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Materials and Methods 

Epidemiological data 

No officially reported line list was available for cases in China (26). We use a standardised 

protocol (27) to extract individual level data from December 1st, 2019 - February 10th, 2020 (8). 

Sources are mainly official reports from provincial, municipal or national health governments. 

Data included basic demographics (age, sex), travel histories and key dates (dates of onset of 

symptoms, hospitalization, and confirmation). Data were entered by a team of data curators on a 

rolling basis and technical validation and geo-positioning protocols were applied continuously to 

ensure validity. A detailed description of the methodology is available (8). Lastly, total numbers 

were matched with officially reported data from China and other government reports. For 

sensitivity, GLM analyses (see below) were performed with case counts from the World Health 

Organization. 

Proportions of symptomatic travelers 

The proportion of cases who travelled while symptomatic was assessed from a subset of 236 

cases for whom the dates of symptom onset and departure from Wuhan were available. 

Residency was split into three categories: Wuhan, China and International. Foreigners living in 

Wuhan were categorized as Wuhan and patients with missing Wuhan residency were either kept 

as missing values or categorized according to their country of origin. Both parametric (χ² test, 

(28)) and non-parametric (exact Fisher test, (29)) tests were performed and the uncertainty in 

proportions was assessed by the standard deviation of sample proportions. 

Statistical inference of the incubation period 
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The incubation period is the time interval between infection and symptom onset. We assumed 

that cases travelling from Wuhan were exposed during their stay in Wuhan. We estimated the 

incubation period from 38 travelling cases returning from Wuhan with known dates of symptom 

onset, entry and exit. The end of the exposure period was assumed to be the exit travel date 

except if symptom onset occurred prior to the exit date (in which case exposure was assumed to 

have occurred prior to symptom onset). The start of the exposure period corresponded to the 

entry date. We assumed that the incubation period could not exceed 30 days. 

For each case, the minimum and maximum incubation period was derived from the dates of 

entry, exit and symptom onset  

𝐼𝐶#$% = 𝑜𝑛𝑠𝑒𝑡 − 𝑒𝑛𝑡𝑟𝑦 

𝐼𝐶#/0 = 𝑜𝑛𝑠𝑒𝑡 − 𝑒𝑥𝑖𝑡 

We fitted a truncated gamma distribution (0 to 30 days) and estimated the mean and variance of 

the incubation period using Markov Chain Monte Carlo (MCMC) in a Bayesian framework 

using an uninformative prior distribution. We derived the likelihood as follows: 

𝐿 =
𝑃5(𝐼𝐶 ≤ 	 𝐼𝐶#$% + 1) − 𝑃5(𝐼𝐶 ≤ 	 𝐼𝐶#/0)

𝑃5(𝐼𝐶 ≤ 	30)

A Metropolis-Hastings algorithm was implemented in R. Marginal posteriors were sampled from 

a chain of 5,000 steps after discarding a burn-in of 50 steps. Convergence was inspected visually. 

Models of shifting age and sex distributions 

Age and sex distributions are important in understanding risk of infection across populations. 

Assuming risk to be distributed relatively equally across a population, as an outbreak evolves age 
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and sex distributions should follow the underlying population structure. Varying degrees of 

immunity and exposure may shift these distributions (30). To examine whether the ongoing 

outbreak shifted from an epidemic concentrated in Wuhan and among travelers from Wuhan to 

an epidemic that was self-sustained in provinces across China we use age and sex data from 

different periods of the outbreak for individuals with reported travel history and no known travel 

history. We define two periods of the outbreak, an “early” phase, starting with the first reports in 

early December and ending a set number of days after the Wuhan shutdown. This was selected to 

be 8 days after the Wuhan shutdown, which conservatively corresponds to one incubation period 

+ 1SD (see above) after the shutdown. After that date (i.e. 1st Feb 2020; the “later” phase) we 

assume that most reported transmissions in provinces outside of Wuhan are the result of local 

transmission. We further divided our data in those that had cases with known travel history to 

Wuhan and those who did not. Then we produce the following summary statistics: 

 

1. Average age stratified by sex for all cases with reported travel history to Wuhan. 

2. Average age stratified by sex for all cases with no reported travel history to Wuhan in the 

period between December 1, 2019 - January 31, 2020. 

 

We then compare these with: 

3. Average age stratified by sex for all cases with no reported travel history to Wuhan in the 

period between January 31, 2020 - February 10, 2020. 

 

Model M1 compares the distribution of age and sex among travelers to the reported infections 

outside Wuhan with no known travel history. In case these two distributions are similar, import 
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driven epidemic can be concluded. Under our model assumptions M2, if the epidemic was driven 

largely by importations across the two time periods, all age and sex distributions should mirror 

those of the reported traveler infections. Under our model assumptions M3, if the epidemic was 

driven by other factors (i.e., local transmission), the two distributions should vary across the two 

time periods. 

