A radiomics-based comparative study on arterial spin labeling and dynamic susceptibility contrast perfusion-weighted imaging in gliomas

Authors and affiliations

Takashi Hashido^{1,2}, Shigeyoshi Saito², Takayuki Ishida^{2,*}

¹ Department of Medical Technology, Osaka University Hospital, Suita, Osaka, Japan

² Department of Medical Physics and Engineering, Division of Health Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

*Corresponding author information

Takayuki Ishida, PhD

Department of Medical Physics and Engineering, Division of Health Science, Osaka University Graduate School of Medicine

1-7 Yamadaoka, Suita, Osaka 565-0871, Japan

E-mail address: tishida@sahs.med.osaka-u.ac.jp

Supplementary file contents:

Supplementary Table S1

Radiomic features included in this study. All radiomic features extracted by using PyRadiomics (http://www.radiomics.io/pyradiomics.html).

Supplementary Table S2

Comparisons of all radiomic features between ASL-nCBF and DSC-nrCBF in gliomas.

Supplementary Table S3

Correlation coefficients of all radiomic features between ASL-nCBF and DSC-nrCBF in gliomas.

Supplementary Text S1

The scan parameters of the anatomical MR imaging (T_1 FLAIR, T_2 FLAIR, T_2 WI, T_2^* WI, and CE- T_1 WI) and MR perfusion-weighted imaging (ASL and DSC imaging).

Feature	Radiomic feature	Feature	Radiomic feature	Feature	Radiomic feature
#		#		#	
	First-order statistics	32	Autocorrelation	63	Run-length non-uniformity
1	Interquartile range	33	Sum entropy	64	Short run emphasis
2	Skewness	34	Sum squares	65	Long run high gray-level
					emphasis
3	Uniformity	35	Cluster prominence	66	Run percentage
4	Median	36	Imc2	67	Long run low gray-level
					emphasis
5	Energy	37	Imc1	68	Run entropy
6	Robust mean absolute	38	Difference average	69	High gray-level run
	deviation				emphasis
7	Mean absolute	39	Id	70	Run-length non-uniformity
	deviation				normalized
8	Total energy	40	Cluster tendency		GLSZM
9	Maximum		GLDM	71	Gray-level variance
10	Root mean squared	41	Gray-level variance	72	Zone variance

Supplementary Table S1. Radiomic features included in this study.

11	90 th percentile	42	High gray-level emphasis	73	Gray-level non-uniformity
					normalized
12	Minimum	43	Dependence entropy	74	Size-zone non-uniformity
					normalized
13	Entropy	44	Dependence non-uniformity	75	Size-zone non-uniformity
14	Range	45	Gray-level non-uniformity	76	Gray-level non-uniformity
15	Variance	46	Small dependence emphasis	77	Large area emphasis
16	10 th percentile	47	Small dependence high	78	Small area high gray-level
			gray-level emphasis		emphasis
17	Kurtosis	48	Dependence non-uniformity	79	Zone percentage
			normalized		
18	Mean	49	Large dependence emphasis	80	Large area low gray-level
					emphasis
	GLCM	50	Large dependence low	81	Large area high gray-level
			gray-level emphasis		emphasis
19	Joint average	51	Dependence variance	82	High gray-level zone
					emphasis

20	Joint entropy	52	Large dependence high	83	Small area emphasis
			gray-level emphasis		
21	Cluster shade	53	Small dependence low	84	Low gray-level zone
			gray-level emphasis		emphasis
22	Maximum probability	54	Low gray-level emphasis	85	Zone entropy
23	Idmn		GLRLM	86	Small area low gray-level
					emphasis
24	Joint energy	55	Short run low gray-level emphasis	5	NGTDM
25	Contrast	56	Gray-level variance	87	Coarseness
26	Difference entropy	57	Low gray-level run emphasis	88	Complexity
27	Inverse variance	58	Gray-level non-uniformity	89	Strength
			normalized		
28	Difference variance	59	Run variance	90	Contrast
29	Idn	60	Gray-level non-uniformity	91	Busyness
30	Idm	61	Long run emphasis		
31	Correlation	62	Short run high gray-level emphasi	s	

GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighboring gray-tone difference matrix.

