
Supplementary Materials For 

Mortality Burdens in California Due to Air Pollution Attributable to 

Local and Non-local Emissions 

 

Configuration and Performance of WRF-Chem 

 

We simulated the PM2.5 and O3 concentrations using the WRF-Chem model (version 3.9.1). 

WRF-Chem has been widely used by research groups around the world for a broad range of 

applications in atmospheric chemistry and air quality. A general description of the model can be 

found at https://www2.acom.ucar.edu/wrf-chem. The physical options included the National 

Center for Environmental Prediction, Oregon State University, Air Force, and Hydrologic 

Research Lab’s (NOAH) land-surface module (Chen and Dudhia, 2001), the Yonsei University 

(YSU) PBL scheme (Hong et al., 2006), the Grell-Freitas cumulus scheme (Grell and Freitas, 

2014), the Morrison double-moment scheme for cloud microphysics (Morrison et al., 2009), and 

the Fu-Liou-Gu (FLG) radiative transfer scheme (Fu and Liou, 1992; Gu et al., 2011, 2006; Zhao 

et al., 2016). With respect to the chemical scheme, we employed an extended Carbon Bond 2005 

(CB05) (Yarwood et al., 2005) with chlorine chemistry (Sarwar et al., 2008) coupled with the 

Modal for Aerosol Dynamics in Europe/Volatility Basis Set (MADE/VBS) (Ahmadov et al., 2012; 

Wang et al., 2015). MADE/VBS uses a modal aerosol size representation and an advanced 

secondary organic aerosol (SOA) module based on the VBS approach. The aqueous-phase 

chemistry was based on the AQChem module used in the Community Multiscale Air Quality 

(CMAQ) model (Wang et al., 2015). This model also considered aerosol direct radiative effects 

and first and second aerosol indirect effects on grid-scale clouds following our previous study 

(Zhao et al., 2017b). The biogenic emissions were calculated online using the Model of Emissions 

of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006). Dust emissions were 

calculated online following Zhao et al., (2010), as based on the Goddard Chemical Aerosol 

Radiation Transport (GOCART) dust emission scheme (Ginoux et al., 2001). Sea-salt emission 

calculation followed previous studies (Gong, 2003; C. Zhao et al., 2013). The wildfire emissions 

were calculated using the Brazilian Biomass Burning Emission Model (3BEM) (Longo et al., 

2010) with input from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire product 

(NASA, 2018). The plume rise of wildfire was calculated online following previous studies 

(Freitas et al., 2010, 2007).  

 

 

We compare the meteorological predictions with observational data obtained from the 

National Climatic Data Center (NCDC), where hourly or 3-hour observations of wind speed at 10 

m (WS10), temperature at 2 m (T2), and water vapor mixing ratio at 2 m (Q2) are available for 

416 sites distributed within the modeling domain. We apply a number of statistical indices to 

quantitatively evaluate the model performance, as summarized in Table S1. These indices include 

mean observation (Mean OBS), mean simulation (Mean SIM), mean bias (MB), gross error (GE), 

root mean square error (RMSE) and index of agreement (IOA), which are defined by Emery et al., 

(2001). In general, the model predictions agree fairly well with surface meteorological 

observations. The performance statistics for WS10, T2 and Q2 are within the benchmark ranges 

proposed by Emery et al., (2001), except that the MB for T2 in April and the GE for T2 slightly 

https://www2.acom.ucar.edu/wrf-chem


exceed the ranges. Note that these benchmark values are proposed based on the performance of a 

series of model simulations with four dimensional data assimilation (FDDA). Nevertheless, FDDA 

is not utilized here to allow full aerosol-radiation-cloud interactions, therefore slight exceedance 

in some cases is deemed reasonable. 