 

We cannot exclude the possibility that shifts in distributions may be due to heightened awareness 

among the general population which may have increased reporting in female cases later in the 

epidemic. Further, more work will be necessary to understand the differential risk of severe or 

symptomatic disease to fully understand the age and sex distributions in this outbreak. For 

example, why there are relatively few reports of cases <18y old. However, as for other 

respiratory pathogens symptomatic and severe infection were more concentrated in older 

populations. We do not intend to make any general statements about differential risk but were 

more interested in shifts in reported cases across multiple geographies in China. 

 

Real time human mobility data 

We extract human mobility data from the Baidu Qianxi web platform, which presents daily 

population travels between cities or provinces tracked through the Baidu Huiyan system. The 

data do not represent numbers of individual travelers but rather an index of relative movements 

constructed by Baidu’s proprietary methods which are correlated with human mobility (31) 

(http://qianxi.baidu.com/). In particular, two pieces of information are collected. First, we extract 

a series of migration scale indices for traveling out of Wuhan, from January 1st to February 10, 

both in 2019 and 2020. Second, we obtain the proportion of human movement from Wuhan were 
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bound for each of 31 provinces in China. These proportions are available for January 1st - 

February 10, 2020. Based on this data we had access to both changes in mobility volume and 

changes in mobility direction. See more detailed descriptions of the human movement data here: 

(32, 33). As of 2017, Baidu Inc’s. mapping service had a 30% market share in China (34). 

 

Review of interventions, testing capacity and reporting shifts 

We reviewed the literature and online social media to understand the key timings of interventions 

and announcements that are relevant for disease transmission across China. We collated 

information about the type (e.g., announcement of outbreak, travel restrictions, isolation of 

patients, etc.), geographic location (e.g., city where available, province), and timing (specific 

date or date range). 

 

COVID-19 case definitions: 

Definitions of probable and confirmed COVID-19 cases have changed throughout the epidemic. 

We collected data from official sources describing the timing and specifics of the case 

definitions. 

 

From January 18-22: 

Probable: Need to satisfy (i) and (ii): 

i. Clinical symptoms: (1) fever; (2) imaging showing pneumonia typical of the disease; (3) 

during early disease, total white cells normal or reduced, or lymph cell count reduced. 
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ii. Epidemiologic history: (1) within 2 weeks of symptom onset, Wuhan travel or resident 

history; or within 2 weeks of symptom onset, contact with persons from Wuhan who had fever 

with respiratory symptoms; or belong to a cluster. 

Confirmed: Need to satisfy criteria for probable case and have a real-time quantitative 

polymerase chain reaction (RT-qPCR) positive result from sputum, nasopharyngeal swabs, lower 

respiratory tract secretions or other sample tissue, or genome sequencing highly similar with 

known SARS-CoV-2. available strains. 

 

From January 22-23: 

Probable: Need to satisfy (i) and any one epidemiologic history described in (ii): 

i. Clinical symptoms: (1) fever; (2) imaging showing pneumonia typical of the disease; (3) 

during early disease, total white cells normal or reduced, or lymph cell count reduced 

ii. Epidemiologic history: (1) within 2 weeks of symptom onset, Wuhan travel or resident 

history; (2) within 2 weeks of symptom onset, contact with persons from Wuhan who had fever 

with respiratory symptoms; (3) belong to a cluster or had epidemiologic link with confirmed 

cases.  

Confirmed: Need to satisfy criteria for probable case and have a RT-qPCR positive result from 

respiratory or blood samples, or genome sequencing highly similar with known SARS-CoV-2. 

available strains. 

 

From January 23-27:  

Probable: Need to satisfy (i) and (ii): 
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i. Clinical symptoms: (1) fever; (2) imaging showing pneumonia typical of the disease; (3) 

during early disease, total white cells normal or reduced, or lymph cell count reduced 

ii. Epidemiologic history: within 2 weeks of symptom onset, Wuhan travel or resident history; or 

within 2 weeks of symptom onset, contact with persons from Wuhan who had fever with 

respiratory symptoms, or belong to a cluster.  

Confirmed: Need to satisfy criteria for probable case and have a RT-qPCR positive result from 

sputum, nasopharyngeal swabs, lower respiratory tract secretions, or other samples, or genome 

sequencing highly similar with known SARS-CoV-2. available strains. 

 

From January 27-February 5:  

Probable: Need to satisfy any two of the symptoms described in (i) and any of the 

epidemiological history described in (ii):  

i. Clinical symptoms: (1) fever; (2) imaging showing pneumonia typical of the disease; (3) 

during early disease, total white cells normal or reduced, or lymph cell count reduced 

ii. Epidemiologic history: (1) within 2 weeks of symptom onset, travel or resident history in 

Wuhan region or other places with sustained local transmission; (2) within 2 weeks of symptom 

onset, contact with persons from Wuhan city or other places with sustained local transmission 

who had fever with respiratory symptoms, (3) belong to a cluster or epidemiologic connection 

with COVID-19 infected persons.  