Feature #	Radiomic feature	ASL-nCBF	DSC-nrCBF	<i>P</i> -value
	First-order statistics			
1	Interquartile range	1.10 ± 0.77	2.17 ± 1.95	<0.00001*
2	Skewness	0.73 ± 0.67	2.23 ± 1.48	<0.00001*
3	Uniformity	0.03 ± 0.02	0.10 ± 0.06	<0.00001*
4	Median	1.91 ± 0.79	2.53 ± 1.96	0.05534
5	Energy	$6.68 \times 10^5 \pm 9.39 \times 10^5$	$3.14 \times 10^6 \pm 7.64 \times 10^6$	0.00003*
6	Robust mean absolute	0.46 ± 0.32	0.95 ± 0.86	<0.00001*
	deviation			
7	Mean absolute deviation	0.64 ± 0.42	1.51 ± 1.36	<0.00001*
8	Total energy	$1.32 \times 10^5 \pm 1.86 \times 10^5$	$6.20 \times 10^5 \pm 15.11 \times 10^5$	0.00003*
9	Maximum	5.30 ± 2.83	24.41 ± 21.77	<0.00001*
10	Root mean squared	2.21 ± 0.96	3.76 ± 2.94	<0.00001*
11	90 th percentile	3.15 ± 1.51	5.64 ± 4.75	<0.00001*
12	Minimum	0.49 ± 0.31	0.13 ± 0.26	<0.00001*
13	Entropy	5.50 ± 0.90	3.94 ± 1.02	<0.00001*
14	Range	4.81 ± 2.95	24.29 ± 21.80	<0.00001*

Supplementary Table S2. Comparisons of radiomic features between ASL-nCBF and DSC-nrCBF in gliomas.

15	Variance	0.90 ± 1.08	7.76 ± 14.79	<0.00001*
16	10 th percentile	1.14 ± 0.40	1.11 ± 1.01	0.10877
17	Kurtosis	3.85 ± 2.31	14.86 ± 16.69	<0.00001*
18	Mean	2.05 ± 0.85	3.06 ± 2.37	0.00552
	GLCM			
19	Joint average	32.36 ± 17.79	9.98 ± 7.47	<0.00001*
20	Joint entropy	8.45 ± 1.55	6.21 ± 1.85	<0.00001*
21	Cluster shade	$6.44 \times 10^4 \pm 12.61 \times 10^4$	$1.98 \times 10^4 \pm 6.48 \times 10^4$	0.00027*
22	Maximum probability	0.03 ± 0.02	0.10 ± 0.09	<0.00001*
23	Idmn	0.999 ± 0.001	0.999 ± 0.001	0.72908
24	Joint energy	0.008 ± 0.008	0.046 ± 0.045	<0.00001*
25	Contrast	11.47 ± 18.93	7.32 ± 15.62	0.00097
26	Difference entropy	2.42 ± 0.63	1.91 ± 0.72	<0.00001*
27	Inverse variance	0.38 ± 0.07	0.38 ± 0.07	0.93102
28	Difference variance	6.11 ± 12.31	4.47 ± 10.09	0.08433
29	Idn	0.98 ± 0.01	0.98 ± 0.01	0.00329
30	Idm	0.46 ± 0.12	0.62 ± 0.16	<0.00001*
31	Correlation	0.98 ± 0.01	0.94 ± 0.03	<0.00001*

