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Sample preparation 
PBMCs were purified using BD Vacutainer® CPTTM Cell Preparation Tube with sodium citrate (Becton, Dickinson and 
Company, Franklin Lakes, NJ) according to manufacturer’s instructions. Collected whole blood was let to cool down for 15-20 
minutes in the blood collection tube at room temperature. The blood samples were centrifuged at 3000 g for 20 minutes, after 
which the layer of mononuclear cells was suspended into the plasma and the suspension was transferred to a new tube. The 
sample was centrifuged again at 1500 g for 15 minutes. The samples were then divided into cryotubes and snap frozen in liquid 
nitrogen. The tubes were kept in liquid nitrogen overnight and then stored at -80 °C. For the metabolomic analysis, the 
samples were thawed on ice and the initial lysing procedures performed in a cold room to prevent changes to the metabolites 
from the cells or proteins. The cell pellets were resuspended in ice cold saline (0.9% NaCl) by gently pipetting up and down. 
25 µL of cells were then aliquoted for metabolomic analysis and stored at -80°C. The total protein content in cells was measured 
by the Bradford method [1]. 
 
Analysis of molecular lipids 
The samples were randomized and extracted using a modified version of the previously-published Folch procedure [2].  
Shortly, 150 µL of 0.9% NaCl was added to the cell pellets, and samples were then vortex mixed and ultrasonicated for 3 
minutes. Next, 20 µL of the cell suspension was mixed with 150 µL of the 2.5 µg mL-1 internal standards solution in ice-cold 
CHCl3:MeOH (2:1, v/v). The internal standard solution contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-
3-phosphoethanolamine (PE (17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine (SM(d18:1/17:0)), N-
heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadeca-noyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-
heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-
phosphocholine (PC(16:0/d31/18:1)). These were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). In addition, 
triheptadecanoin (TG(17:0/17:0/17:0)) was purchased from (Larodan AB, (Solna, Sweden). The samples were vortex mixed and 
incubated on ice for 30 min after which they were centrifuged at 7800 g for 5 min. Finally, 60 µL from the lower layer of each 
sample was collected and mixed with 60 µL of ice-cold CHCl3:MeOH (2:1, v/v) in an LC vial. An aliquot of each sample was 
collected and pooled and used as quality control samples, together with NIST CRM1950 serum sample, an in-house pooled 
serum sample, pure standard samples and extracted standard samples. In addition, blank samples were analyzed after every 
8 samples. 
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The ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) 
analyses were done in a similar manner to that described earlier, with some modifications [3, 4]. The UHPLC-Q-TOF-MS 
system was from Agilent Technologies (Santa Clara, CA, USA) combining a 1290 Infinity LC system and 6545 quadrupole time-
of-flight mass spectrometer (Q-TOF-MS), interfaced with a dual jet stream electrospray (dual ESI) ion source. MassHunter 
B.06.01 software (Agilent Technologies, Santa Clara, CA, USA) was used for all data acquisition and MZmine 2 was used for 
data processing [5]. 
 
Chromatographic separation was performed using an Acquity UPLC® BEH C18 column (100 mm × 2.1 mm i.e., 1.7 µm particle 
size) and protected using a C18 precolumn, both from Waters Corporation (Wexford, Ireland). The injection volume was 1 µL. 
The mobile phases were water and acetonitrile:2-propanol (1:1, v/v), both containing 1% 1M ammonium acetate and 0.1% (v/v) 
formic acid as ionization agents. The LC pump was programmed at a flow rate of 0.4 mL min–1 and the elution gradient was 
as follows: from min 0–2, the percentage of phase organic phase was modified from 35% to 80%, from min 2-7, the percentage 
of organic phase was modified from 80–100% and then, the final percentage was held for 7 min. A post-time of 7 min was used 
to regain the initial conditions for the next analysis. Thus, the total analysis time per sample was 21 min. The column and the 
eluents were kept at 50 °C and the multisampler was kept at 10°C. The settings of the dual ESI ion source were as follows: 
capillary voltage 4.5 kV, nozzle voltage 1500 V, N2 pressure in the nebulizer 21 psi, N2 flow rate and temperature as sheath gas 
11 L min–1 and 379 °C, respectively. Accurate mass spectra in the MS scan were acquired in the m/z range 100–1700 in positive 
ion mode, and in range 100-1700 in the negative mode for the MS/MS runs. In the ESI-mode, capillary voltage 3.6 kV, nozzle 
voltage 1500 V, N2 pressure in the nebulizer 21 psi, N2 flow rate and temperature as sheath gas 11 L min–1 and 379 °C, respectively. 
The injector system was washed with 10% DCM in MeOH and ACN:MeOH:IPA:H2O (1:1:1:1, v/v/v/v) + 0.1% HCOOH as needle 
wash solutions after each injection for 7.5s each.  
 
