUGUAG-3'
12 th -24 Mut2	5'-CGCGGCUUG <u>UUU</u> UAUCGCGGUGUAG-3'
12 th -24 Mut3	5'-CGCGGCUUGCCCUAU <u>UAUA</u> GUGUAG-3'
12 th -24 Mut4	5'-CGCGGCUUG <u>GGG</u> UAUCGCGGUGUAG-3'
12 th -24 Mut5	5'-CGCGGCUUG <u>AAA</u> UAUCGCGGUGUAG-3'
12 th -24 Mut6	5'- <u>UAUA</u> GCUUG <u>AAA</u> UAU <u>UAUA</u> GUGUAG-3'
RL	5'-CACACACACACACACACACAC-3'
Dnmt3b RNA	5'-CAGCUUUUCCCUGUAGUCAUGAAUG-3'
Dicer1 RNA	5'-CCUGCAGCUCAUGACCCCUGCUUCC-3'
Sox2/Prox1 DNA	5'-CTAGCATTGTCTGGG-3'
	3'-GATCGTAACAGACCC-5'

Supplementary Table 3. Sequences for RNAs and DNAs used for binding assays.

Substituted bases were underlined.

Supplementary Table 4. Primers used for plasmid constructions.

	Sequence	
For protein expression plasmid construction		
Sox2- forward	GGAATTC <u>CATATG</u> TATAACATGATGGAGACGGAGC	
Sox2-reverse	CCG <u>CTCGAG</u> TCACATGTGCGACAGGGGCA	
Sox2(1-180) -reverse	CCG <u>CTCGAG</u> TCACAGCTGCTCCTGCATCATGCTGT	
Sox2(1-120)-reverse	CCG <u>CTCGAG</u> TCA CTTGGTTTTCCGCCGCGGC	
Sox2-HMG- forward	GGAATTC <u>CATATG</u> GACCGCGTCAAGAGGCCCATGAA CGCC	
Sox2-HMG-reverse	CCG <u>CTCGAG</u> TCACTTGGTTTTCCGCCGCGGCC	
Sox2-∆HMG(1-40)- reverse	GTACTTATCCTTCTTCATGAGCGTCGGGCTGTTCTTCTGGTTGC	
Sox2-∆HMG(119- 319)- forward	GCAACCAGAAGAACAGCCCGACGCTCATGAAGAAGGATAAGTAC	
Sox11- forward	GGAATTC <u>CATATG</u> GTGCAGCAGGCCGAG	
Sox11-reverse	CCG <u>CTCGAG</u> TCAATACGTGAACACCAGGTC	
Sox11N2C- forward	GCCGCGCAAAAAGCCCAAGACGCTCATGAAGAAGGATAAGTACA	
Sox11N2C-reverse	TGTACTTATCCTTCTTCATGAGCGTCTTGGGCTTTTTGCGCGGC	
For retroviral plasmid construction		
V-Sox2- forward	CGC <u>GGATCC</u> TATAACATGATGGAGACGGAGC	
V-Sox2-reverse	CCG <u>CTCGAG</u> TCACATGTGCGACAGGGGCA	
V-Sox2(1-180) - reverse	CCG <u>CTCGAG</u> TCACAGCTGCTCCTGCATCATGCTGT	
V-Sox2(1-120)- reverse	CCG <u>CTCGAG</u> TCACTTGGTTTTCCGCCGCGGC	
V-Sox2-HMG- forward	CGC <u>GGATCC</u> GACCGCGTCAAGAGGCCCATGAA CGCC	
V-Sox2-HMG-reverse	CCG <u>CTCGAG</u> TCACTTGGTTTTCCGCCGCGGCC	
V-Sox11- forward	CGC <u>GGATCC</u> GTGCAGCAGGCCGAG	
V-Sox11-reverse	CCG <u>CTCGAG</u> TCAATACGTGAACACCAGGTC	
V-Sox2-FLAG-	CCG <u>CTCGAG</u> TCACTTGTCATCGTCGTCCTTGTAGTCGGAGAATTCGTATAC	
reverse	ACTAGTCATGTGCGACAGGGGCA	

The underlined are restriction sites. Sequence for FLAG tag is highlighted in bold face.

Supplementary Table 5. Oligos used for RNA SELEX library construction.

Name	Sequence
DNA	5'-TGGGCACTATTTATATCAAC(N)25AATGTCGTTGGTGGCCC-3'
library	
Forward	5'-CCCGACACCCGCGG ATCCATGGGCACTATTTATATCAAC-3'
primer	
Reverse	5'-CGCGGATCC <u>TAATACGACTCACTATAG</u> GGGCCACCAACGACATT-3'
primer	

The T7 promoter sequence is underlined.

Supplementary Table 6. Primers used for ChIP-qPCR.

	Sequence
ChIP-Sox2-forward	AGTTCCCAGTCCAAGCTAGG
ChIP-Sox2-reverse	CCGTCATTTGGGTCTTTATTCAA
ChIP-Rest-forward	CCATTGGCCTATTTGCATCAC
ChIP-Rest-reverse	AGAGGGATCACAGCCTAGTC
ChIP-Nanog-forward	CAAGGCTAGCGATTCACACC
ChIP-Nanog-reverse	AATAGGGAGGAGGGCGTCTA
ChIP-Fbxo15-forward	TTTGACTTATTGCACGGCCC
ChIP-Fbxo15-reverse	GCAGCCAGGGATTCTTGTCA
ChIP-Atg7-forward	GAGCCCTGTTCTTACTCTAGTCA
ChIP-Atg7-reverse	AAATACAGGGATGCACACCG

Supplementary Table 7. Primers used for RT-PCR and qRT-PCR.