32	Autocorrelation	1713.07 ± 1899.91	225.61 ± 358.59	<0.00001*
33	Sum entropy	6.52 ± 0.93	4.85 ± 1.10	<0.00001*
34	Sum squares	361.79 ± 438.46	75.08 ± 145.66	<0.00001*
35	Cluster prominence	$1.71 \times 10^7 \pm 3.37 \times 10^7$	$3.88{\times}10^6 \pm 17.01{\times}10^6$	<0.00001*
36	Imc2	0.995 ± 0.003	0.975 ± 0.015	<0.00001*
37	Imcl	-0.47 ± 0.04	-0.43 ± 0.06	<0.00001*
38	Difference average	1.96 ± 1.11	1.25 ± 1.09	<0.00001*
39	Id	0.52 ± 0.10	0.65 ± 0.14	<0.00001*
40	Cluster tendency	1435.70 ± 1740.02	293.02 ± 568.12	<0.00001*
	GLDM			
41	Gray-level variance	361.06 ± 434.61	75.80 ± 144.24	<0.00001*
42	High gray-level	1687.60 ± 1845.51	226.83 ± 359.59	<0.00001*
	emphasis			
43	Dependence entropy	8.87 ± 0.61	7.83 ± 0.69	<0.00001*
44	Dependence	$1.12 \times 10^4 \pm 1.08 \times 10^4$	$7.84 \times 10^3 \pm 9.43 \times 10^3$	<0.00001*
	non-uniformity			
45	Gray-level	$3.48 \times 10^3 \pm 4.63 \times 10^3$	$1.19 \times 10^4 \pm 1.67 \times 10^4$	<0.00001*

non-uniformity

46	Small dependence	0.10 ± 0.08	0.06 ± 0.07	<0.00001*
	emphasis			
47	Small dependence high	406.45 ± 670.45	74.13 ± 171.40	<0.00001*
	gray-level emphasis			
48	Dependence	0.10 ± 0.03	0.07 ± 0.03	<0.00001*
	non-uniformity			
	normalized			
49	Large dependence	67.83 ± 41.89	167.08 ± 105.55	<0.00001*
	emphasis			
50	Large dependence low	0.85 ± 1.66	28.71 ± 44.12	<0.00001*
	gray-level emphasis			
51	Dependence variance	15.98 ± 7.28	30.66 ± 14.71	<0.00001*
52	Large dependence high	$4.37 \times 10^4 \pm 2.51 \times 10^4$	$6.80 \times 10^3 \pm 4.90 \times 10^3$	<0.00001*
	gray-level emphasis			
53	Small dependence low	0.0002 ± 0.0002	0.0014 ± 0.0011	<0.00001*
	gray-level emphasis			
54	Low gray-level	0.006 ± 0.008	0.089 ± 0.090	<0.00001*

emphasis

GLRLM

55	Short run low gray-level	0.004 ± 0.005	0.037 ± 0.028	<0.00001*
	emphasis			
56	Gray-level variance	366.51 ± 438.02	84.00 ± 151.24	<0.00001*
57	Low gray-level run	0.006 ± 0.007	0.071 ± 0.063	<0.00001*
	emphasis			
58	Gray-level	0.030 ± 0.018	0.085 ± 0.046	<0.00001*
	non-uniformity			
	normalized			
59	Run variance	0.78 ± 0.56	2.74 ± 3.37	<0.00001*
60	Gray-level	$2.29 \times 10^3 \pm 2.57 \times 10^3$	$4.70 \times 10^3 \pm 4.78 \times 10^3$	<0.00001*
	non-uniformity			
61	Long run emphasis	2.58 ± 1.10	6.27 ± 5.73	<0.00001*
62	Short run high	1633.12 ± 1825.10	234.99 ± 372.38	<0.00001*
	gray-level emphasis			
63	Run-length	$6.48 \times 10^4 \pm 6.19 \times 10^4$	$3.85 \times 10^4 \pm 4.90 \times 10^4$	<0.00001*
	non-uniformity			
64	Short run emphasis	0.85 ± 0.07	0.72 ± 0.13	<0.00001*

