Supporting information for:

Insight on shallow trap states introduced photocathodic performance in n-type polymer photocatalysts

Qiushi Ruan,^{a,1} Tina Miao,^{a,b,1} Hui Wang,^a Junwang Tang^{*a}

¹ Both authors contributed equally

^a Department of Chemical Engineering, University College London (UCL), WC1E 7JE, London, United Kingdom

^b Department of Chemistry, University College London (UCL), WC1H 0AJ, London, United Kingdom

XRD patterns were collected by a D8 Bruker Diffractometer. The UV-Vis absorption spectra were collected using a Shimadzu UV-Vis 2550 spectrophotometer fitted with an integrating sphere using BaSO₄ as the reference material. XPS measurements were done on a Thermoscientific XPS K-alpha surface analysis machine using an AI source. Analysis was performed on the Casa XPS software. SEM images were taken by a JEOL JSM-7401F Scanning Electron Microscope. BET measurements were performed by a Tri Star II. NMR spectra were performed with a solid state NMR spectrometer, Ascend[™], 300WB, Bruker. PL spectra were collected by a Renishaw InVia Raman Microscope (325nm).

Figure S1. XPS C1s spectra of all samples

Table S1. The ratio of C-O bond to N=C-N bond and C to N ratio in all samples

Sample	Ratio of C-O/N=C-C	C _x N _y
ref-g-C ₃ N ₄	0.047±0.007	C ₃ N _{4.10±0.03}
def-g-C₃N₄-1	0.58±0.16	C ₃ N _{3.18±0.12}
def-g-C₃N₄-2	0.33±0.07	C ₃ N _{3.65±0.04}
def-g-C ₃ N ₄ -5	0.13±0.01	C ₃ N _{3.61±0.01}

Table S2 Surface area of def-g-C₃N₄-1, def-g-C₃N₄-2 and def-g-C₃N₄-5 samples determined by BET measurements.

	Surface area (m²/g)	
g-C ₃ N ₄	10.9	
def-g-C ₃ N ₄ -1	12.9	
def-g-C ₃ N ₄ -2	13.4	
def-g-C ₃ N ₄ -5	18.5	

Figure S2 BET measurement of g-C₃N₄, def-g-C₃N₄-1, def-g-C₃N₄-2 and def-g-C₃N₄-5 samples

Figure S3. ¹H MAS solid state NMR spectra of (a) reference bulk-g-C₃N₄ and (b) def-g-C₃N₄-5, as well as ¹³C CP MAS solid state NMR spectra of (c) reference bulk-g-C₃N₄ and (d) def-g-C₃N₄-5.

¹H Solid state NMR spectrum of ref-g-C₃N₄ contains two main peaks at 8.9 ppm and 4.2 ppm, which can be attributed to the chemical shifts of $-NH_x$ ending group and residual water, respectively.¹ An additional clear peak locating at 4.5 ppm is present in def-g-C₃N₄-5 sample and can be ascribed to the formation C-OH bonds.¹ ¹³C solid state NMR spectra of these two samples show two similar peaks at 156.8 ppm and 164.7 ppm, which has been assigned to C-[N]₃ and CN₂(NH₂) groups, respectively²

Figure S4 XPS N1s spectra of all g-C₃N₄ samples

Table S3 Percentage breakdown of different bonds and ratios of bonds within the N1s spectra

	C=N-C (sp ²)	N-[C] ₃ (sp ³)	C-NH _x	sp ² to sum of sp ³ and
Binding Energy (eV)	398.7	399.9	401.0	C-NH _x
ref-g-C ₃ N ₄	74.2%	15.7%	10.2%	2.9
def-g-C ₃ N ₄ -1	63.8%	20.9%	15.3%	1.8
def-g-C ₃ N ₄ -2	66.3%	18.2%	15.5%	2.0
def-g-C ₃ N ₄ -5	72.0%	16.5%	11.5%	2.6

Figure S5. (a) UV-vis spectra, (b) Tauc plots and (c) XPS valence band spectra of ref-g-C₃N₄, def-g-C₃N₄-1, def-g-C₃N₄-2 and def-g-C₃N₄-5 films

Figure S6 Chopped light-response of bare FTO substrate.