Identification of lipids was carried out by combining MS (and retention time), MS/MS information, and a search of the LIPID 
MAPS spectral database (http://www.lipidmaps.org). MS/MS data were acquired in both negative and positive ion modes in 
order to maximize identification coverage. The confirmation of a lipid’s structure requires the identification of hydrocarbon 
chains bound to its polar moieties, and this was possible in some cases. This identification was carried out in pooled cell 
extracts, and with this information, an in-house database was created with m/z and retention time for each lipid. This in-
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house database was used for processing data by MZmine 2 [5]. Glycoceramides were identified based on their accurate mass, 
MS/MS analysis and retention times. Further verification of majority of the ceramides was possible with authentic standards.  

A (semi) quantitation was performed using lipid-class-specific calibration curves (c= 100-5000 ng/mL, with ISTD mixture at 
c=1250 ng/mL). The calibration standards were as follows:   N-oleoyl-D-erythro-sphingosine (Cer d18:1/18:1(9Z))), 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (PC(16:0/16:0)), 1,2-distearoyl-sn-glycero-3-phosphocholine (PC(18:0/18:0)), 1-
palmitoyl-2-oleoyl-glycero-3-phosphocholine (PC(16:0/18:1)), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:0)), 1-
oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:1)), cholest-5-en-3b-yl (9Z-octadecenoate) (CE(18:1)), cholest-5-en-3β-
yl (9Z,12Z-octadecadienoate) (CE(18:2)), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE(16:0/18:1)), 1,2,3-
trihexadecanoyl-sn-glycerol TG(16:0/16:0/16:0), 1,2,3-trioctadecanoyl-sn-glycerol TG(18:0/18:0/18:0) and N-(9Z-octadecenoyl)-
sphing-4-enine-1-phosphocholine  (SM(d18:1/18:1(9Z))). The raw variation of the peak areas of internal standards in the 
samples was, on average, 12.0%, and the RSD of retention times of identified lipids across all samples was on average 0.47%. 
The RSD of the concentrations of the identified lipids in QC samples and pooled extracts was on average 23%. 

Analysis of polar metabolites 
To the remaining 75 µL aliquot, 225 µL of ice-cold MeOH (LC-grade, Honeywell) containing the following internal standards 
(all from Sigma Aldrich): Heptadecanoic acid (5 ppm), DL-valine-d8 (1 ppm), and succinic acid-d4 (1 ppm) was added. The 
samples were then sonicated in an ice bath for 30 s prior to centrifugation (5500 g, 5 min). 250 µL of the supernatant was 
transferred to a 2 mL glass autosampler vial. The pellet was stored at –20 °C for protein analysis. The protein content was 
measured by the Bradford method. The supernatant was dried under a stream of nitrogen at 45 °C. Prior to the mass 
spectrometry measurements, the samples were derivatized using a two-step procedure. Initially the samples were 
methoximated by incubating the samples with methoxyamine hydrochloride (25 µL, 20mg/mL in pyridine, Sigma Aldrich) at 
45 °C for 1 h. MSTFA (25 µL, Sigma Aldrich) was then added and the samples were incubated for a further 1 h. A retention 
index standard containing straight chain, even alkanes (n 10-40, 10 µL, Sigma Aldrich) was added. The derivatized samples 
were analyzed using gas chromatography (Agilent 7890B) coupled to a single quad mass spectrometer (5977B). The 
metabolites were separated using a 30 m × 0.25 mm (ID) with a film thickness of 0.25 µm HP-5 (Agilent). A guard column (10 
m) with an ID of 0.25 mm was used. 1 µL of the sample was injected in splitless mode with an inert glass liner (Agilent) held 
at a temperature of 240 °C. The GC was set to constant flow mode (1.2 mL/min) using helium (Aga) as the carrier gas. The GC 