65	Long run high	2844.38 ± 2401.29	432.40 ± 457.83	<0.00001*
	gray-level emphasis			
66	Run percentage	0.78 ± 0.09	0.62 ± 0.16	<0.00001*
67	Long run low gray-level	0.02 ± 0.05	1.28 ± 3.47	<0.00001*
	emphasis			
68	Run entropy	6.45 ± 0.63	5.60 ± 0.48	<0.00001*
69	High gray-level run	1762.47 ± 1901.62	254.54 ± 386.05	<0.00001*
	emphasis			
70	Run-length	0.70 ± 0.11	0.52 ± 0.18	<0.00001*
	non-uniformity			
	normalized			
	GLSZM			
71	Gray-level variance	406.94 ± 463.55	164.94 ± 216.52	<0.00001*
72	Zone variance	$2.56 \times 10^5 \pm 9.27 \times 10^5$	$1.09 \times 10^6 \pm 2.21 \times 10^6$	<0.00001*
73	Gray-level	0.030 ± 0.022	0.040 ± 0.022	0.00071
	non-uniformity			
	normalized			

74	Size-zone	0.21 ± 0.10	0.21 ± 0.10	0.62609
	non-uniformity			
	normalized			
75	Size-zone	$3.03 \times 10^3 \pm 5.49 \times 10^3$	$2.80 \times 10^3 \pm 7.80 \times 10^3$	0.01895
	non-uniformity			
76	Gray-level	148.43 ± 149.26	146.66 ± 284.66	0.03409
	non-uniformity			
77	Large area emphasis	$2.63 \times 10^5 \pm 9.44 \times 10^5$	$1.11 \times 10^6 \pm 2.22 \times 10^6$	<0.00001*
78	Small area high	1475.35 ± 1808.91	402.97 ± 539.05	<0.00001*
	gray-level emphasis			
79	Zone percentage	0.093 ± 0.094	0.055 ± 0.079	0.00009*
80	Large area low	$5.16 \times 10^3 \pm 30.44 \times 10^3$	$2.88 \times 10^5 \pm 12.59 \times 10^5$	<0.00001*
	gray-level emphasis			
81	Large area high	$6.24 \times 10^7 \pm 18.48 \times 10^7$	$1.65 \times 10^7 \pm 2.84 \times 10^7$	0.01781
	gray-level emphasis			
82	High gray-level zone	2540.97 ± 2599.68	616.43 ± 702.17	<0.00001*
	emphasis			
83	Small area emphasis	0.44 ± 0.13	0.44 ± 0.15	0.96862

84	Low gray-level zone	0.008 ± 0.015	0.054 ± 0.054	<0.00001*
	emphasis			
85	Zone entropy	8.35 ± 0.97	7.69 ± 0.93	<0.00001*
86	Small area low	0.002 ± 0.004	0.016 ± 0.018	<0.00001*
	gray-level emphasis			
	NGTDM			
87	Coarseness	0.0021 ± 0.0036	0.0011 ± 0.0019	<0.00001*
88	Complexity	$4.99 \times 10^3 \pm 8.05 \times 10^3$	$5.41 \times 10^3 \pm 16.02 \times 10^3$	0.19550
89	Strength	10.61 ± 17.07	6.02 ± 11.97	0.12697
90	Contrast	0.038 ± 0.030	0.012 ± 0.011	<0.00001*
91	Busyness	1.19 ± 2.65	9.63 ± 14.72	<0.00001*

All values are expressed as the mean \pm standard deviation.

*The *italicized radiomic features* had significant differences (paired *t*-test or Wilcoxon signed-rank test, P < 0.00055: Bonferroni correction, $\alpha = 0.05/91$) between ASL-nCBF and DSC-nrCBF.

ASL-nCBF, arterial spin labeling normalized cerebral blood flow; DSC-nrCBF, dynamic susceptibility contrast normalized relative cerebral blood flow; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighboring gray-tone difference matrix.

