
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors present a description of a process for verifying putative identification of variant 

peptide sequences through integration of genomic and mass spectrometry (MS)-based proteomics 

data (proteogenomics). Proteogenomics has taken on increased importance in recent years, as an 

approach to identify expressed variant protein sequences, as well as peptide sequences which may 

be presented to the immune system as neoantigens, which could represent targets via 

immunotherapy. The identification of peptide variants is fraught with potential for false positive 

matches, and as such strict computational measures are needed to attempt to minimize false-

positives and provide researchers the most confident results possible for further validation. The 

authors have taken a sensible route to develop a novel workflow that rigorously identifies putative 

neoantigens; such a workflow would have significance as a tool for researchers pursuing 

proteogenomics and neoantigen detection in cancer studies. As part of developing this workflow, 

the authors provide a new tool called AutoRT, which utilizes the LC retention time of peptides 

identified by LC-MS/MS analysis, and predicts the correctness of the match of an MS/MS spectrum 

to a peptide based on a comparison of its measured retention time versus the predicted retention 

time from AutoRT. They use AutoRT information to validate their workflow for filtering 

proteogenomic results and ensuring confident results. AutoRT was developed via machine learning 

on a very large amount of available LC-MS/MS data, and the authors show it has advantages over 

other existing methods for retention time prediction. 

Overall, this is a well written manuscript describing an advanced study addressing a significant 

research problem. This software has novelty and should see a high amount of usage by the 

research community, with this publication acting as a foundational description. There are some 

comments and suggestions for the authors to address before this is published, as detailed below. 

Major comments 

1. The authors have done nice work in developing AutoRT for predicting retention time of peptides 

identified via MS/MS and sequence database searching. They show it outperforms another 

standard program for retention time prediction. A few comments and questions do come up 

related to AutoRT. 

It seems that the primary motivation for developing AutoRT is to confirm the ability of their 

workflow utilizing PepQuery to identify the most confident variant peptides from proteogenomic 

studies. Ultimately, however the method for neoantigen peptide identification and prediction does 

not seem to use AutoRT or RT values for the peptides. It begs the question as to whether AutoRT 

could be used by others easily in validating matches from MS/MS data for proteogenomic or other 

proteomic studies: 

• Can the algorithm be utilized with smaller amounts of data that is generally generated in most 

MS-based proteomic studies (not at the level of CPTAC studies?). A more clear statement on the 

usefulness to the broader MS-proteomics community would be helpful – perhaps it is only useful 

for very large datasets, which would be good to know. This aspect of the work seems a bit opaque 

and without much focus in the paper. Is there another publication planned which will further 

describe AutoRT and its use? 

• Could AutoRT be used as a way to assess quality of hits to variant sequences on its own, without 

need to run the results through another filter such as PepQuery? Related to this question, why not 

use AutoRT in conjunction with PepQuery for even more rigorous filtering of results? 

• Is AutoRT available within a workflow or just as a script within a Github repo? 

2. The authors have made their workflow for neoantigen identification and prediction available in 



Nextflow, with supporting documentation. This is very good. However, it doesn’t look like there is 

example input data supplied for an interested user to test the workflow? It would be very helpful 

to make even a small, trimmed down amount of data available – perhaps via a Zenodo link or 

Github? 

Minor comments 

1. Retention time prediction for LC-MS based proteomics has been around for quite some time. I 

would suggest citing some of the earliest studies, which utilized this approach to improve results – 

e.g. see Petritis et al. Anal. Chem. 2003, 75, 1039, and J Am Soc Mass Spectrom. 2003 

Sep;14(9):980-91. 

2. It may be useful to describe in a little more detail how the workflow works for neoantigen 

prediction, for the general audience. For example, why is HLA typing necessary? This will help the 

reader understand the necessity for specific inputs and how the different software components 

work together within the workflow. 

Reviewer #2 (Remarks to the Author): 

The authors have performed an interesting analysis on the different strategies and methods for 

assessing variant peptide detection in proteogenomics analysis. It also presents recommendations 

for improving neoantigen detection. 

a) The analysis showing the high variability of neoantigen false discovery numbers produced on 

the same datasets depending on the search engine and FDR strategy used is enlightening. 

b) The suggested use of Global FDR instead of separated FDR to increase sensitivity sounds 

counterintuitive considering the progress in the field in the last five years and the consensus that 

FDR was being on the whole underestimated. The manuscript suggests that the key to avoid the 

pitfall of underestimated false discoveries is to use a post-search validation tool such as PepQuery. 

This is an interesting direction to pursue. 

c) AutoRT appears to be a useful tool to provide an MS-search-independent quality parameter for 

post-search evaluation of the peptide discovery. 

While the paper is in interesting, there are some issues that need to be addressed: 

1) However, the main text does seem to focus more on PepQuery, which is the subject of a 

previous publication, than on the newly developed AutoRT. A bit more detail should be given to 

describe the training of AutoRT and its transfer learning strategy, so that future users can easily 

and correctly implement AutoRT to their own LCMS datasets. What threshold should be used for 

delta RT? Given a list of peptides and their spectra how would one decide on the accuracy of RT 

similarity for each peptide. 

It is not shown how using RT as an evaluation metric improves accuracy of neoantigen prediction. 

2) In fact, the authors have even failed to name AutoRT in the abstract of the manuscript. This is 

something that should be corrected. 

3) Still in the abstract, there is an overstatement in “3 times more potential treatment 

opportunities”. Even “3 times more putative neoantigens” is likely an exaggeration given that that 

assumes the proteogenomics expert to be using a rather weak FDR strategy/search engine 

combination (for example, as shown in fig 7.a, X!Tandem with two stage FDR). The “3 times more 

potential treatment opportunities” needs to be toned down to “significant improvement in 

sensitivity towards the discovery of putative neoantigens” or something similar. 



4) There could be room for a minor discussion on the performance of different search engines, 

although the manuscript does address it in a general way recommending several search engines to 

be combined to increase sensitivity. But, to me, it seems obvious that X!Tandem is borderline 

inadequate for a proper proteomics search, even more so for a proteogenomics search. On the 

other hand, it is of note that MSGF+ is more sensitive, but does take more risks in that it does 

bring in more false positives, albeit this appears to be fully compensated for by using PepQuery 

post-search. 

5) How well can the ensemble model be generalized for new datasets? This seems to be overkill 

for new datasets. Has a generalized version of the model been tested? Combining peptides from 

multiple experiment types for training the deep learning model may handle the experiment-specific 

parameters internally as a replacement for the transfer-learning step. 