We compared the simulated and observed monthly average PM2.5 concentrations and 

monthly average of daily maximum 8-h O3 concentrations in each individual monitoring site 

(Figure S1). The model reproduces the magnitude and spatial distribution of PM2.5 concentrations 

fairly well, with an overall slight underestimation of 6%. A number of statistical indices were 

applied to quantitatively assess the model performance based on previous studies  (Boylan and 

Russell, 2006; Yu et al., 2006; B. Zhao et al., 2013; Zhao et al., 2017a, 2017b). Statistics of model 

performance for daily maximum 1-h, 8-h average, and PM2.5 concentrations, as well as PM 

chemical predictions are summarized in Table S2. The indices include Mean OBS, Mean SIM, 

normalized mean bias (NMB), normalized mean error (NME), mean fractional bias (MFB), and 

mean fractional error (MFE), as documented in previous studies (Boylan and Russell, 2006; Yu et 

al., 2006). For O3, the model is able to capture the spatial variability but slightly underestimates 

the daily maximum 1-h and 8-h average O3 concentrations by 15% and 12% on average, 

respectively. The underestimation occurs in nearly all months but the NMBs are all within ±20%. 

Regarding to predictions of PM2.5 and its chemical components, the statistics in Table S2 indicated 

reasonably good model-measurement agreement. The NMBs of PM2.5 concentration range from -

24% in July to +10% in April. The performance statistics for PM2.5 meet the model performance 

criteria (i.e MFB, within ±60% and MFE, ≤ 75%) proposed by Boylan and Russell (Boylan and 

Russell, 2006) in all months, and meet the model performance goal (MFB within ±30% and MFE 

≤ 50%) in all months except January, indicating an overall good model-measurement agreement. 

The BC concentrations are significantly overestimated by 105%, probably attributable to the 

absence of BC aging in the model, leading to a reduced fraction of hydrophilic BC and thus reduced 

wet deposition. The OC concentrations are underestimated by 29%, which is a common problem 

in most chemical transport models (Heald et al., 2005; Zhao et al., 2016). Although the inclusion 

of multi-generational aging of SOA based on the VBS scheme has significantly reduced the 

underestimation (Ahmadov et al., 2012), some important chemical processes, such as the photo-

oxidation of primary organic aerosols and intermediate volatility organic compounds  Zhao et al., 

(2016, 2015), are still missing in model, likely accounting for the underestimation that still exists. 

The concentrations of SO4
2- and NO3

- are either overestimated or underestimated, depending on 

the simulation period. The NMBs are all within ±35% except for the SO4
2- in January, which is 

overestimated by 62% possibly due to uncertainties in emission inventory or aerosol chemistry. A 

sensitivity run using the Regional Atmospheric Chemistry Mechanism (RACM) scheme shows 

improved O3 simulation results (mean NMBs are -8% and -5% for daily maximum 1-h and 8-h 

average O3 concentrations, respectively), although the model performance for particulate matter is 

not as good as the current simulation results. 

  



Table S1. Statistics of model performance for meteorological predictions. 

Variable Index Unit Jan Apr Jul Oct Benchmark 

Wind speed 

 (WS10) 

 

Mean OBS (m/s) 4.24 4.54 3.9 4.04  

Mean SIM (m/s) 4.13 4.06 3.41 3.73  

MB (m/s) -0.12 -0.49 -0.50 -0.30 ≤±0.5 

GE (m/s) 1.76 1.69 1.53 1.53 ≤2 

IOA       0.75 0.74 0.66 0.75 ≥0.6 

Temperature 

 (T2) 

 

Mean OBS (K) 276.6 285.65 296.34 285.94  

Mean SIM (K) 276.97 284.98 295.95 286.16  

MB (K) 0.37 -0.68 -0.39 0.22 ≤±0.5 

GE (K) 2.77 2.31 2.27 2.37 ≤2 

IOA     0.94 0.95 0.96 0.96 ≥0.8 

Water vapor 

mixing ratio 

(Q2) 

Mean OBS (g/kg) 3.21 4.83 8.83 5.27  

Mean SIM (g/kg) 3.28 4.88 8.89 5.21  

MB (g/kg) 0.07 0.05 0.06 -0.06 ≤±1 

GE (g/kg) 0.64 0.77 1.35 0.82 ≤2 

IOA        0.89 0.91 0.86 0.93 ≥0.6 

  



 
Figure S1. Observed (dots) and simulated (contours) monthly mean PM2.5 concentrations (upper 

row), monthly mean daily maximum 8-h O3 concentrations (middle row), and monthly mean daily 

maximum 1-h O3 concentrations (bottom row), in January , April, July , and October 2012. 