	Sequence	
For RT-PCR		
Exo-Sox2-forward	GGGTGGACCATCCTCTAGAC	
Exo-Sox2-reverse	GGGCTGTTCTTCTGGTTG	
Cy5-Srebf1-forward	ATCAAAGAGGAGCCAGTGCC	
Srebf1-reverse	TGTCAGCAGCAGTGAGTCTG	
Cy5-Ctbp1-forward	AGCTCCCACTTGCTCAACAA	
Ctbp1-reverse	GCTACTGTGGCCACATCCTT	
Cy5-Dnmt3b-forward	CCCAGTGATGATCGATGCCA	
Dnmt3b-reverse	ATGACCGGTACACTCCAGGA	
Cy5-Lef1-forward	ACCTTCTACCCCCTGTCTCC	
Lef1-reverse	GGTGCTCCTGTTTGACCTGA	
Cy5-Prmt9-forward	CCTGTGATGTAGTGGCTGCA	
Prmt9-reverse	ATCTCTGCACACTCGACTGC	
Cy5-Dicer1-forward	ACTCTGAAAGAACTTAGAGTCAGCA	
Dicer1-reverse	TGAGCCAGTGTTCAAGCACA	
Cy5-Tada2a-forward	CCCTCTGTTTGCATCCACCCTG	
Tada2a-reverse	CATGTAAGATGTCTGAGTCGTCTTC	
Cy5-Gapdh-2-forward	CCAGGAGCGAGACCCCACTA	
Gapdh-2-reverse	GCAGTGATGGCATGGACTGTGGT	
For RIP qRT-PCR using cell	lysate	
Srebf1-forward	GGCTATTCCGTGAACATCTCC	
Srebf1-reverse	TCCAAGGGCATCTGAGAACT	
Ctbp1-forward	CTCCAGGCGTCGTGAGTG	
Ctbp1-reverse	TCGTATGGTCTCTATCCGCC	
Prmt9-forward	CTGGTGGCACGGTCCTTG	
Prmt9-reverse	CTTCACGTCGTCTTTTAGCTC	
Dnmt3b-forward	GGCTTCCCTGCTCACTACA	
Dnmt3b-reverse	TGGGTAGAACTATTCACAGGCA	
Lef1-forward	GAGGCCTGTACAACAAGGGA	
Lef1-reverse	GGTGGAGAAAGGGACCCATT	
Dicer1-forward	AGCGGAGAGAACTTATGATGGA	
Dicer1-reverse	AGCTGTTAGGAACCTGAGGC	
Tada2a-forward	CCCTCTGTTTGCATCCACCCTG	
Tada2a-reverse	CATGTAAGATGTCTGAGTCGTCTTC	
Gapdh-2-forward	CCAGGAGCGAGACCCCACTA	
Gapdh-2-reverse	GCAGTGATGGCATGGACTGTGGT	
RMST-forward	AATGTGACTTGGGACTGGCC	
RMST-reverse	CCGTTCTCCCGAGGATTGA	
For qRT-PCR and transgene insertion testing		
exo-Oct4-forward	GGGTGGACCATCCTCTAGAC	

exo-Oct4-reverse	CCAGGTTCGAGAATCCAC	
exo-Sox2-forward	GGGTGGACCATCCTCTAGAC	
exo-Sox2-reverse	GGGCTGTTCTTCTGGTTG	
exo-Klf4-forward	GGGTGGACCATCCTCTAGAC	
exo-Klf4-reverse	GCTGGACGCAGTGTCTTCTC	
exo-c-Myc-forward	GGGTGGACCATCCTCTAGAC	
exo- c-Myc -reverse	CCTCGTCGCAGATGAAATAG	
For qRT-PCR and selected pluripotency markers testing		
Oct4-forward	GGGTGGACCATCCTCTAGAC	
Oct4-reverse	CCAGGTTCGAGAATCCAC	
Nanog-forward	CTCAAGTCCTGAGGCTGACA	
Nanog-reverse	TGAAACCTGTCCTTGAGTGC	
Esrrb-forward	CAGAGTGCCTGGATGGAGAT	
Esrrb-reverse	TACCAGGCGAGAGTGTTCCT	
Sall4-forward	CCCTGGGAACTGCGATGAAG	
Sall4-reverse	TCAGAGAGACTAAAGAACTCGGC	

REFERENCES

- 1. Silva, J., O. Barrandon, J. Nichols, J. Kawaguchi, T.W. Theunissen, and A. Smith. (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 6(10): p. e253.
- 2. Robinson, J.T., H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, and J.P. Mesirov. (2011) Integrative genomics viewer. Nat Biotechnol, 29(1): p. 24-6.

Α. Oct4 0.5 Relative transcript level (relative toβ-actin) 7.0 8.0 β-actin) 7.0 8.0 β-actin) Sot Machan 0 Sott 5072-17884 SOLTHING 507211201 Sottimes 50721,780 GOTL Sot

c-Myc

50721-7201

50721180 50721180

GOT THE

Sot

0.6

0

Soft

5072-1788W

SOL THING Softime

Relative transcript level

Sox2/Sox11

Supplementary Figure 5

SOX2: SOX2-14HMG

SOX2:SOX2-IRBM

0

Sox2:vector

0

SOX2:SOX2-MMG

SOX2:SOX2-URBM

0

Sox2:vector

Ъ.

Α.

OKMS vs OKMAHMG alternative splicing changed genes 620 355 355 583 OKMS vs OKMARBM alternative splicing changed genes

Exons unaffected by AS

С.

