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School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

* johanni.brea@epfl.ch

Calculations for the artificial example in Figure 3

The cost function is given by
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and its partial derivatives read
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The partial derivatives in alternative parametrizations can be computed either by using the chain
rule, e.g. with s = σ2
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or by expressing the function in terms of the new coordinates, e.g. with τ = 1/σ2
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and then calculating the derivative directly:
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For the partial derivatives with respect to µ we find

∂f̃

∂µ
=
µ− µ0

s
and

∂f̄

∂µ
= (µ− µ0)τ . (S1 7)

The flows displayed in Figure 3 are obtained by running the following dynamical systems from
different initial conditions:

A B C
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Steepest descent on manifolds

Here, we give a short introduction to the calculus on manifolds and differential geometry that
serve as background of this paper. For more details, the reader is referred to the excellent books
by Michael Spivak [1] and by Jeffrey M. Lee [2].

In many spaces it is not possible to use the definition of the derivative in direction of u on the
right-hand-side of Equation 3 (Main Text). Classical examples of such spaces involve spheres or
tori. But also the set (µ, σ) ∈ R × R+ from our example in Figure 3 together with the canonical
vector space operations on R does not form a vector space, as e.g. multiplication of (µ, σ) with
a negative scalar leaves the set of positive standard deviations σ. Nevertheless, these and other
spaces are locally similar enough to a linear space to extend ordinary calculus to the calculus on
manifolds.

Suppose that we want to define on the manifold M the directional derivative of a function f :
M → R at point p ∈M in the direction v ∈ TMp, where TMp is the tangent space in point p. We
can then draw a curve γ that runs through p and which has a tangent vector equal to v at that

point. For convenience, let γ(0) = p and therefore dγ(t)
dt

∣∣∣
t=0

= v. We then define the differential

dfp of f at p as

dfp(v) =
d

dt
f (γ(t)) |t=0, (S1 8)

i.e. as a map dfp : TMp → R from the tangent space to the real numbers. It can be shown that
this map is linear and well-defined (i.e. it does not depend on the particular choice of γ). In a
parametrization p = Φ(x) = Φ(x1, ..., xn) it reads

dfp(v) =

n∑
i=1

∂f

∂xi

∣∣∣∣
p

dxi(γ(t))

dt
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t=0

=

n∑
i=1

∂if(Φ(x))vi, (S1 9)

where ∂i = ∂
∂xi denotes the partial derivative with respect to xi, dxi is defined as the linear map

from the tangent space to the reals that extracts the i’th component of a vector in tangent space,
and vi is the i’th component of v when expressed in the coordinate basis.

As a linear map from the tangent space to the real numbers, dfp belongs to the cotangent space
at p, the dual space T ∗Mp of the tangent space TMp. The cotangent vector dfp is expressed as

dfp =

n∑
i=1

∂if(Φ(x))dxi (S1 10)
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in local coordinates, with dxi basis vectors of the cotangent space T ∗Mp. We see here that the
object we called “vector of partial derivatives” in the main text is actually a cotangent vector.

A tangent vector v ∈ TMp can also be seen as a linear map v : F (M)→ R, where F (M) is the space
of smooth functions from M to R. In a parametrization this map reads v(f) =

∑
i v
i∂if(Φ(x)).

Because of this, it is convenient and common practice to express parametrized vectors in a tangent
space as v =

∑
i v
i∂i and interpret ∂i as basis vectors of the tangent space TMp.

The different geometrical nature of tangent and cotangent vectors is the fundamental reason why
a rule such as in Equation 1 (Main Text) or Equation 2 (Main Text) is problematic: on one side
of the equation, we have a tangent vector (the velocity vector of the curve along which we want
to move), while on the other side we have the differential of the cost function, a cotangent vector.
They cannot be equal; they can at most have the same components in some coordinates, but this
property is lost when changing to a different set of coordinates. Such a rule therefore does not
make sense without invoking a preferential choice of coordinates.

