Species Species identifier identifier ACYPL Acyrthosiphon pisum MUSPF	
identifier identifier ACYPL Acyrthosiphon pisum MUSPF Mustela putorius furo	
ACYPI Acvrthosiphon pisum MUSPF Mustela putorius furo	
AEDAE Aedes aegypti MYOLU Myotis lucifugus	
AILME Ailuropoda melanoleuca NAEGR Naegleria gruberi	
Allomyces macrogynus ATCC	
ALLMA 38327 NASVI Nasonia vitripennis	
ANOCA Anolis carolinensis NEMVE Nematostella vectensis	
ANODA Anopheles darlingi NOMLE Nomascus leucogenys	
ANOGA Anopheles gambiae NOSCE Nosema ceranae (strain BRL01)	
ASTMX Astyanax mexicanus ONCVO Onchocerca volvulus	
ATTCE Atta cephalotes ORENI Oreochromis niloticus	
AURAN Aureococcus anophagefferens ORNAN Ornithorhynchus anatinus	
Batrachochytrium	
dendrobatidis (strain JAM81	
BATDJ / FGSC 10211) ORYLA Oryzias latipes	
BETVU Beta vulgaris subsp. vulgaris OTOGA Otolemur garnettii	
BODSA Bodo saltans PANTR Pan troglodytes	
BOMMO Bombyx mori PAPAN Papio anubis	
BOVIN Bos taurus PARTE Paramecium tetraurelia	
BRUMA Brugia malavi PEDHC Pediculus humanus subsp. corpo	ris
CAEBE Caenorhabditis brenneri PELSI Pelodiscus sinensis	
Perkinsus marinus (strain ATCC	
CAEBR Caenorhabditis briggsae PERM5 50983 / TXsc)	
CAEEL Caenorhabditis elegans PHAAN Phaseolus angularis	
Phytophthora infestans (strain T	30-
CAERE <i>Caenorhabditis remanei</i> PHYIT 4)	
CALJA Callithrix jacchus PHYNI Phytophthora nicotianae	
Phytophthora parasitica (strain	
CANLF Canis lupus familiaris PHYPN INRA-310)	
Phytophthora parasitica P1569/	
CAVPO Cavia porcellus PHYPR Phytophthora parasitica P10297	
CHICK Gallus gallus PHYRM Phytophthora ramorum	
CHLRE Chlamydomonas reinhardtii PHYSP Phytophthora sojae (strain P649	7)
CHLSB Chlorocebus sabaeus PIG Sus scrofa	
CIOIN Ciona intestinalis PLABS Plasmodiophora brassicae	
CIOSA Ciona savignyi POEFO Poecilia formosa	
CRAGI Crassostrea gigas PONAB Pongo abelii	
CULQU Culex quinquefasciatus PRIPA Pristionchus pacificus	
DANRE Danio rerio PSEPJ Pseudocohnilembus persalinus	
DAPPU Daphnia pulex PYTUL Pythium ultimum DAOM BR144	
DENPD Dendroctonus ponderosae RABIT Orvctolagus cuniculus	
DROAN Drosophila ananassae RAT Rattus norvegicus	
DROGR Drosophila grimshawi RETFI Reticulomyxa filosa	
DROME Drosophila melanogaster RHOPR Rhodnius prolixus	
Salningoeca rosetta (strain ATC)	2
DROMO Drosophila mojavensis SALR5 50818 / BSB-021)	~
Saprolegnia parasitica (strain C	BS
DROPE Drosophila persimilis SAPPC 223.65)	
Drosophila pseudoobscura	
DROPS pseudoobscura SARHA Sarcophilus harrisii	

DROSE	Drosophila sechellia	SARSC	Sarcoptes scabiei
DROSI	Drosophila simulans	SCHMA	Schistosoma mansoni
DROVI	Drosophila virilis	SELML	Selaginella moellendorffii
DROWI	Drosophila willistoni	SHEEP	Ovis aries
EMIHU	Emiliania huxleyi	SPIPN	Spizellomyces punctatus DAOM BR117
ENTBH	Enterocytozoon bieneusi (strain H348)	STRMM	Strigamia maritima
FELCA	Felis catus	STRPU	Strongylocentrotus purpuratus
FICAL	Ficedula albicollis	STRRB	Strongyloides ratti
GASAC	Gasterosteus aculeatus	STYLE	Stylonychia lemnae
GIAIN	Giardia intestinalis	TAKRU	Takifugu rubripes
GONPR	Gonapodva prolifera JEL478	TETNG	Tetraodon nigroviridis
GORGO	Gorilla gorilla gorilla	TETTS	Tetrahymena thermophila (strain SB210)
GUITH	Guillardia theta CCMP2712	TETUR	Tetranychus urticae
HAMHA	Hammondia hammondi	THAOC	Thalassiosira oceanica
HELRO	Helobdella robusta	THAPS	Thalassiosira pseudonana
HETGA	Heterocephalus glaber	THETB	Thecamonas trahens ATCC 50062
HORSE	Equus caballus	TOXGV	Toxoplasma gondii (strain ATCC 50861 / VEG)
HUMAN	Homo sapiens	TRIAD	Trichoplax adhaerens
ICHMG	Ichthyophthirius multifiliis (strain G5)	TRICA	Tribolium castaneum
ICTTR	Ictidomys tridecemlineatus	TRIVA	Trichomonas vaginalis
			Trypanosoma cruzi (strain CL
IXOSC	Ixodes scapularis	TRYCC	Brener)
LATCH	Latimeria chalumnae	TRYCR	Trvpanosoma cruzi Dm28c
LEIBR	Leishmania braziliensis	TRYRA	Trypanosoma rangeli SC58
LEIIN	Leishmania infantum	VITBC	Vitrella brassicaformis (strain CCMP3155)
LEIMA	Leishmania maior	XENTR	Xenopus tropicalis
LEPOC	Lepisosteus oculatus	XIPMA	Xiphophorus maculatus
LEPSE	Leptomonas sevmouri	ZOONE	Zootermopsis nevadensis
LOTGI	Lottia gigantea	9EIME	Eimeria mitis
LOXAF	Loxodonta africana	9EUKA	Spironucleus salmonicida
LUCCU	Lucilia cuprina	9FUNG	Rozella allomycis CSF55
MACEA	Macaca fascicularis	9MICR	Anncalija algerae PRA109
MACMU	Macaca mulatta	9SPIT	Oxytricha trifallax
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Saprolegnia diclina VS20/ Albugo
			candida/ Aphanomyces invadans/
MONBE	Monosiga brevicollis	9STRA	Aphanomyces astaci
			Phytomonas sp. isolate Hart1/
			Phytomonas sp. isolate EM1/
			Leptomonas / Strigomonas culicis
MONDO	Monodelphis domestica	9TRYP	pyrrhocoris/ Angomonas deanei
MOUSE	Mus musculus		

