Supporting information for:

Insight on shallow trap states introduced photocathodic performance in n-type polymer photocatalysts

Qiushi Ruan,^{a,1} Tina Miao,^{a,b,1} Hui Wang,^a Junwang Tang*^a

¹ Both authors contributed equally

a Department of Chemical Engineering, University College London (UCL), WC1E 7JE, London, United Kingdom

b Department of Chemistry, University College London (UCL), WC1H 0AJ, London, United Kingdom

XRD patterns were collected by a D8 Bruker Diffractometer. The UV-Vis absorption spectra were collected using a Shimadzu UV-Vis 2550 spectrophotometer fitted with an integrating sphere using BaSO⁴ as the reference material. XPS measurements were done on a Thermoscientific XPS K-alpha surface analysis machine using an Al source. Analysis was performed on the Casa XPS software. SEM images were taken by a JEOL JSM-7401F Scanning Electron Microscope. BET measurements were performed by a Tri Star II. NMR spectra were performed with a solid state NMR spectrometer, AscendTM, 300WB, Bruker. PL spectra were collected by a Renishaw InVia Raman Microscope (325nm).

Figure S1. XPS C1s spectra of all samples

Table S1. The ratio of C-O bond to N=C-N bond and C to N ratio in all samples

Table S2 Surface area of def-g-C₃N₄-1, def-g-C₃N₄-2 and def-g-C₃N₄-5 samples determined by BET measurements.

	Surface area (m^2/g)		
$g - C_3 N_4$	10.9		
$def-g-C_3N_4-1$	12.9		
$def-g-C_3N_4-2$	13.4		
$def-g-C_3N_4-5$	18.5		

Figure S2 BET measurement of g-C3N4, def-g-C3N4-1, def-g-C3N4-2 and def-g-C3N4-5 samples

Figure S3. ¹H MAS solid state NMR spectra of (a) reference bulk-g-C₃N₄ and (b) def-g-C₃N₄-5, as well as ¹³C CP MAS solid state NMR spectra of (c) reference bulk-g-C₃N₄ and (d) def-g-C₃N₄-5.

¹H Solid state NMR spectrum of ref-g-C₃N₄ contains two main peaks at 8.9 ppm and 4.2 ppm, which can be attributed to the chemical shifts of -NH_x ending group and residual water, respectively.¹ An additional clear peak locating at 4.5 ppm is present in def-g-C3N4-5 sample and can be ascribed to the formation C-OH bonds.^{1 13}C solid state NMR spectra of these two samples show two similar peaks at 156.8 ppm and 164.7 ppm, which has been assigned to C-[N]₃ and CN₂(NH₂) groups, respectively²

Figure S4 XPS N1s spectra of all g-C3N⁴ samples

Table S3 Percentage breakdown of different bonds and ratios of bonds within the N1s spectra

	$C=N-C$ (sp ²)	$N-[C]_3$ (sp ³)	$C-NHx$	$sp2$ to sum of $sp3$ and
Binding Energy (eV)	398.7	399.9	401.0	$C-NHx$
$ref-q-C3N4$	74.2%	15.7%	10.2%	2.9
$def-g-C3N4-1$	63.8%	20.9%	15.3%	1.8
$def-g-C3N4-2$	66.3%	18.2%	15.5%	2.0
$def-q-C_3N_4-5$	72.0%	16.5%	11.5%	2.6

Figure S5. (a) UV-vis spectra, (b) Tauc plots and (c) XPS valence band spectra of ref-g-C3N4, def-g-C3N4-1, def-g-C3N4-2 and def-g-C3N4-5 films

Figure S6 Chopped light-response of bare FTO substrate.

Figure S7. SEM images of (a) ref-g-C3N4, (b) def-g-C3N4-1, (c) def-g-C3N4-2 and (d) def-g-C3N4-5 films

Figure S8. determination of average electron lifetime of (a) ref-g-C3N⁴ and (b) def-g-C3N4-5 films

Figure S9 (a-c) Mott-schottky plots of ref-g-C3N⁴ electrode at 500 Hz, 1000 Hz and 2000 Hz with 0% - 100% illumination; (d-f) Mott-schottky plots of def-g-C3N4-5 electrode at 1 KHz with 0% - 100% illumination;

Table S4 Carrier density N_D and depletion layer width of ref-g-C₃N₄ and def-g-C₃N₄-5 samples