Feature #	Radiomic feature	Correlation coefficient	<i>P</i> -value
44	GLDM Dependence non-uniformity	ho = 0.97	<0.00001*
87	NGTDM Coarseness	$\rho = 0.97$	<0.00001*
60	GLRLM Gray-level non-uniformity	$\rho = 0.95$	<0.00001*
45	GLDM Gray-level non-uniformity	$\rho = 0.93$	<0.00001*
63	GLRLM Run-length non-uniformity	$\rho = 0.91$	<0.00001*
5	First-order Energy	ho = 0.87	<0.00001*
8	First-order Total energy	ho = 0.87	<0.00001*
76	GLSZM Gray-level non-uniformity	ho = 0.82	<0.00001*
13	First-order Entropy	ho = 0.82	<0.00001*
20	GLCM Joint entropy	$\rho = 0.81$	<0.00001*
58	GLRLM Gray-level non-uniformity normalized	$\rho = 0.81$	<0.00001*
3	First-order Uniformity	$\rho = 0.80$	<0.00001*
72	GLSZM Zone variance	$\rho = 0.80$	<0.00001*
77	GLSZM Large area emphasis	$\rho = 0.79$	<0.00001*
1	First-order Interquartile range	$\rho = 0.79$	<0.00001*
85	GLSZM Zone entropy	ho = 0.79	<0.00001*

Supplementary Table S3. Correlation coefficients of radiomic features between ASL-nCBF and DSC-nrCBF.

24	GLCM Joint energy	ho = 0.78	<0.00001*
6	First-order Robust mean absolute deviation	$\rho = 0.78$	<0.00001*
80	GLSZM Large area low gray-level emphasis	$\rho = 0.78$	<0.00001*
7	First-order Mean absolute deviation	$\rho = 0.77$	<0.00001*
91	NGTDM Busyness	$\rho = 0.77$	<0.00001*
33	GLCM Sum entropy	<i>r</i> = 0.81	<0.00001*
68	GLRLM Run entropy	<i>r</i> = 0.77	<0.00001*
43	GLDM Dependence entropy	<i>r</i> = 0.76	<0.00001*
66	GLRLM Run percentage	<i>r</i> = 0.73	<0.00001*
32	GLCM Autocorrelation	$\rho = 0.76$	<0.00001*
70	GLRLM Run-length non-uniformity normalized	<i>r</i> = 0.72	<0.00001*
11	First-order 90 th percentile	$\rho = 0.75$	<0.00001*
39	GLCM Id	$\rho = 0.75$	<0.00001*
30	GLCM Idm	$\rho = 0.75$	<0.00001*
59	GLRLM Run variance	$\rho = 0.75$	<0.00001*
42	GLDM High gray-level emphasis	$\rho = 0.75$	<0.00001*
61	GLRLM Long run emphasis	$\rho = 0.74$	<0.00001*
69	GLRLM High gray-level run emphasis	$\rho = 0.74$	<0.00001*

19	GLCM Joint average	$\rho = 0.74$	<0.00001*
64	GLRLM Short run emphasis	$\rho = 0.74$	<0.00001*
34	GLCM Sum squares	$\rho = 0.74$	<0.00001*
40	GLCM Cluster tendency	$\rho = 0.73$	<0.00001*
49	GLDM Large dependence emphasis	$\rho = 0.73$	<0.00001*
10	First-order Root mean squared	$\rho = 0.73$	<0.00001*
18	First-order Mean	$\rho = 0.73$	<0.00001*
62	GLRLM Short run high gray-level emphasis	$\rho = 0.73$	<0.00001*
75	GLSZM Size-zone non-uniformity	$\rho = 0.73$	<0.00001*
41	GLDM Gray-level variance	$\rho = 0.72$	<0.00001*
15	First-order Variance	$\rho = 0.72$	<0.00001*
4	First-order Median	$\rho = 0.70$	<0.00001*
38	GLCM Difference average	$\rho = 0.70$	<0.00001*
26	GLCM Difference entropy	$\rho = 0.70$	<0.00001*
56	GLRLM Gray-level variance	$ \rho = 0.69 $	<0.00001*
47	GLDM Small dependence high gray-level emphasis	$ \rho = 0.69 $	<0.00001*
46	GLDM Small dependence emphasis	$\rho = 0.69$	<0.00001*
81	GLSZM Large area high gray-level emphasis	$\rho = 0.67$	<0.00001*