Confirmed: Need to satisfy criteria for probable case and have a RT-qPCR positive result from 

respiratory or blood samples, or genome sequencing highly similar with known SARS-CoV-2. 

available strains from lab test of respiratory or blood samples. 
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Comparing predictive models of epidemic trajectories 

To evaluate hypotheses regarding the effect of mobility and testing on COVID-19 dynamics, we 

fit three different Generalized Linear Models (GLM). Model 1 was a Poisson GLM to estimate 

daily case counts, Model 2 was a negative binomial GLM to estimate daily case counts, and 

Model 3 was a log-linear regression to estimate daily cumulative cases. BIC scores shown in Fig. 

4b are calculated on a GLM of the form Y(t) = Y(t-4) + IT(t) + M(t-5) + IM(t) where Y(t) is 

either the number of new cases observed on day t (Model 1 & 2) or cumulative number of cases 

observed through day t (Model 3), Y(t-4) represents the number of cases (or the cumulative 

number under Model 3) four days prior (median doubling time outside Hubei province), IT(t) is 

an indicator function for RT-qPCR test availability that is 1 after 19th January 2020 and 0 

before, M(t-5) is the Baidu Inc-estimated mobility between Wuhan and each province 5 days 

prior (median incubation period), and IM(t) is an indicator function which is set to 1 after 26th 

January 2020 and 0 before (which represents one median incubation period from 22nd January 

2020). Models were fit to province-level data. The three models were compared using 

differences in Bayesian Information Criteria (BIC), where larger values indicate models with 

lower relative support, and BIC>4 considered the cutoff for substantial model improvement. We 

performed a detailed sensitivity analysis on the availability of RT-qPCR tests, doubling time, and 

incubation periods. We obtained qualitatively similar results for Model 1 (Poisson GLM fit to 

daily case counts), Model 2 (negative binomial GLM fit to daily case counts), and Model 3 (log-

linear regressions fit to cumulative cases), see Table S2. In addition, we provide a full time series 

analysis of the optimal lag structure for cases and mobility for each province. Additionally, 

although BIC is considered more conservative, model selection results were confirmed using 

AIC for model selection (see Fig. 4 and Table S2). Lastly, we validated our model selection 
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results using elastic-net regression and n-fold cross validation as implemented in the R package 

GLMNET v. 2.0-18 (35, 36). 

 

Estimating epidemic doubling time 

To estimate the epidemic doubling time across each province, we fit a mixed effects Poisson 

GLM of daily case counts to days since the first case report in each province (fixed effect) and a 

random effect for each province on the slope and intercept, using the R package lme4 v.1.1-21 

(37). Daily case counts were determined using the date of symptom onset.  However, we only 

have a symptom onset date for 667 cases. Where the date of symptom onset was not available, 

we estimated the symptom onset date based on a linear regression model where symptom onset 

date was fit to confirmation date (n =632 with both onset and confirmation dates, p < 0.001, R2 = 

0.77). Using this model, we estimated the onset date for the 31,436 cases with a recorded 

confirmation date. 

 

Model selection via elastic-net regression and cross-validation 

We fit regularized Poisson and negative binomial models with an elastic net penalty, i.e., 50/50 

mixture of the lasso and ridge penalties, with the regularization coefficient (lambda) selected by 

leave-one-out cross-validation. As seen with the AIC/BIC-based model selection, the regularized 

model included terms for lagged cases, the mobility and testing indicator variables, and mobility 

out of Wuhan. The out-of-sample log likelihood for the regularized Poisson regression was -9102 

and was -22519 for the negative binomial model. The significantly worse fit for the negative 

binomial model was primarily driven by two outlier predictions, removing those results in an 

out-of-sample log likelihood for the negative binomial model of -11625. Because GLMNET has 
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not implemented a negative binomial model, we performed regularization using the Poisson 

model and estimated the overdispersion parameter using the glm.nb function in the R package 

MASS v. 7.3-51.4 (37). All code and data are available here (38). 

 

Supplementary text 

To ascertain whether earlier travel restrictions could have prevented the wide-spread increase in 

cases witnessed in late-January we constructed a simple forecasting model for COVID-19. 