In the methods section, it is mentioned that the high-confidence known peptides were used for 

fine-tuning the model and later the reference peptides were used for performance evaluation. This 

seems to introduce bias because the test set has already been used in the fine-tuning step. 

6) The authors explored the search engine and FDR strategy variables. But, having mentioned 

three post-search quality control tools, SpectrumAI, SAVcontrol and Pepquery, all three tools could 

have been employed and explored on the three datasets to assess whether the tools are 

redundant, or if there would be benefit in actually employing all three, or a combination of two of 

them together. 

7) On page 8, under “Retention time-based quality evaluation” it is described that the observed RT 

is based on the best scoring PSM of each peptide. This seems to me slightly incorrect. Instead the 

RT of the MS1 peak maximum of the respective precursor ion should be used, given that MS2 

scans can sometimes be taken rather early or rather late in the peak elution. If possible to 

implement, I would expect this to increase the accuracy of AutoRT. 

8) Parts of the text when numbers of peptides are given in rather tedious manner can be 

eliminated given that all numbers are anyway presented in the mentioned figures (case in point, 

see page 9, 1st paragraph under “Neoantigen prioritization”). It is more interesting to discuss the 

implications of those results and just show all the numbers in the figures. Maybe a few numbers 

that highlight a particular conclusion can be kept in sentence form in the main text body. 

9) When stating percentages of FDR estimates, using two decimals is meaningless and 

unnecessarily makes for a harder read. Please reduce the % numbers to a single decimal, or do 

without decimals altogether. 

10) While the authors have clarified that peptides from germline mutations were not used for 

neoantigen prediction, it is not specified if they also have discarded peptides that has both 

germline and somatic mutations from the same patient. 

There are also few languages issues such as ‘an SAV’ should be ‘a SAV’ and others. 

Reviewer #3 (Remarks to the Author): 

The manuscript submitted by Bo Wen et al introduces a computational workflow for variant peptide 

identification that is based on a systematically evaluation and quality control of the results of three 

search engines using three different FDR-estimation strategies on three different datasets. The 

resulting workflow produces 3 times more neoantigens candidates than the workflow which 

performed worst in their study. The overall quality of the manuscript and technical evaluation is of 

high quality and of high relevance. However, I have some minor and major remarks. 

Major remarks: 

1) The genetic algorithm for finding a neural architecture for RT predictions appears quite complex 

and given the relatively simple task of retention time prediction over-engineered. The authors 

should show that this setup is necessary e.g. by showing that the individual generations of the 

genetic algorithm significantly improved the MSE and an average sized model without fixed epochs 



and early stopping would result in significantly lower MSE. In order to show that their method is a 

significant advancement (“major contribution of this manuscript”) over the current state of the art 

(deep learning), the authors should compare their method to other recently published deep 

learning approaches for RT prediction. I would expect to see less of a difference between AutoRT 

and other deep learning approaches in comparison to classical (feature engineering-dependent) 

machine learning approaches. 

2) Why did the authors not use dropout during learning to avoid over fitting of the RT prediction 

model? Especially the last transfer learning step, where a fixed number of epochs was used with 

no early stopping, can lead to high levels of overfitting (see Figure 1e). While the bagging should 

circumvent this to some degree, the authors should provide an analysis which evaluates the level 

of overfitting (if present). This is especially the case when LC-MS/MS run-specific models are 

trained where the number of available training data is low. 

3) Using the difference in retention time as an additional feature to separate correct from incorrect 

matches has been proposed and used for quite some time now and is, in itself, not novel. 

Additionally, deep learning has been applied with success to RT prediction in prior literature. I 

question the improvement over the state of the art. AutoRT was used here to evaluate whether the 

identification which are not retained by PepQuery have an overall higher RT deviation compared to 

those who are retained and was not used as an additional quality metric in the final pipeline, i.e. 

as part of the FDR control. 

4) The authors argue that this study provides “novel insight and clear guidance on the selection of 

quality control strategies [for variant peptides identification]”. However, I have difficulty seeing 

this. The final proposed workflow makes use of the combined results of all three evaluated search 

engines, rather than clear guidance. This will obviously lead to higher numbers (as prior literature 

has shown that combining search results of multiple search engines increases the number of 

peptides), especially since the authors chose to compare their results against the “most stringent” 

FDR setting. In addition, the authors write that further investigation is necessary to check the 

quality of the identified variant peptides (because of the high absolute RT difference some peptides 

had even after PepQuery filtering). Given this analysis, it is still unclear what the final FDR of the 

filtered list of peptides is and how many of the variant peptide which have passed PepQuery might 

still be wrong. 

5) For proper comparison, it seems logical to compare and state the increase in comparison to the 

best performing existing solution (i.e. MS-GF+-Global FDR + PepQuery; ~15% increase) rather 

than the worst tested setting. 

6) Having established a final workflow for neoantigen prediction, I recommend to show its 

application by re-analyze a study which directly investigated the immunopeptidome (e.g. ref 34). 

Minor remarks: 

1) Drop-out can be used to simulate a Bayesian prediction and thus a simpler approach to bagging 

because it does not rely on multiple models being trained. It would be interesting to see whether 

the chosen approach has any benefit compared to that. 

2) In Figure 7 a-c, it is not obvious why a column can represent the same neoantigen but with 

differing numbers of mutations. Can the author comment on this? 

3) Numbers of variant peptides identified across the different datasets varies a lot. I am somewhat 

surprised by this as for example the TMT dataset identifies significantly more in comparison to the 

label free approach. Given that most of the mutations are not shared between patients, I would 

have expect a dilution effect for patient-specific mutations (1 out of 10 samples contains one), 

which would reduce the chances of triggering a high quality MS/MS on those. Can the authors 

comment on this? Does, for example, the higher ratio of b-ions help in confidently identifying site 

specific ions for variant peptides? 

4) What are the proportions of decoys variant peptides being filtered out by PepQuery (Fig 1b,d,f)? 

5) What is the distribution predicted binding affinities of the neoantigens? Why did the authors 

chose 150nM as a filter? 

6) Can the authors comment on the usefulness of this approach versus directly measuring the 

presented (neo)antigens (as in ref 34)? 



