EPD in 2020: Enhanced data visualization and extension to ncRNA promoters. Supplementary material.

Patrick Meylan¹, René Dreos¹, Giovanna Ambrosini^{1,2}, Romain Groux^{1.2} and Philipp Bucher^{1,2,*}

¹ Swiss Institute of Bioinformatics (SIB), Lausanne, CH-1015, Switzerland
 ² School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, CH-1015, Switzerland

*To whom correspondence should be addressed. Tel: +41 21 693 0956; Fax: +41 21 693 1850; Email: <u>philipp.bucher@epfl.ch</u>.

Present Address: René Dreos, Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland

Supplementary Tables:

UCSC track name	Description	1 bp ^a	20 bp ^a	100 bp ^a	Format	Reference		
Selected histone marks	H3K4me1 and H3K4me3 ChIP- seq tags	-	2	-	wig	Barski 2007		
Pol2	RNA polymerase II ChIP-seq tags	-	1		wig	Barski 2007		
Roadmap histones	Roadmap histone marks, 116 tissues	-	434	347	wig	Romanoski 2015		
All CAGE (+)	5' end of ENCODE CAGE reads, cell lines merged	1	-	-	wig	Djebali 2012		
ENCODE CAGE	5' end of ENCODE CAGE reads, 35 cell lines	70 ^b	-	-	wig	Djebali 2012		
All CAGE (-)	5' end of ENCODE CAGE reads, all cell lines merged	1	-	-	wig	Djebali 2012		
All RAMPAGE (+)	5' end of RAMPAGE reads, all tissues merged	1	-	-	wig	Batut 2016		
All RAMPAGE (-)	5' end of RAMPAGE reads, all tissues merged	1	-	-	wig	Batut 2016		
All Fantom5 (+)	5' end of FANTOM5 CAGE reads, all tissues merged	1	-	-	wig	Forrest 2014		
Fantom5 CAGE	5' end of FANTOM5 CAGE reads, 555 tissues	1110 ^b	-	-	wig	Forrest 2014		
All Fantom5 (-)	5' end of FANTOM5 CAGE reads, all tissues merged	1	-	-	wig	Forrest 2014		
EPDnew promoters	EPDnew promoters version 006	1	-	-	bed	Dreos 2017		
EPDnewNC promoters	EPDnew non-coding promoters version 001	1	-	-	bed	Meylan 2020		
^a wig file resolution, ^b plus and minus strands are on separate tracks								

Table S1. Content of the generic EPD viewer for human genome assembly hg38

References:

Barski et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.

Romanoski et al. 2015. Epigenomics: Roadmap for regulation. Nature 518, 314-316.

Djebali et al. 2012. Landscape of transcription in human cells. Nature 489, 101-108.

Batut et al. 2016. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res. 23, 169-180.

Forrest et al. 2014. A promoter-level mammalian expression atlas. Nature 507, 462-470 Dreos et al. 2017. The eukaryotic promoter database in its 30th year: focus on non-

vertebrate organisms. Nucleic Acids Res. 45, D51-D55.

Meylan et al. 2020. (This paper).

Organism	Assembly	Number of tracks (resolution in bp)					
Organisin		TSS	ChIP-seq	Nucleosomes	Total		
H. sapiens	hg38	1318 (1)	3 (20/100 ^a)		1321		
H. sapiens	hg19	1176 (1)	3 (20/100)		1179		
M. musculus	<i>mm</i> 10	1018 (1)	3 (10)	4 (20)	1025		
M. mulatta	rheMac8	32 (1)			32		
D. rerio	danRer7	26 (1)	2 (10)	2 (25)	30		
P. falciparum	pfa2	14 (1)		8 (10)	22		
D. melanogaster	dm6	16 (1)	2 (10)		18		
R. norvegicus	rn6	12 (1)			12		
C. familiaris	canFam3	10 (1)			10		
C. elegans	ce6	2 (1)	1 (10)	5 (10)	8		
S. cerevisiae	sacCer3	2 (1)	2 (10)	1 (10)	5		
A. thaliana	araTha1	2 (1)	1 (20)	1 (20)	4		
S. pombe	spo2	2 (1)	1 (10)	1 (20)	4		
G. gallus	galGal5	2 (1)	1 (25)		3		
Z. mays	zm3	2 (1)	1 (25)		3		
A. mellifera	amel5	2 (1)			2		

 Table S2. Contents overview of EPD track hubs

^a20 bp for histone acetylations and H3K4 methylations, 100 bp for the other marks

Supplementary Figures:

Figure S1. Genome browser screenshot of a promoter region visualized with the cell typespecific viewer for lymphoblastoid cell line GM12878. From top two bottom (track source in parentheses): ChIP-seq tracks for histone H3K4me1, H3K4me3 and RNA polymerase 2 (ENCODE-UCSC); single base resolution CAGE tracks for ENCODE and FANTOM5, all libraries combined (EPD); EPD promoter annotation track, thin and thick lines mark 50 bp upstream and10 bp downstream regions relative to the dominant TSS (EPD); GENCODE genes (UCSC); CpG islands (UCSC); Caltech RNA-seq (ENCODE-UCSC); Nucleosomes (ENCODE-UCSC); Single-base resolution digital genomic footprints (ENCODE-UCSC); Low resolution DNase-seq track (ENCODE-UCSC); ChIP-seq peaks for selected transcription factors and RNA polymerase 2 subunits (ENCODE-UCSC); sequence conservation tracks, common SNPs from dbSNP and repetitive elements from RepeatMasker (UCSC). All experimental data tracks relate specifically to cell line GM12878.

Figure S2. Genome browser screenshot of a human promoter of a non-coding RNA (gene HIF1A-AS2).

Figure S3. Screen shot of the *Plasmodium falciparum* viewer showing a promoter on the minus strand, with MNase tracks showing nucleosome phasing downstream of the TSS. The time points correspond to various stages of the intra-erythrocytic development cycle (IDC). Original data from Kensche et al. 2016, Nucleic Acids Res. 44, 2110–2124.