Briefly, we forecast the cumulative number of cases in each Chinese province by simply 

doubling the number of cumulative cases reported six days prior. For dates prior to Jan. 28th and 

after Feb 3rd, this naive forecast produces an accurate estimate of the cumulative number of 

cases in each province (Fig. S4). However, the cumulative number of cases reported on Jan 28th 

is poorly estimated using this model (Fig. S4).  In order to accurately forecast the number of 

cases on Jan 28th, we must also include the relative amount of mobility out of Wuhan into 

various provinces in the regression model. In Fig. S4, we show how a model including only 

movement from Wuhan on January 22nd fit to the residuals from Fig. S4 is once again able to 

accurately forecast cumulative cases. This indicates that for any hope of success of controlling 

the spread of an epidemic, movement restrictions must be prompt. 
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Fig. S1. a) Dates of symptom onset before date of travel from Wuhan. b) Incubation period 

estimates and standard deviation. 
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Fig. S2. Interval between symptom onset and date of confirmation in confirmed cases with 

reported travel history in two key periods, before and after January 23, 2020. 
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Fig. S3. Map of confirmed cases of COVID-19 with known travel history and date of onset date 

before date of travel. 
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Fig. S4. Predicting COVID-19 cases using mobility data. a) Province-level cumulative cases 

on January 22nd can be accurately predicted based on simply doubling the number of cumulative 

number of cases occurring on January 16th. b) However, by Jan. 28th, the expected number of 

cases has significantly increased with respect to predictions based on cases through January 

22nd. c) By Feb. 34rd, cumulative cases are once again well estimated based on the cumulative 

number of cases in each province six days earlier, i.e., on Jan. 28th. d) The deviation in cases on 
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January 28th is well explained by the relative amount of migration out of Wuhan on January 

22nd. 
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Fig. S5. Relative importance of RT-qPCR testing vs. human mobility to improve a simple GLM 

of COVID-19 when estimating exponential growth in province-level cases. Relative 

improvement is measured as one minus the residuals of a GLM with lagged cases + RT-qPCR 

testing availability (y-axis) and a GLM with lagged cases + mobility from Wuhan. Values were 

normalized by the observed number of cases such that they ranged between 0 and 1. The 

resulting metric has a value of 0 for a model where the residual error vastly eclipses the observed 

data and a value of 1 when residual error is 0, i.e., a perfect model fit. 
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Fig. S6. Daily case counts of COVID-19 in China between January 1st and February 15th, 2020 

(log scale). 
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Fig. S7. a) Boxplots of data on age of cases reporting travel history and those that did not before 

31 January 2020 and after. b) Boxplots of data on age and sex of cases reporting travel history 

and those that did not before 31 January 2020 and after. The box and whiskers show the median, 

interquartile range, and 95% credible intervals derived from the detailed line list data. 
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Fig. S8. Correlation between total number of cases and human mobility from Wuhan. 
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Fig. S9. Time series of province-level growth rates of the COVID-19 epidemic in provinces in 

China. Estimates of the growth rate were obtained by performing a time-series analysis using 

mixed-effect model of lagged, log linear daily case counts in each province to overlapping, 

rolling seven-day windows. Above the red line are positive growth rates and below are growth 

rates that are negative. Relationship between the growth rate and human mobility at different 

times of the epidemic. Blue indicates before the implementation of the cordon sanitaire and 

green after. Similarly, data are based on log linear daily case counts in each province to 

overlapping, rolling seven-day windows. Note that daily case data are subject to fluctuations in 
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testing. 
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Date Poisson (pseudo R2) Negative Binomial (pseudo 

R2) 

01-14-2020 0.03 0.03 

01-18-2020 0.09 0.10 

01-25-2020 0.94 0.42 

01-29-2020 0.99 0.70 

Table S1. Table shows the pseudo- R2 values for Poisson and Negative Binomial GLM of daily 

case counts and 5-day lagged log mobility from Wuhan, where pseudo- R2 were calculated using 

model deviances as described (39, 40).  
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Model LM-AIC Pois-AIC NB-AIC LM-BIC Pois-BIC NB-BIC 

CASES_lag4 6339.09826 38354.086 6805.23754 6356.48767 38365.6789 6822.62694 

CASES_lag4-TEST 6239.93575 28208.9046 6482.52214 6263.12162 28226.294 6505.70802 
CASES_lag4-MOB 5538.26436 31090.6513 6134.41458 5560.77064 31107.531 6156.92086 

CASES_lag4-MOB_IND 6310.48254 38191.6028 6807.21563 6333.66841 38208.9922 6830.4015 

CASES_lag4-TEST-MOB 5405.28156 21068.2595 5729.17677 5433.41441 21090.7658 5757.30962 

CASES_lag4-MOB_IND-MOB 5520.70815 31000.071 6133.96156 5548.841 31022.5773 6162.09442 
CASES_lag4-MOB_IND-
MOB-TEST 

4971.61954 17807.4577 5676.43891 5005.37896 17835.5906 5710.19833 

Table S2. Table shows the AIC and BIC values for a log-linear regression based on cumulative 

cases, a Poisson GLM of daily case counts and a Negative Binomial GLM of daily case counts 

using seven combinations of predictors.  
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