 1 

Re: NCOMMS-19-25550-T “Cancer neoantigen prioritization through sensitive and 
reliable proteogenomics analysis”  
 
REVISIONS IN RESPONSE TO REVIEWERS’ COMMENTS 
 
We thank the reviewers for the insightful comments and constructive suggestions. We have 
considered all comments and suggestions and revised the manuscript accordingly. For your 
convenience, we have also included a version with “track changes” in the submission. Please see 
below for a point by point response to each of the points made by the reviewers. Page numbers 
listed below are based on the manuscript version without tracked changed.  
 
 
Reviewer #1 (Remarks to the Author): 
 
The authors present a description of a process for verifying putative identification of variant 
peptide sequences through integration of genomic and mass spectrometry (MS)-based 
proteomics data (proteogenomics). Proteogenomics has taken on increased importance in recent 
years, as an approach to identify expressed variant protein sequences, as well as peptide 
sequences which may be presented to the immune system as neoantigens, which could represent 
targets via immunotherapy. The identification of peptide variants is fraught with potential for 
false positive matches, and as such strict computational measures are needed to attempt to 
minimize false-positives and provide researchers the most confident results possible for further 
validation. The authors have taken a sensible route to develop a novel workflow that rigorously 
identifies putative neoantigens; such a workflow would have significance as a tool for 
researchers pursuing proteogenomics and neoantigen detection in cancer studies. As part of 
developing this workflow, the authors provide a new tool called AutoRT, which utilizes the LC 
retention time of peptides identified by LC-MS/MS analysis, and predicts the correctness of the 
match of an MS/MS spectrum to a peptide based on a comparison of its measured retention time 
versus the predicted retention time from AutoRT. They use AutoRT information to validate their 
workflow for filtering proteogenomic results and ensuring confident results. AutoRT was 
developed via machine learning on a very large amount of available LC-MS/MS data, and the 
authors show it has advantages over other existing methods for retention time prediction. 
 
Overall, this is a well written manuscript describing an advanced study addressing a significant 
research problem. This software has novelty and should see a high amount of usage by the 
research community, with this publication acting as a foundational description. There are some 
comments and suggestions for the authors to address before this is published, as detailed below. 
 
Response: We thank the reviewer for the positive comments. 
 
Major comments 
1. The authors have done nice work in developing AutoRT for predicting retention time of 
peptides identified via MS/MS and sequence database searching. They show it outperforms 
another standard program for retention time prediction. A few comments and questions do come 
up related to AutoRT. 
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It seems that the primary motivation for developing AutoRT is to confirm the ability of their 
workflow utilizing PepQuery to identify the most confident variant peptides from proteogenomic 
studies. Ultimately, however the method for neoantigen peptide identification and prediction 
does not seem to use AutoRT or RT values for the peptides. It begs the question as to whether 
AutoRT could be used by others easily in validating matches from MS/MS data for 
proteogenomic or other proteomic studies: 
 
• Can the algorithm be utilized with smaller amounts of data that is generally generated in most 
MS-based proteomic studies (not at the level of CPTAC studies?). A more clear statement on the 
usefulness to the broader MS-proteomics community would be helpful – perhaps it is only useful 
for very large datasets, which would be good to know. This aspect of the work seems a bit 
opaque and without much focus in the paper. Is there another publication planned which will 
further describe AutoRT and its use? 
 
Response: AutoRT includes two major steps. First, a large public dataset (e.g., PXD006109 
from the Mann group [PMID 29735998] was used in this study) is used for deep neural network 
architecture search to train base models. This first step requires a large amount of training data, 
but it does not need to be repeated when applying the resulted based models to a new MS-based 
proteomics study. In the second step, transfer learning is used to fine-tune the base models 
trained in the first step using new data from each LC/MS-MS run to build run-specific models. In 
our study, the number of identified peptides for a single run ranged from 700 to 10,000 (Fig. 2b-
d), which is typical for MS-based proteomic studies. The small number of peptides identified in 
each run is in general not enough to train a peptide sequence-based high-performance deep 
learning model from scratch, and AutoRT addresses this challenge using the transfer learning 
strategy. Therefore, AutoRT can be applied to any typical MS-proteomics studies for retention 
time prediction. We have clarified this in the Discussion section (Page 12). 
 
• Could AutoRT be used as a way to assess quality of hits to variant sequences on its own, 
without need to run the results through another filter such as PepQuery? Related to this question, 
why not use AutoRT in conjunction with PepQuery for even more rigorous filtering of results? 
 
Response: We thank the reviewer for these excellent questions. During the revision, we have 
implemented AutoRT as a standalone Python package that can be used to assess quality of hits to 
variant sequences on its own. Both the package and a tutorial with an example demonstrating the 
usage of this function are available at https://github.com/bzhanglab/AutoRT/. We also added 
AutoRT into NeoFlow as an optional step in Module 3 so that it can be used in conjunction with 
PepQuery for even more rigorous filtering. An example demonstrating this feature is available at 
https://github.com/bzhanglab/neoflow. We note that AutoRT requires GPUs, which are not 
available in many proteomics labs. Therefore, it is included as an optional module in NeoFlow. 
These new additions are described in the Method section (Page 20-21). 
 
Rather than simply using delta RT to filter PSMs, we believe a more effective approach to 
improve peptide identification is to incorporate delta RT as a feature into PSM scoring in 
combination with other features. We have an on-going project on re-scoring PSMs by integrating 
delta RT with other features using semi-supervised machine learning, which will be reported in a 
future manuscript.   
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• Is AutoRT available within a workflow or just as a script within a Github repo? 
 
Response: As mentioned above, AutoRT is now available as a standalone python package that 
can be used for RT prediction (https://github.com/bzhanglab/AutoRT). We also included 
AutoRT in NeoFlow as an optional step so that the computed delta RT can be used as an 
additional quality metric for neoantigen prioritization (https://github.com/bzhanglab/neoflow). 
 
2. The authors have made their workflow for neoantigen identification and prediction available 
in Nextflow, with supporting documentation. This is very good. However, it doesn’t look like 
there is example input data supplied for an interested user to test the workflow? It would be very 
helpful to make even a small, trimmed down amount of data available – perhaps via a Zenodo 
link or Github? 
 
Response: Excellent suggestion. We have provided examples on using both NeoFlow and 
AutoRT, and the example datasets are available at corresponding Github repositories. 
 
Minor comments 
1. Retention time prediction for LC-MS based proteomics has been around for quite some time. I 
would suggest citing some of the earliest studies, which utilized this approach to improve results 
– e.g. see Petritis et al. Anal. Chem. 2003, 75, 1039, and J Am Soc Mass Spectrom. 2003 
Sep;14(9):980-91. 
 