Generalization of inner products: Riemannian metrics

In order to obtain a way to transform cotangent vectors into tangent vectors or vice versa and
thereby identify them with each other, one needs to define additional structure on the manifold.
This structure comes in the shape of what is called a Riemannian metric, which is a map from
bivectors (i.e. pairs of tangent vectors) to the real numbers. More specifically, at each point p
it specifies a quadratic form or an inner product gp on the tangent space at that point. In order
to qualify for the term Riemannian, this quadratic form should in addition be positive definite.1

Lastly, the metric is usually expected to vary smoothly as a function of the position in the manifold,
which means that when it is evaluated on smooth vector fields, the resulting real-valued function
is smooth. Given a Riemannian metric g and a point p, a cotangent vector v[ is assigned to a
tangent vector v in the following way

v[ : v′ 7→ gp(v, v
′), (S1 11)

or in local coordinates

v[i =

n∑
j=1

gijv
j , v[(v′) =

n∑
i,j=1

gijv
iv′j . (S1 12)

Since gp is a bilinear form, we see that both v[ itself (as a map from the tangent space to the reals)
and the assignment of v[ to v are linear maps, and we can also see that the assignment is injective,
because if it were otherwise, we could have

0 = v[1(v′)− v[2(v′) = gp(v1 − v2, v′). (S1 13)

for non-zero v1 6= v2 and some non-zero v′, which contradicts the positive definiteness of gp.
Since the tangent space and the cotangent space have the same dimension, the assignment is also
surjective, and we can therefore define an inverse ] that assigns a tangent vector ω] to any cotangent
vector ω. An inverse metric g−1p may then be defined as

g−1(ω1, ω2) = gp(ω
]
1, ω

]
2). (S1 14)

In local coordinates, we may write

g−1(ω1, ω2) =

n∑
i,j=1

gijω1,iω2,j ,

n∑
j=1

gijg
jk = δkj ,

1In many contexts, e.g. in physics, however, metrics are pseudo-Riemannian.
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where δkj are the components of the unit matrix (i.e. δkj = 1 if j = k and zero otherwise). Using

this inverse metric, ω] may be written as

ω] = g−1(ω, ·), ω],i =

n∑
j=1

gijωj . (S1 15)

Indeed, as a linear map from the cotangent space to the reals, the RHS may be canonically identified
with a tangent vector.2 The isomorphisms ] and [ are known as musical isomorphisms, and in
terms of local coordinates, they are used to raise and lower indices.

In analogy to the case in RN we can now define the gradient on smooth manifolds

gp(∇pf, v) = dfp(v) , (S1 16)

for all tangent vectors v at point p and, using the definition of the inverse metric, we find

∇pf = df ]p . (S1 17)

The gradient on a Riemannian manifold

By being given the structure of the Riemannian metric, we obtain a notion of lengths of and angles
between tangent vectors, as with any other inner product space. Thus, given a point p, we can ask
in which direction the steepest ascent of the function f is. The answer is given by

s(p)
.
= argmax

g(v,v)=1

dfp(v), (S1 18)

where the maximum is taken over all unit-length tangent vectors, and the directional derivative is
properly expressed via the action of the differential of f on the tangent vector. This constrained
optimization has a cost function

L = dfp(v)− λ(gp(v, v)− 1), (S1 19)

where λ is a Lagrange multiplier. In order to solve this optimization problem, we have to compute
the differential of L with respect to v and set it to zero. Because of the linearity of dfp and the
symmetry and bilinearity of gp, we have

L(v + v′) = dfp(v + v′)

− λ(gp(v + v′, v + v′)− 1)

= L(v) + dfp(v
′)− 2λgp(v, v

′)

− λgp(v′, v′).

(S1 20)

The critical tangent vector v is therefore characterized by the vanishing of the term that is linear
in v′

dL(v′) = dfp(v
′)− 2λg(v, v′) = 0, (S1 21)

to be satisfied by all tangent vectors v′.3 As we developed above, this equation has a unique
solution, given by v = 1

2λdf
]
p, which, when normalized, reads

v =
df ]p√

gp(df
]
p, df

]
p)
, (S1 22)

which points in the same direction as the gradient in Equation S1 17 and generalizes Equation 7
(Main Text) to differential manifolds.

2For a finite-dimensional smooth manifold, the map v 7→ (ω 7→ ω(v)) is an isomorphism between the tangent
space and its double dual.