5  

oven was programed as follows: 50 °C (isothermal for 0.2 min), then 7 °C/min until 240 °C, then 20 °C/min until 300 °C 
(isothermal for 5 min). The transfer line was held at 260 °C for the whole run. The ion source was set to electron ionization 
mode and held at 230 °C and the quadrupole at 150 °C. Due to the large number of analytes quantified, the samples were 
injected twice. The first run quantified the amino acids and the second run quantified all other components. The MSD was 
set up in select ion monitoring mode to maximize sensitivity. The ions monitored can be found in (ESM Table 2). 

Data preprocessing   
Lipidomics data processing was performed using open source software MZmine 2.33 [5]. The following steps were applied in 
the processing: 1) Crop filtering with a m/z range of 350 – 1700 m/z and a RT range of 2.0 to 12 min, 2) Mass detection with a 
noise level of 1200, 3) Chromatogram builder with a min time span of 0.08 min, min height of 1000 and a m/z tolerance of 
0.006 m/z or 10.0 ppm, 4) Chromatogram deconvolution using the local minimum search algorithm with a 70% 
chromatographic threshold, 0.05 min minimum RT range, 5% minimum relative height, 1200 minimum absolute height, a 
minimum ratio of peak top/edge of 1 and a peak duration range of 0.08 - 5.0, 5) Isotopic peak grouper with a m/z tolerance of 
5.0 ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the most intense isotope set as the representative isotope, 
6) Join aligner with a m/z tolerance of 0.008 or 10.0 ppm and a weight for of 2, a RT tolerance of 0.1 min and a weight of 1 and 
with no requirement of charge state or ID and no comparison of isotope pattern, 7) Peak list row filter with a minimum of 12 
peaks in a row (= 10% of the samples), 8) Gap filling using the same RT and m/z range gap filler algorithm with an m/z 
tolerance of 0.006 m/z or 10.0 ppm, 9) Identification of lipids using a custom database search with an m/z tolerance of 0.006 
m/z or 10.0 ppm and a RT tolerance of 0.1 min, 10) Normalization using lipid-class-specific internal standards and (semi) 
quantitation with lipid-class-specific calibration curves, 11) Normalization with total protein amount 12) Data imputation of 
missing values were done with half of the row’s minimum. 
 
The GC-QMS data was processed in MassHunter Quant (v8, Agilent technologies) The peaks were manually checked and 
corrected if needed for correct integration. Quantification was performed using the ion listed (ESM Table 2). Standard curves 
were used to quantify each metabolite using the assigned internal standards. Metabolites which had a CV greater than 30% in 
the pooled QC sample or fell below the limit of quantification were excluded from subsequent analysis. 
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Statistical methods  
Homogeneity of the samples were assessed by principal component analysis (PCA) which was performed using ‘prcomp’ 
function included in the ‘stats’ package of R. The scores of the observation falling outside the 95% confidence interval were 
considered as outlier.   
 
The effect of different factors such as age, gender, conditions and their interactions on the lipidomics dataset was evaluated. 
The data was centered to zero mean and unit variance. The relative contribution of each factor to the total variance in the 
dataset was estimated by fitting a linear regression model, where the normalized intensities of metabolites were regressed to 
the factor of interest, and thereby median marginal coefficients (R2) were estimated (ESM Fig. 4). This analysis was performed 
using ‘scater’ package.  
 