Response: Thanks for the information. We have cited the two studies in the introduction section 
(references 31 and 32). 
 
2. It may be useful to describe in a little more detail how the workflow works for neoantigen 
prediction, for the general audience. For example, why is HLA typing necessary? This will help 
the reader understand the necessity for specific inputs and how the different software 
components work together within the workflow. 
 
Response: We have described the workflow for neoantigen prediction in more detail, including 
providing explanation on why HLA typing is necessary, in the Methods section under a new 
subsection “NeoFlow implementation” (Page 20-21).  
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have performed an interesting analysis on the different strategies and methods for 
assessing variant peptide detection in proteogenomics analysis. It also presents recommendations 
for improving neoantigen detection. 
 
a) The analysis showing the high variability of neoantigen false discovery numbers produced on 
the same datasets depending on the search engine and FDR strategy used is enlightening. 
 
b) The suggested use of Global FDR instead of separated FDR to increase sensitivity sounds 
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counterintuitive considering the progress in the field in the last five years and the consensus that 
FDR was being on the whole underestimated. The manuscript suggests that the key to avoid the 
pitfall of underestimated false discoveries is to use a post-search validation tool such as 
PepQuery. This is an interesting direction to pursue. 
 
c) AutoRT appears to be a useful tool to provide an MS-search-independent quality parameter 
for post-search evaluation of the peptide discovery. 
 
Response: We thank the reviewer for clearly summarizing the most important points of the 
study.  
 
While the paper is in interesting, there are some issues that need to be addressed: 
 
1) However, the main text does seem to focus more on PepQuery, which is the subject of a 
previous publication, than on the newly developed AutoRT. A bit more detail should be given to 
describe the training of AutoRT and its transfer learning strategy, so that future users can easily 
and correctly implement AutoRT to their own LCMS datasets. What threshold should be used 
for delta RT? Given a list of peptides and their spectra how would one decide on the accuracy of 
RT similarity for each peptide. It is not shown how using RT as an evaluation metric improves 
accuracy of neoantigen prediction. 
 
Response: We thank the reviewer for this suggestion. In the revised manuscript, we have described 
in more detail the training of AutoRT and the transfer learning strategy on Page 18-19. We have 
also implemented AutoRT as a standalone Python package so that it can be easily used for RT 
prediction in other LC-MS/MS studies.  
 
The primary purpose of using RT prediction in the current study is to provide an independent 
evaluation metric (delta RT) for evaluating existing quality control methods for variant peptide 
identification. For this purpose, only relative comparison was required, and there was no need for 
choosing a delta RT threshold. Based on the relative comparisons, we found that global FDR 
control followed by PepQuery validation offered the highest sensitivity without compromising the 
quality of variant peptide identifications. 
 
To directly use RT to improve accuracy of neoantigen prediction, we added an optional AutoRT 
step into NeoFlow during the revision so that delta RT can be used as an additional filter if GPU 
is available to run AutoRT. Although this is helpful as shown in our newly added analysis of an 
immunopeptidome dataset, we agree with the reviewer that it is difficult to choose a fixed threshold 
for delta RT. Rather than simply using delta RT to filter PSMs, we believe a more effective 
approach to improve peptide identification is to incorporate delta RT as a feature into PSM scoring 
in combination with other features. We noted this in the Discussion section (Page 13). We have an 
on-going project on re-scoring PSMs by integrating delta RT with other features using semi-
supervised machine learning, which will need more time to develop and will be reported in a future 
manuscript. 
 
2) In fact, the authors have even failed to name AutoRT in the abstract of the manuscript. This is 
something that should be corrected. 
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Response: Corrected as suggested.  
 
3) Still in the abstract, there is an overstatement in “3 times more potential treatment 
opportunities”. Even “3 times more putative neoantigens” is likely an exaggeration given that 
that assumes the proteogenomics expert to be using a rather weak FDR strategy/search engine 
combination (for example, as shown in fig 7.a, X!Tandem with two stage FDR). The “3 times 
more potential treatment opportunities” needs to be toned down to “significant improvement in 
sensitivity towards the discovery of putative neoantigens” or something similar. 
 
Response: Agreed and we have revised the text accordingly.  
 
4) There could be room for a minor discussion on the performance of different search engines, 
although the manuscript does address it in a general way recommending several search engines 
to be combined to increase sensitivity. But, to me, it seems obvious that X!Tandem is borderline 
inadequate for a proper proteomics search, even more so for a proteogenomics search. On the 
other hand, it is of note that MSGF+ is more sensitive, but does take more risks in that it does 
bring in more false positives, albeit this appears to be fully compensated for by using PepQuery 
post-search. 
 
Response: Good suggestion. We have included a new paragraph in the Discussion section on 
this topic (Page 13): “Although the primary goal of the study was to compare different quality 
control strategies, our results also revealed the performance difference of different search 
engines in proteogenomics search. Among the three search engines investigated, MS-GF+ 
showed the highest sensitivity in variant peptide identification both before and after PepQuery 
validation (Fig. 3). Meanwhile, MS-GF+ also identified higher percentages of variant peptides 
that failed PepQuery validation, suggesting higher risk in bringing in more false positives when 
used without PepQuery validation. X!Tandem showed the lowest sensitivity among the three, 
and we would not recommend using this search engine by itself in proteogenomics search. 
However, when used together with other search engines, it may still add unique variant 
identifications to improve the overall sensitivity (Fig. 7).” 
 
5) How well can the ensemble model be generalized for new datasets? This seems to be overkill 
for new datasets. Has a generalized version of the model been tested? Combining peptides from 
multiple experiment types for training the deep learning model may handle the experiment-
specific parameters internally as a replacement for the transfer-learning step. 
 
Response: It is true that combining data from multiple experiment types for training may be able 
to create a single model that can handle experiment-specific parameters; however, this cannot 
replace transfer-learning because nonlinear RT shift between different runs occurs frequently even 
when the same LC system is used for all runs in a study (PMID: 27701844). As shown in 
Supplementary Fig. S6, X axis represents the observed peptide RTs of fraction 1 of an experiment 
(#1) from the iTRAQ study and Y axis represents the RTs of the same set of peptides from fraction 
1 of another experiment (#30). This figure clearly shows a nonlinear retention time shift, even 
when the same LC system was used for all experiments in this study. Therefore, a general model 
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is unlikely to produce good performance for all experimental runs. We have included this 
information in the Discussion section (Page 12).  