65	GLRLM Long run high gray-level emphasis	$\rho = 0.67$	<0.00001*
35	GLCM Cluster prominence	$\rho = 0.64$	<0.00001*
36	GLCM Imc2	$\rho = 0.64$	<0.00001*
79	GLSZM Zone percentage	$\rho = 0.63$	<0.00001*
90	NGTDM Contrast	$\rho = 0.63$	<0.00001*
82	GLSZM High gray-level zone emphasis	$\rho = 0.63$	0.00001*
23	GLCM Idmn	$\rho = 0.62$	0.00001*
84	GLSZM Low gray-level zone emphasis	$\rho = 0.62$	0.00001*
31	GLCM Correlation	$\rho = 0.62$	0.00001*
22	GLCM Maximum probability	$\rho = 0.61$	0.00001*
14	First-order Range	$\rho = 0.61$	0.00001*
73	GLSZM Gray-level non-uniformity normalized	$\rho = 0.60$	0.00001*
25	GLCM Contrast	$\rho = 0.60$	0.00001*
83	GLSZM Small area emphasis	<i>r</i> = 0.59	0.00002*
88	NGTDM Complexity	$\rho = 0.60$	0.00002*
78	GLSZM Small area high gray-level emphasis	$\rho = 0.59$	0.00002*
28	GLCM Difference variance	$\rho = 0.57$	0.00004*
21	GLCM Cluster shade	$\rho = 0.57$	0.00005*

9	First-order Maximum	$\rho = 0.57$	0.00005*
71	GLSZM Gray-level variance	$\rho = 0.54$	0.00013*
51	GLDM Dependence variance	<i>r</i> = 0.53	0.00014*
48	GLDM Dependence non-uniformity normalized	$\rho = 0.51$	0.00031*
29	GLCM Idn	$\rho = 0.50$	0.00054*
67	GLRLM Long run low gray-level emphasis	$\rho = 0.49$	0.00070
16	First-order 10 th percentile	$\rho = 0.48$	0.00079
57	GLRLM Low gray-level run emphasis	ho = 0.47	0.00110
74	GLSZM Size-zone non-uniformity normalized	ho = 0.47	0.00123
50	GLDM Large dependence low gray-level emphasis	$\rho = 0.46$	0.00153
55	GLRLM Short run low gray-level emphasis	$\rho = 0.44$	0.00220
37	GLCM Imc1	<i>r</i> = 0.42	0.00411
54	GLDM Low gray-level emphasis	$\rho = 0.42$	0.00427
52	GLDM Large dependence high gray-level emphasis	$\rho = 0.41$	0.00547
89	NGTDM Strength	$\rho = 0.32$	0.03022
86	GLSZM Small area low gray-level emphasis	$\rho = 0.28$	0.06056
12	First-order Minimum	$\rho = 0.18$	0.23732
17	First-order Kurtosis	$\rho = 0.11$	0.47225

27	GLCM Inverse variance	ρ = -0.09	0.53565
53	GLDM Small dependence low gray-level emphasis	ρ = -0.07	0.62542
2	First-order Skewness	$\rho = 0.07$	0.62774

The radiomic features (Table rows) are arranged in order from the feature with the highest significant correlation, and this order corresponds to that in Fig. 3.

*The *italicized radiomic features* had significant correlations (Pearson's product-moment correlation or Spearman's rank-order correlation, P < 0.00055: Bonferroni correction, $\alpha = 0.05/91$) between ASL-nCBF and DSC-nrCBF.

ASL-nCBF, arterial spin labeling normalized cerebral blood flow; DSC-nrCBF, dynamic susceptibility contrast normalized relative cerebral blood flow; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix; NGTDM, neighboring gray-tone difference matrix; r, Pearson's product-moment correlation coefficient; ρ , Spearman's rank-order correlation coefficient. **Supplementary Text S1.** The scan parameters of the anatomical MR imaging (T_1 FLAIR, T_2 FLAIR, T_2WI , T_2^*WI , and CE- T_1WI) and MR perfusion-weighted imaging (ASL and DSC imaging).