 

 

 

  



Table S2. Statistics of model performance for chemical predictions. 

 Month 
Site 

number 

Mean 

SIM 

Mean 

OBS 

NMB 

(%) 

NME 

(%) 

MFB 

(%) 

MFE 

(%) 

1-h O3 Jan 139 70.9 74.6 -5 18 -6 21 

 Apr 165 94.9 117.9 -20 21 -21 23 

 Jul 169 108.4 124.0 -13 18 -13 19 

 Oct 170 82.3 100.5 -18 22 -19 23 

 Average  89.1 104.2 -15 20 -15 22 

8-h O3 Jan 139 64.7 64.2 1 21 1 26 

 Apr 165 87.8 107.9 -19 21 -20 23 

 Jul 169 99.7 111.6 -11 18 -11 20 

 Oct 170 75.6 88.6 -15 22 -15 24 

 Average  81.9 93.1 -12 20 -11 23 

PM2.5 Jan 154 5.8 5.8 -1 57 37 65 

 Apr 157 5.7 5.2 10 49 27 51 

 Jul 154 5.1 6.7 -24 41 -19 43 

 Oct 155 5.3 5.5 -4 52 4 50 

 Average  5.5 5.8 -6 49 12 52 

BC Jan 118 0.3 0.2 74 118 59 81 

 Apr 119 0.3 0.1 177 190 70 78 

 Jul 121 0.3 0.2 76 115 29 57 

 Oct 116 0.3 0.1 125 147 52 70 

 Average  0.3 0.2 105 137 52 72 

OC Jan 117 0.4 0.6 -39 69 -48 74 

 Apr 119 0.4 0.5 -20 58 -30 60 

 Jul 121 0.7 1.2 -42 64 -52 77 

 Oct 116 0.8 0.8 -6 79 -31 73 

 Average  0.6 0.8 -29 68 -40 71 

NO3
- Jan 66 1.0 0.9 12 84 65 110 

 Apr 90 0.3 0.5 -32 75 -66 109 

 Jul 32 0.3 0.5 -34 73 -90 126 

 Oct 22 0.8 0.7 14 74 -24 100 

 Average  0.6 0.7 -5 77 -29 111 

SO4
2- Jan 125 0.5 0.3 62 97 68 78 

 Apr 125 0.9 0.7 23 64 35 59 

 Jul 122 0.9 0.9 -2 50 10 51 

 Oct 123 0.7 0.5 23 53 33 52 

 Average  0.7 0.6 18 60 37 60 

Note: Observations of O3 are obtained from the Air Quality System (AQS)(U.S. EPA, n.d.), the 

Interagency Monitoring of Protected Visual Environments (IMPROVE)(U.S. EPA, n.d.), and the 

Clean Air Status and Trends Network (CASTNET)(U.S. EPA, 2017), while those of PM2.5 and its 

chemical constituents are from AQS and IMPROVE. 

 

  



 

Population and baseline mortality rates 

In this study, we used the default demographic information in the BenMAP, which is from 

census block level ACS 5-year estimates from 2012 to 2016 (U.S. EPA, 2018). Custom 

demographic information was not used because the default database already has detailed 

population information in 2012 from ACS. To further process the population data, we used 

BenMAP to calculate a crosswalk, which converts the 2012 demographic data in the default grid 

(i.e., EPA 12 km CMAQ) to our self-designed 12 km grid covering western United State (U.S. 