 
In the methods section, it is mentioned that the high-confidence known peptides were used for 
fine-tuning the model and later the reference peptides were used for performance evaluation. 
This seems to introduce bias because the test set has already been used in the fine-tuning step. 
 
Response: We are sorry about the confusion. The training of AutoRT consists of two steps. In the 
first step, 10 base models are trained using a large public dataset (PXD006109). These models are 
not directly used for RT prediction for new datasets (or experiments) and are served as based 
models for transfer learning. In the second step, data from a new experiment is used to fine tune 
the 10 base models using the transfer learning strategy and then the 10 fine-tuned models are 
ensembled as the final model for experiment-specific RT prediction. In the second step, only a 
small number of peptides are required to train an ensemble model. In this study, during the transfer 
learning step, the high-confidence known (reference) peptides were divided into two parts, one 
part was used for training and the other part was used for independent testing. None of the peptides 
in testing data was present in training data. Therefore, there was no information leaking during 
transfer learning. We have added more details in the Methods section to clarify the transfer learning 
process (Page 18-19).  

   
6) The authors explored the search engine and FDR strategy variables. But, having mentioned 
three post-search quality control tools, SpectrumAI, SAVcontrol and Pepquery, all three tools 
could have been employed and explored on the three datasets to assess whether the tools are 
redundant, or if there would be benefit in actually employing all three, or a combination of two of 
them together. 
 
Response: To address this comment, we tried to compare PepQuery with SpectrumAI and 
SAVcontrol during the revision. We contacted the developer of SAVcontrol and found that it was 
developed in MATLAB and is only compatible with Windows. In addition, it accepts only a 
specific version of pepXML or Mascot DAT file as input. Because the three search engines (MS-
GF+, X!Tandem and Comet) we used in this study cannot generate SAVcontrol-compatible data 
formats, we were not able to compare PepQuery with SAVcontrol.  
 
Applying SpectrumAI tools to all variant peptides passing global FDR control in the iTRAQ 
dataset, in which the largest number of variant peptides were identified, validated 29,618, 31,654, 
and 29,677 variant peptides for the search results from Comet, MS-GF+, and X!Tandem, 
respectively. These numbers were 6%, 4% and 7% lower than those validated by PepQuery, with 
93%, 91%, and 93% overlap. As shown in Supplementary Fig. S4, variant peptides uniquely 
validated by PepQuery (P1) showed similar quality compared with the ones validated by both 
PepQuery and SpectrumAI (P2); however, those uniquely validated by SpectrumAI (P3) showed 
obviously higher RT errors. These results suggest that SpectrumAI will unlikely provide 
significant added value beyond PepQuery for variant peptide validation. We included these results 
in the revised manuscript (Page 9-10) . 
 
7) On page 8, under “Retention time-based quality evaluation” it is described that the observed 
RT is based on the best scoring PSM of each peptide. This seems to me slightly incorrect. 
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Instead the RT of the MS1 peak maximum of the respective precursor ion should be used, given 
that MS2 scans can sometimes be taken rather early or rather late in the peak elution. If possible 
to implement, I would expect this to increase the accuracy of AutoRT. 
 
Response: We agree with the reviewer that MS2 scans can sometimes be taken rather early or 
rather late in the peak elution, and using the RT based on the best scoring PSM may be misleading.  
Unfortunately, the search results from the peptide identification tools used in this study (MS-GF+, 
X!Tandem, and Comet) do not contain the RT of the MS1 peak maximum of the respective 
precursor, and it is time consuming to extract MS1 peak maximum-based RT from the raw data 
for all experiments. During the revision, we considered an alternative option, which is to use the 
average of RTs from all spectra identified from the same run with 1% FDR at both PSM and 
peptide levels for a peptide to represent observed RT for the peptide. To evaluate the accuracy of 
this MS2-based method, we selected identification results from three runs from each of the three 
CPTAC datasets and extracted the RT of MS1 peak maximum of the respective precursor ions of 
identified peptides using FlashLFQ (v1.0.2). As shown in Supplementary Fig. S7-S9, the 
difference between the RTs estimated based on the MS2 and the MS1 methods was less than 10 
seconds for more than 90%, 87%, and 95% of the peptides identified in the label-free, TMT, and 
iTRAQ data, respectively. Moreover, the accuracies of AutoRT were similar when the two types 
of observed RTs were used for the analysis. Therefore, the average RT for all spectra identified 
from the same run for a peptide was used to determine the observed RT for a peptide. We have 
included these results in the Methods section under a new subsection “Determining observed 
retention time for a peptide for model training” (Page 19-20).  
 
8) Parts of the text when numbers of peptides are given in rather tedious manner can be 
eliminated given that all numbers are anyway presented in the mentioned figures (case in point, 
see page 9, 1st paragraph under “Neoantigen prioritization”). It is more interesting to discuss the 
implications of those results and just show all the numbers in the figures. Maybe a few numbers 
that highlight a particular conclusion can be kept in sentence form in the main text body. 
 
Response: Agreed and we have updated the text accordingly.  
 
9) When stating percentages of FDR estimates, using two decimals is meaningless and 
unnecessarily makes for a harder read. Please reduce the % numbers to a single decimal, or do 
without decimals altogether. 
 
Response: Agreed and we have updated the text and Figure 3 accordingly.  
 
10) While the authors have clarified that peptides from germline mutations were not used for 
neoantigen prediction, it is not specified if they also have discarded peptides that has both 
germline and somatic mutations from the same patient. 
 
Response:  If germline variants are considered in the customized database construction, a somatic 
variant peptide will be removed if it can be exactly mapped to a germline variant peptide. We have 
clarified this in the revised manuscript (Page 21). 
 
There are also few languages issues such as ‘an SAV’ should be ‘a SAV’ and others. 
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Response: We went through the manuscript carefully and corrected all language issues we can 
identify.  
 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript submitted by Bo Wen et al introduces a computational workflow for variant 
peptide identification that is based on a systematically evaluation and quality control of the 
results of three search engines using three different FDR-estimation strategies on three different 
datasets. The resulting workflow produces 3 times more neoantigens candidates than the 
workflow which performed worst in their study. The overall quality of the manuscript and 
technical evaluation is of high quality and of high relevance. However, I have some minor and 
major remarks. 
 
Response: We thank the reviewer for the positive comment. 
 