Sparse Partial least squares Discriminant Analysis (sPLS-DA) [6] models comparing P1Ab vs. CTRL, PT1D vs. CTRL, and PT1D 
vs. P1Ab groups, paired at 12, 24 and 36 months were developed and Variable Importance in Projection (VIP) scores [7] of the 
features/metabolites were estimated. sPLS-DA modeling was performed using the 'splsda' function coded in the 'mixOmics 
v6.3.2' package. sPLS-DA models were cross-validated [8] by 7-fold cross-validation and models diagnostics were generated 
using 'perf' function. The multivariate analysis was followed by univariate; Two-Sample t-testing using the 't.test' function was 
applied to compare the mean differences in the metabolite intensities between P1Ab vs. CTRL, PT1D vs. CTRL, and PT1D vs. 
P1Ab groups. Together, multi- and univariate analysis was used for selection of metabolites altered between these subgroups 
at a particular age. All metabolites that passed one or more criteria for variable selection, i.e., with sPLS-DA model area under 
the ROC curve (AUC) >= 0.65; RC (>± 0.05), VIP scores > 1 and/or (T-test; p-value < 0.05) were listed as altered. Multiple 
testing was performed and the nominal p-values (T-test) were subjected to FDR correction. The features/metabolites did not 
pass the threshold (FDR corrected p-values < 0.05) which might be due to small sample size of these subgroups, analyzed at 
a particular time-point. 
 
Spearman correlation was applied to identify association between plasma and cellular metabolite levels in CTRL, P1Ab and 
PT1D groups. Spearman’s correlation coefficient (r) was calculated using the ‘rcorr’ function implemented in the ‘Hmisc’ 
package. P-values were subjected to False Discovery Rates (FDR) adjustment using 'p-adjust'. Loess regression was used for 
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the interpolation of the metabolite intensities along 12, 24 and 36 months of age. It was performed using ‘loess’ function 
deployed in the ‘stats’ package. 
 
 ‘Heatmap.2’, ‘boxplot’, 'beanplot', ‘gplot’, and ‘ggplot2’ libraries/packages were used for data visualization.  
 
Pathway overrepresentation analysis (POA) was performed using the MetaboAnalyst 4.0 web platform [9] using the 'Pathway 
Analysis' module. Those metabolites altered between different subgroups were listed and mapped to the human metabolic 
network as a background; 'relative-betweenness Centrality' was selected for 'pathway topology analysis', and global 
hypergeometric test (GHT) was performed. GHT estimated the relative significance of the overrepresented pathways against 
the background KEGG pathways [10] for Homo sapiens. The metabolic subsystems/pathways with (FDR < 0.05) is reported in 
(Fig. 4). The Pathway Impact Scores (PIS) were estimated by the metabolomics pathway analysis (MetPA) tool [11] encoded 
in MetaboAnalyst 4.0 [9]. 

Meta-analysis of transcriptomics datasets and genome-scale metabolic modeling 
Genome-scale metabolic modelling (GSMM) is a constraint-based mathematical modelling approach that integrates 
biochemical, genetic and genomic informations within a computational framework [12-15]. It is used to study metabolic 
genotype-phenotype relationship of an organism. They are efficient tools for prediction of growth in living cells/tissues 
exposed to different nutrients [16, 17]. The structure of genome-scale model (GEM) provides scaffolds for integration of 
different types of omics data such as transcriptome, proteome and metabolome/fluxome [18]. Several algorithms were 
designed that allow integration and contextualization of GEMs (i.e. to constrained the metabolic reaction bounds with the 
experimental data or conditions), based on expression datasets [19]. 
 
The feasibility of a particular metabolic reaction(s) to be included or discarded in the draft GEM model was evaluated. The 
polar metabolites and the lipid intensities from this study were used to estimate the confidence score of a metabolite in a 
reaction [20], that is either included or discarded in the draft model. By applying this strategy, condition-specific PBMC models 
for PT1D, P1Ab and CTRL were developed. Quality control (QC) or sanity checks were performed on the draft models [21-23]. 
In addition, the models were tested for their ability to carry out basic metabolic tasks [24, 25]. The blocked reactions were 
removed before simulations. 
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Reporter metabolites [26, 27] were predicted by using 'reporterMetabolites' algorithm/function coded in the RAVEN 2.0 suite 
[23]. Mixed integer linear programming (MILP) and linear programming (LP) was performed using 'MOSEK 8' solver (licensed 
for the academic user) integrated in the RAVEN 2.0 toolbox [23]. The lower and/or upper bound of an exchange reaction or 
the uptake rates of a PBMC model were derived from the metabolite concentrations using 'conc2Rate' function from 
COnstraint-Based Reconstruction and Analysis Toolbox (Cobra toolbox v3.0) [22]. Flux Enrichment Analysis (FEA) was 
performed using 'FEA' of Cobra toolbox v3.0. All the simulations were performed in MATLAB 2017b (Mathworks, Inc., Natick, 
MA, USA). 
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Lipids P1Ab 