	Measured slope (1000	N_D (ε_r =7.7)	W_{sc} (ε_r =7.7;
	Hz)		0V vs RHE)
ref-g-C ₃ N ₄ dark	$1.57*10^{13}$	$1.2*10^{18}$ (cm ⁻³)	22 nm
10% illumination	$6.18*10^{12}$	$3.1*10^{18}$ (cm ⁻³)	
100% illumination	$6.13*10^{12}$	$3.1*10^{18}$ (cm ⁻³)	
$def-q-C_3N_4-5$	$1.10*10^{10}$	$1.7*10^{21}$ (cm ⁻³)	0.4 nm
10% illumination	$1.03*10^{10}$	$1.8*10^{21}$ (cm-3)	
100% illumination	0.98*1010	$1.9*1021$ (cm ⁻³)	

$$
\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 e N_D} (V - V_{fb} - \frac{k_B T}{e})
$$

$$
slope = \frac{2}{\varepsilon \varepsilon_0 A^2 e N_D}
$$

$$
W_{sc} = \sqrt{\frac{2\varepsilon_0 \varepsilon_r}{e N_D} (V - V_{fb} - \frac{k_B T}{e})}
$$

 ε_0 is the vacuum permittivity: 8.854187817×10⁻¹⁴ F/cm, ε_r is the static dielectric constant: it is 7.7 for c- $C_3N_4^3$ and current not available for g-C₃N₄; A is the area: 1 cm²; e is the electron charge: 1.6×10⁻¹⁹C.

Table S5. Analysis of impedance plots of ref-g-C₃N₄ and def-g-C₃N₄-5; R_s is the system resistance, R_{ct} is the charge transfer resistance, CPE is the constant phase element representing the double layer capacitor.

	R_s (Ω cm ²)	R_{ct} / (Ω cm ²)	CPE $(S^n \Omega^{-1}$ cm ⁻²)	N
ref-g- C_3N_4	218 (±116.93%)	1.3 $*$ 10 ⁵ (±0.46%)	$8.1 * 107 (\pm 1.26%)$	\vert 0.94 (\pm 0.49%)
$def-g-C3N4-5$	$49 \times 27.35\%)$	$5.6 * 103 (\pm 0.86%)$	$4.5 * 10^{-5} (\pm 1.71%)$	$0.85 (\pm 0.90\%)$

Figure S10. Normalised photoluminescence spectra of ref-g-C₃N₄, def-g-C₃N₄-1, def-g-C₃N₄-2 and def-g-C3N4-5 samples after 325 nm excitation, recorded using a Renishaw InVia Raman Microscope (325nm)

Photoluminescence (PL) spectroscopy was undertaken using a 325 nm laser probe. The PL signal peaks around 450 and 500 nm are assigned to the π–π* transitions and n–π* emission, respectively.⁴

Figure S11 TAS spectra of def-g-C₃N₄-1 sample in N₂, (N₂-flushed) water and (N₂-flushed) 2mM AgNO³ solution.

Figure S12. OCVD curve (black) and fitted analysis (red) of H₂O₂ treated ref-g-C₃N₄ sample

Reference

1. Zhang, Q.; Chen, P.; Tan, C.; Chen, T.; Zhuo, M.; Xie, Z.; Wang, F.; Liu, H.; Cai, Z.; Liu, G., A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. *Environmental Science: Nano* **2018,** *5* (10), 2325-2336.

2. Wang, Y.; Bayazit, M. K.; Moniz, S. J.; Ruan, Q.; Lau, C. C.; Martsinovich, N.; Tang, J., Linkercontrolled polymeric photocatalyst for highly efficient hydrogen evolution from water. *Energy & Environmental Science* **2017,** *10* (7), 1643-1651.

3. Mo, S.-D.; Ouyang, L.; Ching, W.; Tanaka, I.; Koyama, Y.; Riedel, R., Interesting physical properties of the new spinel phase of Si 3 N 4 and C 3 N 4. *Physical Review Letters* **1999,** *83* (24), 5046.

4. Jorge, A. B.; Martin, D. J.; Dhanoa, M. T.; Rahman, A. S.; Makwana, N.; Tang, J.; Sella, A.; Corà, F.; Firth, S.; Darr, J. A., H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. *The Journal of Physical Chemistry C* **2013,** *117* (14), 7178-7185.