Major remarks: 
1) The genetic algorithm for finding a neural architecture for RT predictions appears quite 
complex and given the relatively simple task of retention time prediction over-engineered. The 
authors should show that this setup is necessary e.g. by showing that the individual generations 
of the genetic algorithm significantly improved the MSE and an average sized model without 
fixed epochs and early stopping would result in significantly lower MSE. In order to show that 
their method is a significant advancement (“major contribution of this manuscript”) over the 
current state of the art (deep learning), the authors should compare their method to other recently 
published deep learning approaches for RT prediction. I would expect to see less of a difference 
between AutoRT and other deep learning approaches in comparison to classical (feature 
engineering-dependent) machine learning approaches. 
 
Response: In the neural architecture search using genetic 
algorithm, 1000 models were generated with a total of 20 
generations and 50 models in each generation. As shown in 
the figure to the right, the quality of the models as measured 
by validation loss (MSE) improved throughout the 
generations. The models from the last generation obviously 
outperformed those randomly generated in the first 
generation.  
 
During the revision, we compared AutoRT with four RT prediction tools, including three recently 
published deep learning based RT prediction tools (Prosit [PMID: 31133760], GuanMCP2019 
[PMID: 31249099] and DeepMass [PMID: 31133761]) and a classical (feature engineering-
dependent) machine tool GPTime using three large datasets. As shown in Figure 2A and 
Supplementary Figure S1, AutoRT outperformed all other three deep learning tools for RT 
prediction, and all deep learning tools outperformed the classical machine learning approach 
GPTime to a large extent. Moreover, within AutoRT, the ensemble models outperformed 
individual models in all the three datasets, with an average of 24%, 18% and 18% improvement, 
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respectively (Supplementary Fig. S2). This result clearly indicates that combining multiple 
models can improve the performance of RT prediction. We have included these results in the 
revised manuscript (Page 6-7).  

 
2) Why did the authors not use dropout during learning to avoid over fitting of the RT prediction 
model? Especially the last transfer learning step, where a fixed number of epochs was used with 
no early stopping, can lead to high levels of overfitting (see Figure 1e). While the bagging should 
circumvent this to some degree, the authors should provide an analysis which evaluates the level 
of overfitting (if present). This is especially the case when LC-MS/MS run-specific models are 
trained where the number of available training data is low. 
 
Response: We are sorry this was not clearly described in the original manuscript. We actually 
used dropout during training. We considered different dropout rates during the neural architecture 
search as described in Supplementary Table S11. In the revised manuscript, we added a sentence 
to clarify this in the Methods section (Page 17). During the revision, we further added early 
stopping and described this in the Methods section (Page 18).  To evaluate the level of overfitting, 
we selected three runs from each of the three datasets and compared the prediction errors on the 
training and independent testing data. The prediction error distributions were comparable between 
the training and testing data, and only a slight increase of the median was observed in the testing 
data (Supplementary Fig. S3). Therefore, overfitting is not a major issue here. We included this 
information in the revised manuscript (Page 7). 
 
3) Using the difference in retention time as an additional feature to separate correct from incorrect 
matches has been proposed and used for quite some time now and is, in itself, not novel. 
Additionally, deep learning has been applied with success to RT prediction in prior literature. I 
question the improvement over the state of the art.  
 
Response: As mentioned in our response to comment #1 from the reviewer, we have compared 
AutoRT with three recently published deep learning-based RT prediction tools and have included 
the results in the revision.  
 
AutoRT was used here to evaluate whether the identification which are not retained by PepQuery 
have an overall higher RT deviation compared to those who are retained and was not used as an 
additional quality metric in the final pipeline, i.e. as part of the FDR control. 
 
Response: We thank the reviewer for this useful comment. During the revision, we added an 
optional AutoRT step in NeoFlow so that delta RT can be used as an additional filter if GPU is 
available to run AutoRT. Although this is helpful as shown in our newly added analysis of an 
immunopeptidome dataset, we believe a more effective approach to improve peptide identification 
is to incorporate delta RT as a feature into PSM scoring in combination with other features rather 
than simply using delta RT as an additional filter for PSMs. We noted this in the Discussion section 
(Page 13). We have an on-going project on re-scoring PSMs by integrating delta RT with other 
features using semi-supervised machine learning, which will need more time to develop and will 
be reported in a future manuscript.  
 
4) The authors argue that this study provides “novel insight and clear guidance on the selection 
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of quality control strategies [for variant peptides identification]”. However, I have difficulty 
seeing this. The final proposed workflow makes use of the combined results of all three 
evaluated search engines, rather than clear guidance. This will obviously lead to higher numbers 
(as prior literature has shown that combining search results of multiple search engines increases 
the number of peptides), especially since the authors chose to compare their results against the 
“most stringent” FDR setting. In addition, the authors write that further investigation is necessary 
to check the quality of the identified variant peptides (because of the high absolute RT difference 
some peptides had even after PepQuery filtering). Given this analysis, it is still unclear what the 
final FDR of the filtered list of peptides is and how many of the variant peptide which have 
passed PepQuery might still be wrong. 
 
Response: We agree with the reviewer that the true FDR of the filtered list of peptides is 
difficult to know exactly without a controlled experiment. However, we believe our study has 
provided practical guidance on the selection of quality control strategies. As mentioned in the 
first paragraph in the Discussion section, “among all quality control strategies investigated, 
global FDR control followed by PepQuery validation offered the highest sensitivity while 
identifying high quality variant peptides. We thus recommend this quality control strategy for 
variant peptide identification and neoantigen prioritization in future proteogenomic studies”.  
 
Although the primary goal of the study was to compare different quality control strategies, our 
results also revealed the performance difference of different search engines in proteogenomics 
search. Among the three search engines, MS-GF+ showed the highest sensitivity in variant 
peptide identification both before and after PepQuery validation (Fig. 3). Meanwhile, MS-GF+ 
also identified higher percentages of variant peptides that failed PepQuery validation, suggesting 
higher risk in bringing in more false positives when used without PepQuery validation. X! 
Tandem showed the lowest sensitivity among the three, and we would not recommend using this 
search engine by itself in proteogenomics search. However, when used together with other 
search engines, it may still add unique variant identifications to improve the overall sensitivity 
(Fig. 7). We included this information in the Discussion section of the revised manuscript (Page 
13). In addition, as mentioned above, we added an optional AutoRT step in NeoFlow during the 
revision so that delta RT can be used as an additional filter if GPU is available to run AutoRT.  
 
5) For proper comparison, it seems logical to compare and state the increase in comparison to the 
best performing existing solution (i.e. MS-GF+-Global FDR + PepQuery; ~15% increase) rather 
than the worst tested setting. 
 