EPA, 2018). The processed grids contain 2012 population information by 5-year age bins from 0-

99 years old.  

  

For baseline mortality rates, we used the default numbers in the BenMAP. The default 

BenMAP baseline mortality rates were based on 2012-2014 county-level mortality data from the 

Centers for Disease Control WONDER database (http://wonder.cdc.gov) and ACS population data 

described in the previous paragraph (U.S. EPA, 2018). Baseline age-, cause-, and county-specific 

mortality rates were generated using the following formula: 

𝑅𝑖,𝑗,𝑘 =  
𝐷𝑖,𝑗,𝑘 (2012)+𝐷𝑖,𝑗,𝑘 (2013)+𝐷𝑖,𝑗,𝑘 (2014)

𝑃𝑖,𝑗,𝑘 (2012)+𝑃𝑖,𝑗,𝑘 (2013)+𝑃𝑖,𝑗,𝑘 (2014)
 

where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death count from 

WONDER; and P is the population from ACS (U.S. EPA, 2018). This method calculates average 

mortality rates based on three consecutive years instead of any single year, and can provide more 

conservative and reliable mortality rate estimates. BenMAP provides seven mortality causes: all 

cause, non-accidental, respiratory, chronic lung, lung cancer, ischemic heart disease, and cardio-

pulmonary. Our study mainly used this data based to analyze all-cause and respiratory mortality 

in 2012 in California. 

 Raw data for baseline mortality rates in California for CVD, NCD, and LRI were 

downloaded from the GBD tool (Institute for Health Metrics and Evaluation, 2018). We calculated 

age-, and cause-specific mortality rates in 2012 in California using the following formula: 

𝑅𝑖,𝑗 =  
𝑅𝑖,𝑗 (2011)+𝑅𝑖,𝑗 (2012)+𝑅𝑖,𝑗 (2013)
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where Ri,j,is the mortality rate for age group i, and cause j.  

  

http://wonder.cdc.gov/


CRF information 

This study applied concentration response functions (CRFs) for PM2.5 and O3-associated 

mortality from several major epidemiological studies. Three studies (Jerrett et al., 2009; Krewski 

et al., 2009; Turner et al., 2016) were based on the American Cancer Society’s Cancer 

Prevention Study II (CPS-II) cohort. The Hoek et al., (2013) study is a meta-analysis of multiple 

PM2.5 studies. The IER developed by Burnett et al., (2014) is an integrated model incorporating 

cohort studies from multiple countries estimating mortality from specific causes, and be widely 

used for burden of disease studies. And the GEMM recently developed by Burnett et al., (2018) 

is an update to the IER, and also incorporates cohort studies from multiple countries. Information 

regarding to the CRFs used in this study were provided in Table S3.  

 

Table S3 sensitivity analysis for PM2.5 CRF 

 Study Air 

pollutant 

Cause of 

death 

HR (95% CI) per 

10µg/m3 

change in PM2.5 

Notes 

Krewski 

(2009) 

PM2.5 All-cause  1.06 (1.02–1.10) CPS-II study for 

U.S. population 

Hoek (2013) PM2.5 All-cause  1.06 (1.04–1.08) Meta-analysis 

Burnett 

(2018) 

PM2.5 NCD + LIR HR(z)=exp{θlog(z/

α+1)/(1+exp{-(z-

µ)/ν})} 

z=max(0, PM2.5-

2.4) 

Θ=0.1231 

α=1.5 

µ = 10.4 

ν = 25.9 

 

Burnett 

(2014) 

PM2.5 IHD, 

Cerebral, 

COPD and 

Lung cancer 

Multiple Used BenMAP 

default formula 

(U.S. EPA, 2018) 

Turner (2016) O3 All-cause  1.02 (1.01–1.04) CPS-II study for 

U.S. population 

Turner (2016) O3 CVD  1.03 (1.01–1.05)  

Turner (2016) O3 Respiratory 1.12 (1.08–1.16)  

Turner (2016) O3 All-cause  1.02 (1.02–1.03) Summer season 

only 

Jerrett (2009) O3 Respiratory 1.04 (1.01–1.07) CPS-II study, 

between mortality 

and 1-h max O3 

 

 

  



Table S4 Selected mortality estimates (95% CI) associated with ambient PM2.5 and O3 

contributed by different emission groups in 2012, based on CRFs from Burnett (2018) for PM2.5 

and Turner (2016) for O3. 