Figure S7. SEM images of (a) ref-g- C_3N_4 , (b) def-g- C_3N_4 -1, (c) def-g- C_3N_4 -2 and (d) def-g- C_3N_4 -5 films

Figure S8. determination of average electron lifetime of (a) ref-g-C₃N₄ and (b) def-g-C₃N₄-5 films

Figure S9 (a-c) Mott-schottky plots of ref-g-C₃N₄ electrode at 500 Hz, 1000 Hz and 2000 Hz with 0% - 100% illumination; (d-f) Mott-schottky plots of def-g-C₃N₄-5 electrode at 1 KHz with 0% - 100% illumination;

Table S4 Carrier density N_D and depletion layer width of ref-g-C₃N₄ and def-g-C₃N₄-5 samples

	Measured slope (1000	N _D (ε_r =7.7)	W_{sc} ($\epsilon_r = 7.7$;
	Hz)		0V vs RHE)
ref-g-C₃N₄ dark	1.57*10 ¹³	1.2*10 ¹⁸ (cm ⁻³)	22 nm
10% illumination	6.18*10 ¹²	3.1*10 ¹⁸ (cm ⁻³)	/
100% illumination	6.13*10 ¹²	3.1*10 ¹⁸ (cm ⁻³)	/
def-g-C ₃ N ₄ -5	1.10*10 ¹⁰	1.7*10 ²¹ (cm ⁻³)	0.4 nm
10% illumination	1.03*10 ¹⁰	1.8*10 ²¹ (cm ⁻³)	/
100% illumination	0.98*10 ¹⁰	1.9*10 ²¹ (cm ⁻³)	/

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 e N_D} (V - V_{fb} - \frac{k_B T}{e})$$

$$slope = \frac{2}{\varepsilon \varepsilon_0 A^2 e N_D}$$

$$W_{sc} = \sqrt{\frac{2\varepsilon_0 \varepsilon_r}{e N_D} (V - V_{fb} - \frac{k_B T}{e})}$$

 ε_0 is the vacuum permittivity: 8.854187817×10⁻¹⁴ F/cm, ε_r is the static dielectric constant: it is 7.7 for c-C₃N₄³ and current not available for g-C₃N₄; A is the area: 1 cm²; e is the electron charge: 1.6×10⁻¹⁹C.

Table S5. Analysis of impedance plots of ref-g-C₃N₄ and def-g-C₃N₄-5; R_s is the system resistance, R_{ct} is the charge transfer resistance, CPE is the constant phase element representing the double layer capacitor.

	R _s (Ω cm²)	$R_{ct} / (\Omega \ cm^2)$	CPE (S ⁿ Ω ⁻¹ cm ⁻²)	Ν
ref-g-C₃N₄	218 (±116.93%)	1.3 * 10 ⁵ (±0.46%)	8.1 * 10 ⁻⁷ (±1.26%)	0.94 (±0.49%)
def-g-C ₃ N ₄ -5	49 (±27.35%)	5.6 * 10 ³ (±0.86%)	4.5 * 10 ⁻⁵ (±1.71%)	0.85 (±0.90%)

Figure S10. Normalised photoluminescence spectra of ref-g- C_3N_4 , def-g- C_3N_4 -1, def-g- C_3N_4 -2 and def-g- C_3N_4 -5 samples after 325 nm excitation, recorded using a Renishaw InVia Raman Microscope (325nm)

Photoluminescence (PL) spectroscopy was undertaken using a 325 nm laser probe. The PL signal peaks around 450 and 500 nm are assigned to the $\pi-\pi^*$ transitions and $n-\pi^*$ emission, respectively.⁴

Figure S11 TAS spectra of def-g-C₃N₄-1 sample in N₂, (N₂-flushed) water and (N₂-flushed) 2mM AgNO₃ solution.

Figure S12. OCVD curve (black) and fitted analysis (red) of H₂O₂ treated ref-g-C₃N₄ sample

Reference

1. Zhang, Q.; Chen, P.; Tan, C.; Chen, T.; Zhuo, M.; Xie, Z.; Wang, F.; Liu, H.; Cai, Z.; Liu, G., A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. *Environmental Science: Nano* **2018**, *5* (10), 2325-2336.

2. Wang, Y.; Bayazit, M. K.; Moniz, S. J.; Ruan, Q.; Lau, C. C.; Martsinovich, N.; Tang, J., Linkercontrolled polymeric photocatalyst for highly efficient hydrogen evolution from water. *Energy & Environmental Science* **2017**, *10* (7), 1643-1651.

3. Mo, S.-D.; Ouyang, L.; Ching, W.; Tanaka, I.; Koyama, Y.; Riedel, R., Interesting physical properties of the new spinel phase of Si 3 N 4 and C 3 N 4. *Physical Review Letters* **1999**, *83* (24), 5046.

4. Jorge, A. B.; Martin, D. J.; Dhanoa, M. T.; Rahman, A. S.; Makwana, N.; Tang, J.; Sella, A.; Corà, F.; Firth, S.; Darr, J. A., H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. *The Journal of Physical Chemistry C* **2013**, *117* (14), 7178-7185.