Response: Comparing with the worst tested setting highlights the value of the optimized 
approach and the problem when suboptimal methods were used for database search and FDR 
control, whereas comparing with the best tested single search engine setting reveals specifically 
the added value of combing results from multiple search engines. Both comparisons provide 
useful information and thus we updated this sentence in the revision: “These numbers represent 
an average increase of 11% from those reported by MS-GF with global FDR control, the best 
single search engine setting tested, and an average increase of 151% from those reported by 
X!Tandem with two-stage FDR control, the worst tested setting.” (Page 10-11)  
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6) Having established a final workflow for neoantigen prediction, I recommend to show its 
application by re-analyze a study which directly investigated the immunopeptidome (e.g. ref 34). 
 
Response: Excellent suggestion. We applied the workflow to a published immunopeptidomics 
study (Ref 35) and included the results in the revised manuscript (Page 11). The RT prediction 
models trained for this dataset showed similar performance to those trained on the CPTAC datasets 
(Supplementary Fig. S5). NeoFlow identified nine out of the 11 somatic variant peptides reported 
in the original study and four additional somatic variant peptides (Supplementary Table 10). The 
two somatic variant peptides reported in the original paper but not identified by NeoFlow showed 
obviously higher absolute RT errors, suggesting the possibility of false positives. Among the four 
newly identified somatic variant peptides, two have been reported in a recently published 
reanalysis of the same dataset (Ref 36). These results demonstrate the sensitivity and specificity 
of NeoFlow in analyzing immunopeptidomics data and the value of RT-based validation as an 
additional filter to reduce false positives. 
 
Minor remarks: 
 
1) Drop-out can be used to simulate a Bayesian prediction and thus a simpler approach to 
bagging because it does not rely on multiple models being trained. It would be interesting to see 
whether the chosen approach has any benefit compared to that. 
 
Response: As mentioned in our response to Comment #2, we already used dropout during training. 
Moreover, as mentioned in our response to Comment #1, the ensemble models outperformed 
individual models in all the three datasets, with an average of 24%, 18% and 18% improvement, 
respectively (Supplementary Fig. S2). This result clearly indicates that combining multiple models 
can improve the performance of RT prediction. We have included these comparison results in the 
revised manuscript (Page 6-7). 
 
2) In Figure 7 a-c, it is not obvious why a column can represent the same neoantigen but with 
differing numbers of mutations. Can the author comment on this? 
 
Response: Sorry about the confusion. In Figure 7 a-c, each column represents a sample, not a 
neoantigen. Each cell in the figure represents the number of somatic mutations with predicted 
neoantigens in the corresponding sample. We have clarified this in the legend of Figure 7 in the 
revised manuscript. 
 
3) Numbers of variant peptides identified across the different datasets varies a lot. I am 
somewhat surprised by this as for example the TMT dataset identifies significantly more in 
comparison to the label free approach. Given that most of the mutations are not shared between 
patients, I would have expect a dilution effect for patient-specific mutations (1 out of 10 samples 
contains one), which would reduce the chances of triggering a high quality MS/MS on those. 
Can the authors comment on this? Does, for example, the higher ratio of b-ions help in 
confidently identifying site specific ions for variant peptides? 
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Response: There are two major reasons for the highly different variant peptide numbers across 
the three datasets. First, each sample in the label free, TMT, and iTRAQ data had 6 , 12, and 24 
fractions, respectively. Second, each iTRAQ and TMT samples include multiplexed tumor 
samples, leading to higher diversity and increased numbers of variants. The detailed total 
numbers of identified peptides for both reference peptides and variant peptides are shown in the 
table below for the label-free and TMT studies, which were generated from the same set of colon 
cancer samples. Consistent with the reviewer’s expectation, label-free data had a slightly higher 
detection ratio of variant peptides compared with TMT data as shown below. 
 
# of reference 
peptides 

# of variant 
peptides 

Dataset FDR 
method 

Software Detection ratio of 
variant peptides 

90979 1389 Label free Global FDR Comet 1.53% 

128797 1255 TMT Global FDR Comet 0.97% 

107617 1617 Label free Global FDR MS-GF+ 1.50% 

142013 1497 TMT Global FDR MS-GF+ 1.05% 

84958 1377 Label free Global FDR X!Tandem 1.62% 

124652 1285 TMT Global FDR X!Tandem 1.03% 

 
 
4) What are the proportions of decoys variant peptides being filtered out by PepQuery (Fig 
1b,d,f)? 
 
Response: To address this comment, we examined the search results from MS-GF+ with global 
FDR estimation on the iTRAQ dataset because this analysis reported the largest number of 
variant peptide identifications. Across all samples, an average of 86% decoy variant peptides 
were filtered out by PepQuery.  
 
 
5) What is the distribution predicted binding affinities of the neoantigens? Why did the authors 
chose 150nM as a filter? 
 
Response: The predicted binding affinities of all neoantigens without filtering are shown in the 
figure below for each dataset, respectively. The binding affinity threshold of 150 nM was chosen 
because it has been used in many previous publications (PMID: 24891321, PMID: 28484631, 
PMID: 30568305, PMID: 28678778, PMID: 27187383, PMID: 31031003 and PMID: 31675502) 
and is considered as an indication of a strong binder. This has been clarified in the Method section 
(Page 21). 
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6) Can the authors comment on the usefulness of this approach versus directly measuring the 
presented (neo)antigens (as in ref 34)? 
 
Response: NeoFlow can be applied to both global proteomics data from tumor tissues and 
imunopeptidomics data (directly measuring the presented (neo)antigens). Analysis of both types 
of data requires HLA typing, MS/MS searching, and binding affinity prediction. 
Imunopeptidomics data provide direct evidence of both expression and presentation of somatic 
variant peptides, and when imunopeptidomics data is not available, global proteomics data from 
tumor tissues can provide expression evidence for somatic variants. We included this information 
in the Discussion section (Page 13). 
 
 
 



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors have addressed my concerns well. 

My only suggestion for revisions would be to supply the delta RT values for the predicted 

neoantigen peptides described on the bottom of page 10 from the label free, iTRAQ and TMT 

datasets. Do all of these predicted neoantigens also have satisfactory delta RT values, which would 

supply even more confidence to these peptides. 

Reviewer #3 (Remarks to the Author): 

The revised manuscript submitted by Bo Wen et al has been substantially improved. I am 

particularly delighted to see that the authors have toned down the wording with respect to the 3-

times improvement they observed. The authors have largely addressed my previously raised major 

and minor concerns. 