3Note that the tangent space of the tangent space is the tangent space itself.
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Which dynamical systems can be regarded as a gradient
descent on a cost function?

In some cases we may start with a given dynamical system in the form of a vector field V on some
manifold M . The question arises whether we can find a function f and a metric g such that the
dynamical system takes the form of a (negative) gradient flow, i.e. V = −∇gf . For this question
to make sense, we fix an asymptotically stable set S, with domain of attraction A. In other words,
we assume that the dynamics converges to a fixed point x0, when starting from an initial condition
x ∈ A(x0) ⊂ A.

If g is given but we do not know f , we can compute the one-form V [ that is dual to V with
respect to g, and check whether it is closed, i.e. whether dV [ = 0.4 If V [ is indeed closed and
the domain of attraction A is contractible (this is always true if S consists of a single point), this
implies the existence of a function f , unique up to an additive constant, such that V [ = −df , and
hence V = −∇gf , on A. A suitable potential function f may be found by picking a reference
point p0 ∈ S and integrating V [ along any curve that joins p0 and p. Note that if we change to
a different metric g′, the corresponding V [ might no longer be closed and hence such a potential
may cease to exist.

If neither f nor g are given, a sufficient condition for their existence on a compact manifold was
given by [3, 4] (see also [5] for a survey): if the vector field is gradient-like5, then the construction
in Theorem B of [3] gives a suitable cost function f . By the remark after Theorem B, a suitable
Riemannian metric g exists. However, these conditions are not necessary, since there are gradient
vector fields that do not meet the transversality conditions to be gradient-like.6 However, they are
necessary for a gradient vector field that is structurally stable, which is often desirable in practise.
On a non-compact manifold it is not known whether we can find a complete metric, but we can
always use the construction above on a compact subset. Alternatively one may find a smooth
Lyapunov function (this is always possible; see Theorem 3.2 in [6]) and use the method in the next
paragraph to construct a suitable metric.

Suppose that a candidate cost function f is given, and a suitable Riemannian metric g is sought.
This case is discussed in [7]. A necessary condition for the existence of g is that f is a smooth
local Lyapunov function for V , i.e. f > 0 and V f = df(V ) < 0 on A\S, and f = 0 and df = 0
on S. Away from singular points, i.e. on A\S, this is sufficient. One may consider the level sets
f−1(q) for q ∈ (0, a) = f(A\S), which are submanifolds of dimension n− 1. We may then choose
a Riemannian metric on each level set such that it depends smoothly on q, and by declaring V to
be orthogonal to the level sets and to have a squared Riemannian length equal to |df(V )|. But
as the following example shows, this may not work at singular points: suppose that we have the
dynamical system dx/dt = V (x) = −x and the function f(x) = x4 on R. This dynamical system
has a global attractor at x = 0, and f is a global Lyapunov function since we have f(0) = 0
as well as f(x) > 0 and df(V ) = 4x3(−x) = −4x4 < 0 for all x 6= 0. But if we want to write
dx/dt = −df(x)/g(x), we obtain g(x) = −df(x)/V (x) = 4x2, which is not a Riemannian metric on
R because it is degenerate at x = 0. This shows that in order to obtain a metric on the entirety
of A, V and f have to satisfy additional compatibility conditions at singular/critical points, which
are discussed in [7].

4In three-dimensional space, this reduces to checking whether curl V = 0.
5This property is expressed in terms of transversality conditions on the vector field, where transversality is the

property of two submanifolds to intersect in a way such that their tangent spaces together span the ambient tangent
space. A vector field is called gradient-like if it is transversal to the zero section at each fixed point, transversal to
the boundary, and the stable and unstable manifolds of each singular point meet transversally.

6This is a point of confusion in the nomenclature. It turns out that not even gradient vector fields of Morse
functions are gradient-like. The standard counterexample is the gradient field of the height function on an upright
2-torus. However, by Theorem A of [3], a gradient vector field of a Morse function which is transversal to the
boundary can be approximated by a gradient-like vector field (which is by definition transverse to the boundary but
also has transversal stable and unstable manifolds, see footnote 5).
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