(p-values) 
PT1D 

(p-values) 
Cer(d18:1/24:0) 0.286 0.03 

PC(36:3) 0.036 0.309 
TG(45:0) 0.025 0.135 
TG(47:0) 0.017 0.379 
TG(48:0) 0.041 0.013 
TG(49:1) 0.029 0.614 
TG(50:0) 0.032 0.053 
TG(50:1) 0.016 0.007 

TG(16:0/16:0/16:0) 0.302 0.011 
TG(18:0/18:1/20:4) 0.7 0.03 

TG(18:1/12:0/18:1) or 
TG(18:2/16:0/14:0) 

0.119 0.022 

TG(18:1/18:1/16:0) 0.791 0.02 
TG(18:2/18:1/18:1) 0.882 0.02 

TG(48:1) 0.194 0.033 
TG(48:3) 0.9 0.042 
TG(49:2) 0.209 0.045 
TG(50:2) 0.066 0.012 
TG(52:2) 0.305 0.018 
TG(52:3) 0.414 0.005 
TG(53:2) 0.226 0.016 
TG(54:6) 0.932 0.007 

 
ESM Table 1. Lipids altered before and after seroconversion (pre- vs. post-seroconversion analysis). 
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Metabolite name Derivitzed metabolite 
Retention 

time 
Retention 

index 
Quantification 

Ion 
Qualifier 

Ion 1 
Qualifier 

Ion 2 
Alanine Alanine 3TMS 17.116 1431 174.1 248.1 304.1 

Aspartic acid Aspartic 3TMS 18.758 1517 232.1 176.1 293.1 
Citric acid Citric acid 4TMS 23.649 1825 273.1 363.1 465.1 

Cystine Cystine 4TMS 30.075 2103 218.1 146.0 411.1 
Dihydroxyacetoncephosphate Dihydroxyacetoncephosphate 20.441 1604 315.1 299.1 400.1 

Fructose-6-phosphate Fructose-6-phosphate 30.075 2294 315.1 217.1 459.2 
Gluctose-6-phosphate Gluctose-6-phosphate 30.189 2302 387.2 357.1 471.2 

Glutamic acid Glutamic acid 3TMS 20.469 1605 246.1 230.1 348.1 
Lysine Lysine 4TMS 25.107 1931 174.1 317.2 434.2 

Myristic acid Myristic acid TMS 24.064 1855 285.3 129.1 300.2 
Ornithine Ornithine 3TMS 22.576 1746 174.1 348.2 186.1 

Oxoproline Oxoproline 2TMS 18.747 1516 156.1 230.1 258.1 
Palmitic acid Palmitic acid TMS 26.859 2059 313.2 132.0 328.3 

Pentanedioic acid Pentanedioic acid(imino) 2TMS 19.724 1567 147.1 198.0 304.1 
Phenylalanine Phenylalanine 3TMS 20.53 1608 218.1 192.1 266.1 

Phosphoenolpyruvate Phosphoenolpyruvate 20.121 1587 369.1 299.1 384.0 
Proline Proline 2TMS 14.637 1303 142.1 216.1 244.1 
Serine Serine 3TMS 15.845 1366 204.1 218.1 278.1 

Stearic acid Stearic acid TMS 30.189 2302 341.3 117.0 356.3 
Threonine Threonine 3TMS 16.339 1391 218.1 117.1 291.1 
Tyrosine Tyrosine 3TMS 25.331 1947 218.1 280.1 382.2 