Open issues are: 

The authors state that “Although RT has been suggested as a useful constraint in database 

searching (32), it is typically not used in peptide identification and is independent of the FDR 

estimation.” 2003). While this is in principle correct that RT is not commonly used, since 2003 (ref 

32) additional research was done on integrating RT information into the proteomics workflow and 

the authors are not the first to try/do this in general. I urge the authors to cite the relevant 

literature here as well and rephrase the sentence to account for that. 

Adding AutoRT solely as an optional feature in NeoFlow begs the question of what the contribution 

of RT information actually is in the proposed workflow. How much does AutoRT add in comparison 

to using the previous version of PepQuery. Does the here proposed workflow significantly improve 

the status quo. 

One additional minor issue which came up with these revisions, it is not entirely clear to me 

whether the other deep learning models were re-trained individually on the three tested datasets 

or pre-trained models were used. In case pre-trained models were used, the comparison is flawed 

by their own argumentation and a comparison between transfer learned and non-transfer learned 

models obviously favors the first. This should then be mentioned in the manuscript. 



Re: NCOMMS-19-25550A “Cancer neoantigen prioritization through sensitive and reliable 
proteogenomics analysis”  
 
REVISIONS IN RESPONSE TO REVIEWERS’ COMMENTS 
 
We thank the reviewers for the comments and suggestions. We have considered all comments and 
suggestions and revised the manuscript accordingly. Please see below for a point by point response 
to each of the points made by the reviewers. 
 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed my concerns well. 
 
My only suggestion for revisions would be to supply the delta RT values for the predicted 
neoantigen peptides described on the bottom of page 10 from the label free, iTRAQ and TMT 
datasets. Do all of these predicted neoantigens also have satisfactory delta RT values, which 
would supply even more confidence to these peptides. 
 
Response: Thanks for the useful suggestion. In the revised manuscript, we have added the delta 
RT values for predicted neoantigen peptides from all the three proteomics datasets in 
Supplementary Data 7, 8 and 9. We also summarized the data in the newly added Supplementary 
Figure 5, which shows that the median absolute RT errors for these neoantigen peptides are 
comparable with those for reference peptides (Figure 2b-d), suggesting an overall high quality of 
the neoantigen identifications. 
 
 
Reviewer #3 (Remarks to the Author): 
 
The revised manuscript submitted by Bo Wen et al has been substantially improved. I am 
particularly delighted to see that the authors have toned down the wording with respect to the 3-
times improvement they observed. The authors have largely addressed my previously raised 
major and minor concerns. 
Open issues are: 
The authors state that “Although RT has been suggested as a useful constraint in database 
searching (32), it is typically not used in peptide identification and is independent of the FDR 
estimation.” 2003). While this is in principle correct that RT is not commonly used, since 2003 
(ref 32) additional research was done on integrating RT information into the proteomics 
workflow and the authors are not the first to try/do this in general. I urge the authors to cite the 
relevant literature here as well and rephrase the sentence to account for that. 
 
Response: We thank the reviewer for this suggestion. We did an extensive literature review and 
added all relevant papers (PMID: 29863353, 15359729, 31260443 and 17622186) in the 
introduction section on page 5.  “Although a few studies have showed the value of integrating RT 
information into the proteomics data analysis workflow26, 32-35, RT is typically not used in peptide 
identification”. 



 
Adding AutoRT solely as an optional feature in NeoFlow begs the question of what the 
contribution of RT information actually is in the proposed workflow. How much does AutoRT 
add in comparison to using the previous version of PepQuery. Does the here proposed workflow 
significantly improve the status quo. 
 
Response: To evaluate the added value of AutoRT in the proposed workflow, we added the delta 
RT values for predicted neoantigen peptides from all the three proteomics datasets in 
Supplementary Data 7, 8 and 9. We summarized the data in the newly added Supplementary 
Figure 5 and added a new paragraph in the results section on Page 11:  
 
“Across all three datasets, putative neoantigens identified by different search engines using 
different FDR estimation methods in combination with PepQuery filtering showed an average 
median absolute RT error of 0.64 minutes (Supplementary Fig. 5, Supplementary Data 7-9), 
which was comparable to those for reference peptides (Fig. 2b-d). Despite the overall high 
quality of these putative neoantigen identifications, there were some clear outliers 
(Supplementary Fig. 5). On average, 7% of these identifications showed an RT error higher 
than 5 minutes and may thus require more critical evaluation.”  
 
We further clarified this result in the discussion section on Page 13: 
 
“The RT errors of variant peptides that passed PepQuery validation were comparable to those of 
reference peptides in corresponding datasets; however, some variant peptides had high RT 
errors. This may be explained by different reasons such as inaccurate RT prediction and wide 
elution time range for some peptides, and false variant peptide identification is also a possible 
explanation. Therefore, the RT errors included in the final report of NeoFlow provide 
orthogonal information that facilitates candidate prioritization for experimental validation.” 
 
AutoRT was added only as an optional feature in NeoFlow because it requires GPUs that are not 
available in many proteomics labs. Although these labs will not be able to compute delta RTs for 
their own datasets, they can still use our standardized pipeline optimized in this study using an 
AutoRT-derived evaluation metric. To fully incorporate RT in peptide identification, a more 
effective approach is to add delta RT as a feature in a scoring algorithm so that it can be 
combined with other factors for PSM scoring. To fully evaluate the added benefit, we will need 
to identify a new evaluation metric that is independent of PSM scoring and RT, which could be 
an interesting topic for a future study. We clarified this in the discussion section on Page 13: 
 
“Rather than using RT errors as an optional feature to filter PSMs, a more effective approach to 
improve peptide identification is to incorporate AutoRT-derived delta RT as a feature into PSM 
scoring in combination with other features. However, such implementation will require graphics 
processing units (GPUs) for PSM scoring, and thus will be more useful when GPUs are widely 
accessible in proteomics laboratories.” 
 
 
One additional minor issue which came up with these revisions, it is not entirely clear to me 
whether the other deep learning models were re-trained individually on the three tested datasets 



or pre-trained models were used. In case pre-trained models were used, the comparison is flawed 
by their own argumentation and a comparison between transfer learned and non-transfer learned 
models obviously favors the first. This should then be mentioned in the manuscript. 
 
Response: We are sorry this was not clear in the previous version of the manuscript. In the 
revised manuscript, we have clearly pointed out that “All the tools compared in this study were 
trained from scratch using the same training data used for AutoRT.” (page 19). 
 
 
 
 
 
 