Emission Groups 

PM2.5 O3  

NCD+LRI, 

 year-round 

All-cause,  

year-round 

All-cause, 

summer 

CVD, year-

round 

Respiratory

, year-

round 

California in-State 

Anthropogenic 

14,000 

(9,900 – 18, 

400) 

-240 

(-60 - -400) 

771 

(389 - 1146) 

-140 

(-45 - -240) 

-100 

(-40 - -150) 

Anthropogenic 

Emissions from 

the Western U.S., 

except California 

1,000 

(700-1,200) 

380 

(100 - 670) 

136 

(68 - 204) 

180 

(60 - 300) 

200 

(80- 300) 

Natural Emissions 

from the Western 

U.S. 

3,500 

(2,500-4,500) 

930 

(240 – 1,650) 

560 

(281 - 835) 

430 

(150 - 710) 

500 

(200 - 750) 

All Emissions 

from Outside of 

the Western U.S. 

8,200 

(5,800 – 

11,000) 

12,600 

(5,800 – 

2,1800) 

3,843 

(1,960 – 

5,657) 

5,900 

(2,000 – 

9,500) 

6,700 

(2,800 – 

10,000) 

 

  



Table S5 Monetized health loss associated with PM2.5 and O3, disaggregated by emission groups 

 

Emission Group Monetized Health Loss (billions of 2012 USD) 

PM2.5 O3 Total 

California in-State 

Anthropogenic 
153.8 (113.8 - 194.9) -2.0 (-0.5 - -3.6) 151.8 (133.3 – 191.3) 

Anthropogenic 

Emissions from 

the Western U.S., 

except California 

4.0 (3.0 – 5.1) 3.2 (0.8 - 5.6) 7.2 (3.8 - 10.7) 

Natural Emissions 

from the Western 

U.S. 

17.1 (12.7 – 21.7) 8.0 (2 - 13.8) 25.1 (14.7 – 35.5) 

All Emissions 

from Outside of 

the Western U.S. 

55.6 (40.9 - 70.8) 106.0 (48.9 - 182.8) 161.6 (89.8 – 253.6) 

 

 

 

Table S6 Population-weighted excess ambient O3 (daily 8-hour maximum) due to in-state 

emissions at selected counties and California statewide.   

County Region 
ΔO3  (ppb) 

Adult population 
Annual Winter Summer 

Los Angeles Southern California - 5.4 - 15   2.1 5,732,579 

San Diego Southern California   0.6  - 5.5   5.4 1,821,172 

Orange Southern California - 0.8  - 9.4   6.5 1,788,568 

Riverside Southern California   2.0  - 5.8  11 1,247,742 

Santa Clara Bay Area - 2.5  - 8.3   1.2 1,039,730 

Alameda Bay Area - 4.3  - 9.5 - 1.5 967,497 

Contra Costa Bay Area - 2.7  - 7.1 - 1.0 721,668 

Sacramento Sacramento Valley   0.7  - 6.4    8.5 719,713 

Fresno San Joaquin Valley   4.4  - 7.5   18 449,856 

Statewide   - 0.8  - 8.1    5.8 21,372,052 

ΔO3 is the difference between baseline O3 concentrations and O3 concentrations without in-state 

anthropogenic emissions 

The selection is based on population and region. Adult population includes population aged 30-99 

in 2012, according to American Community Survey (ACS) 5-year estimates.  

 