Unknown BCAA 1 BCAA 1 11.897 1161 86.1 75.0 188.0 
Unknown BCAA 2 BCAA 2 12.314 1183 86.1 75.0 188.0 
Unknown BCAA 3 BCAA 3 12.734 1204 86.1 75.0 188.0 

Valine Valine 2TMS 10.651 1096 144.1 100.1 218.1 

 
ESM Table 2. List of polar metabolites analyzed. 
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ESM Fig.1 Bar plot showing the number of subjects included in the, (i) Ctrl (CTRL) group: children who remained autoantibody negative 
(Ab–) during the follow-up. (ii) P1Ab group: children who developed at least one islet autoantibody (Ab+) but were not diagnosed with 
type 1 diabetes (T1D), during the follow-up. (iii) PT1D group: comprises of children seroconverted to multiple islet autoantibodies (Ab++) 
and later developed T1D. The subjects are ordered by their age groups. 
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ESM Fig.2 (A-C) Log normalized intensities of the lipids measured in Ctrl, P1Ab and PT1D groups. The subjects are colored and ordered 
by their age groups. The outliers are marked by grey dots. 
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ESM Fig.3 (A-C) Log normalized intensities of the polar metabolites measured in Ctrl, P1Ab and PT1D groups. The subjects are colored 
and ordered by their age groups. The outliers are marked by grey dots. 
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ESM Fig.4 Factors and sources of variation in the metabolomics datasets, displaying a density plot of the metabolite-wise marginal R2 
values for the factors. Effects of different factors such as age, gender and study group status on lipidomics data were evaluated. The data 
were centered to zero mean and unit variance. The relative contribution of each factor (experimental variable) to the total variance in the 
dataset was estimated by fitting the linear model regression model, where the normalized intensities of metabolites regressed to the 
factor of interest, and thereby estimating the median marginal coefficients (R2). This analysis was performed using package ‘scater’. 
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ESM Fig.5 Selected lipid profiles that were altered in Ctrl, P1Ab and PT1D groups, during the 36-months follow-up. (A-F) The log mean 
intensities of sphingomyelin (SMs), cholesterol esters (CEs), ceramides (Cer), lysophosphatidylcholine (LPCs), phosphatidylcholine 
(PCs), and triacylglycerides (TGs) are shown along the age (months). Loess regression was used for the interpolation of the data points. 
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ESM Fig.6 Log intensities of the total lipids before (light blue) and after (light gray) the seroconversion (SC), in P1Ab and PT1D groups. 
Down-regulation in the intensities of the total lipids in the PBMCs were observed after seroconversion (SC), in P1Ab (median age of SC, 
24 months) (p=5.581e-05) and PT1D (median age of SC, 14 months) (p=9.803-06). 
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ESM Fig.7 Selected profiles of polar metabolites that were altered in Ctrl, P1Ab, and PT1D groups, during the 36-months follow-up. (A-F) 
The log mean intensities of palmitic acid, aspartic acid, citric acid, myristic acid, phenylalanine, and serine are shown along the age 
(months). Loess regression was used for the interpolation of the data points. 
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ESM Fig.8 Heatmap showing Spearman's correlation between plasma and cellular (PBMCs) metabolite intensities in P1Ab at 12 and 36-
months of follow-up. Red, blue and white color suggests positive, inverse and no correlation respectively. 
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ESM Fig.9 Heatmap showing Spearman's correlation between plasma and cellular (PBMCs) metabolite intensities in Ctrl and PT1D at 
36-months of follow-up. Red, blue and white color suggests positive, inverse and no correlation respectively. 
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Figure.S10 
 
ESM Fig.10 Genome-scale metabolic models for PBMCs. The total numbers of genes, metabolites and reactions included in the PBMC 
models for Ctrl, P1Ab and PT1D, developed in the study is shown. 
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ESM Fig.11 Reporter metabolites of PBMCs, based on genome-scale metabolic modeling, that were significantly changed (FDR < 0.05) in 
PT1D vs. Ctrl. 
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ESM Fig.12 The plot shows reporter metabolites of PBMCs that were significantly changed (FDR < 0.05) in P1Ab vs. Ctrl. 
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ESM Fig.13 Flux enrichments in the metabolic subsystems. Stacked bar plots showing cumulative (-log10) q-values of the enriched 
subsystems. Enrichments of metabolic subsystems in PBMCs models for T1D progressors and nonprogressors when, (A) production of 
glucosylceramide is maximized, (B) production of digalactosylceramide from D-galactosyl-N-acylsphingosine is maximized. 
 