All patients underwent multi-parametric magnetic resonance (MR) imaging using a 3-T scanner (Discovery MR750 3.0T, GE Healthcare, Milwaukee, WI, USA) with a 32-channel head coil. In this study, the following 7 MR imaging sequences were acquired: 1) T₁ fluid-attenuated inversion recovery (FLAIR) image, 2) T₂ FLAIR image, 3) T₂-weighted image (T₂WI), 4) T₂^{*}-weighted image (T₂^{*}WI), 5) pseudo-continuous arterial spin labeling (ASL) imaging, 6) dynamic susceptibility contrast (DSC) imaging, and 7) contrast-enhanced T₁-weighted image (CE-T₁WI). The main parameters of each sequence were set as follows:

1) Oblique-axial T₁ FLAIR: repetition time (TR) = 2600 ms, echo time (TE) = 24 ms, inversion time (TI) = 1000 ms, flip angle (FA) = 111°, matrix size = 352×256 , field of view (FOV) = 220 mm, slice thickness = 5 mm, slice spacing = 1 mm, band width (BW) = \pm 31.25 kHz, number of slices = 24, scan time = 1 min 57 s.

2) Oblique-axial T₂ FLAIR: TR = 8800 ms, TE = 140 ms, TI = 2041 ms, FA = 111°, matrix size = 320×224 , FOV = 220 mm, slice thickness = 5 mm, slice spacing = 1 mm, BW = ± 35.71 kHz, number of slices = 24, scan time = 2 min 22 s. 3) Oblique-axial T₂WI: TR = 5800 ms, TE = 96 ms, FA = 111°, matrix size = $512 \times$

320, FOV = 220 mm, slice thickness = 5 mm, slice spacing = 1 mm, BW = \pm 41.67 kHz, number of slices = 24, scan time = 2 min 2 s.

4) Oblique-axial T_2^*WI : TR = 770 ms, TE = 18 ms, FA = 20°, matrix size = 480 × 224, FOV = 220 mm, slice thickness = 5 mm, slice spacing = 1 mm, BW = \pm 31.25 kHz, number of slices = 24, scan time = 2 min 55 s.

5) Axial ASL imaging, acquired using a three-dimensional pseudo-continuous ASL with spiral fast spin-echo sequence: PLD = 1525 ms, TR = 4642 ms, TE = 10.5 ms, FA = 111°, 512 sampling points on 8 spiral arms, in-plane matrix = 128×128 , FOV = 240 mm, slice thickness = 4 mm, BW = ± 62.5 kHz, number of slices = 37, scan time = 2 min 1 s.

6) Oblique-axial DSC imaging, acquired using a gradient-echo echo-planar imaging sequence after a bolus injection of 0.1 ml/kg of gadoterate meglumine (MAGNESCOPE, Guerbet, Tokyo, Japan) at a rate of 3 ml/s, followed by a 30 ml bolus of saline flush at the same rate: TR = 2000 ms, TE = 13.3 ms, FA = 60°, matrix size = 96×128 , FOV = 220 mm, slice thickness = 5 mm, slice spacing = 1 mm, BW = ± 250 kHz, number of slices = 22, scan time = 1 min 20 s. Before DSC imaging, a bolus injection of 0.1 ml/kg of gadoterate meglumine was used for dynamic contrast-enhanced imaging (preload leakage correction to minimize T₁ effects for DSC imaging).

7) Oblique-axial CE-T₁WI, acquired using a three-dimensional spoiled gradient-echo sequence after DSC imaging: TR = 8.8 ms, TE = 2.8 ms, FA = 15°, matrix size = 512×320 , FOV = 240 mm, slice thickness = 0.9 mm, BW = ± 41.67 kHz, number of slices = 210, scan time = 4 min 57 s.

The oblique-axial planes of T_1 FLAIR, T_2 FLAIR, T_2WI , T_2^*WI , DSC imaging, and CE-T₁WI were set to align along the anterior commissure–posterior commissure line of each patient.