 



24  

References 
 
[1] Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle 
of protein-dye binding. Anal Biochem 72: 248-254 
[2] Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J 
biol Chem 226(1): 497-509 
[3] Nygren H, Seppanen-Laakso T, Castillo S, Hyotylainen T, Oresic M (2011) Liquid chromatography-mass spectrometry (LC-MS)-
based lipidomics for studies of body fluids and tissues. Methods Mol Biol 708: 247-257. 10.1007/978-1-61737-985-7_15 
[4] Pedersen HK, Forslund SK, Gudmundsdottir V, et al. (2018) A computational framework to integrate high-throughput '-omics' 
datasets for the identification of potential mechanistic links. Nat Protoc 13(12): 2781-2800. 10.1038/s41596-018-0064-z 
[5] Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing 
mass spectrometry-based molecular profile data. BMC Bioinform 11: 395. 10.1186/1471-2105-11-395 
[6] Le Cao KA, Boitard S, Besse P (2011) Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays 
for multiclass problems. BMC Bioinformatics 12: 253. 10.1186/1471-2105-12-253 
[7] Farrés M, Platikanov S, Tsakovski S, Tauler R (2015) Comparison of the variable importance in projection (VIP) and of the 
selectivity ratio (SR) methods for variable selection and interpretation. J Chemom 29(10): 528-536 
[8] Westerhuis JA, Hoefsloot HC, Smit S, et al. (2008) Assessment of PLSDA cross validation. Metabolomics 4(1): 81-89 
[9] Chong J, Soufan O, Li C, et al. (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic 
Acids Res 46(W1): W486-W494. 10.1093/nar/gky310 
[10] Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2013) Data, information, knowledge and principle: back to 
metabolism in KEGG. Nucleic acids research 42(D1): D199-D205 
[11] Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26(18): 
2342-2344. 10.1093/bioinformatics/btq418 
[12] Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nature biotechnology 28(3): 245-248 
[13] Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature 
Reviews Microbiology 2(11): 886-897 
[14] O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5): 971-987 
[15] Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. 
Nature Reviews Genetics 15(2): 107-120 
[16] O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO (2013) Genome-scale models of metabolism and gene expression extend 
and refine growth phenotype prediction. Mol Syst Biol 9: 693. 10.1038/msb.2013.52 
[17] Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic 
network. Genome research 13(2): 244-253 



25  

[18] Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Frontiers in 
physiology 3: 299 
[19] Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5): 
e1000082 
[20] Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic 
networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8(5): e1002518 
[21] Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1): 93-
121. 10.1038/nprot.2009.203 
[22] Heirendt L, Arreckx S, Pfau T, et al. (2017) Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3. 
0. arXiv preprint arXiv:171004038 
[23] Wang H, Marcisauskas S, Sanchez BJ, et al. (2018) RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case 
study on Streptomyces coelicolor. PLoS Comput Biol 14(10): e1006541. 10.1371/journal.pcbi.1006541 
[24] Mardinoglu A, Agren R, Kampf C, et al. (2013) Integration of clinical data with a genome-scale metabolic model of the human 
adipocyte. Mol Syst Biol 9: 649. 10.1038/msb.2013.5 
[25] Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J (2014) Genome-scale metabolic modelling of hepatocytes reveals 
serine deficiency in patients with non-alcoholic fatty liver disease. Nature communications 5 
[26] Cakir T, Patil KR, Onsan Z, Ulgen KO, Kirdar B, Nielsen J (2006) Integration of metabolome data with metabolic networks reveals 
reporter reactions. Mol Syst Biol 2: 50. 10.1038/msb4100085 
[27] Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proceedings 
of the National Academy of Sciences of the United States of America 102(8): 2685-2689. 10.1073/pnas.0406811102 
 