Table S1. Eukaryotic species with orthologous sequences in the G3PO benchmark.

		Hum	an referen	ce protein			No. of
BBS family	Uniprot name	Uniprot Access	Length (AA)	No. of domains	No. of repeats	No. of low complexity regions	orthologous sequences
BBS 1	BBS1_HUMAN	Q8NFJ9	593	1	0	7	127
BBS 2	BBS2_HUMAN	Q9BXC9	721	3	0	3	119
BBS 3	ARL6_HUMAN	Q9H0F7	186	1	0	1	119
BBS 4	BBS4_HUMAN	Q96RK4	519	10	10	5	130
BBS 5	BBS5_HUMAN	Q8N3I7	341	1	0	0	125
BBS 6	MKKS_HUMAN	Q9NPJ1	570	1	0	0	54
BBS 7	BBS7_HUMAN	Q8IWZ6	715	2	0	2	117
BBS 8	TTC8_HUMAN	Q8TAM2	541	8	8	5	138
BBS 9	PTHB1_HUMAN	Q3SYG4	887	2	0	5	131
BBS 10	BBS10_HUMAN	Q8TAM1	723	1	0	4	37
BBS 11	TRI32_HUMAN	Q13049	648	6	5	3	40
BBS 12	BBS12_HUMAN	Q6ZW61	710	1	0	3	44
BBS 13	MKS1_HUMAN	Q9NXB0	559	1	0	6	90
BBS 15	FRITZ_HUMAN	O95876	746	3	2	6	71
BBS 16	SDCG8_HUMAN	Q86SQ7	713	1	0	8	54
BBS 17	LZTL1_HUMAN	Q9NQ48	299	1	0	4	79
BBS 18	BBIP1_HUMAN	A8MTZ0	92	1	0	2	36
BBS 19	IFT27_HUMAN	Q9BW83	181	1	0	0	85
BBS 20	IFT74_HUMAN	Q96LB3	600	0	0	4	131
BBS 21	CH037 HUMAN	Q96NL8	207	1	0	4	66

Table S2. Bardet-Biedl Syndrome (BBS) protein families used in the benchmark. 'Low complexity regions' include predicted low complexity, disordered and coiled coil regions.

		Clade		No. of species	No. of sequences	No. of Confirmed sequences
		Chardete	Craniata	46	766	503
		Choruata	Tunicata	2	25	9
с,	g	Moll	usca	2	33	12
onta	azo	Platyhel	minthes	1	10	1
okc	leta	Panarth	ropoda	29	264	96
sth	2	Nema	atoda	8	71	28
iqC		Cnic	laria	1	18	8
\cup		Others N	Metazoa	3	49	18
		Fungi		8	25	11
	C	hoanoflagel	lida	2	22	5
	Stra	menopila		12	172	88
	Eug	glenozoa		9	149	60
	Viri	diplantae		4	12	4
	Al	veolata		11	99	24
	R	hizaria		2	21	5
	(Others		7	57	17

Table S3. Phylogenetic distribution of benchmark sequences. 'Others Metazoa' contains 3 species that were not classified in one of the main groups, and 'Others' contains 7 unicellular eukaryote species.

Uniprot Species	No. of	No. of Unconfirmed	% Unconfirmed	Uniprot Species	No. of	No. of Unconfirmed	% Unconfirmed
identifier	sequences	sequences	sequences	identifier	sequences	sequences	sequences
HUMAN	20	0	0	FICAL	1/	10	59
HORSE	20	3	15	DROSE	10	6	60
RAT	20	3	15	LEIBR	10	6	60
CALJA	19	3	16	THECL	10	6	60
MOUSE	19	3	16	TRYB2	10	6	60
RABIT	18	3	17	TRYRA	10	6	60
BRUPA	10	2	20	CHLRE	13	8	62
CHLSB	20	4	20	PLABS	13	8	62
PONAB	20	4	20	PYTUL	13	8	62
LOXAF	19	4	21	9HYME	45	28	62
NOMLE	19	4	21	PELSI	19	12	63
XIPMA	19	4	21	ACREC	11	7	64
MACFA	18	4	22	CAERE	11	7	64
BOVIN	21	5	24	CULQU	11	7	64
GORGO	19	5	26	ENTVE	11	7	64
MACMU	19	5	26	PHYNI	11	7	64
TETNG	15	4	27	SALR5	11	7	64
ACYPI	10	3	30	VITBC	14	9	64
PHYIT	13	4	31	9BILA	38	25	66
PHYSP	13	4	31	LEIIN	12	8	67
AILME	19	6	32	MICPC	12	8	67
OTOGA	19	6	32	STYLE	12	8	67
PIG	19	6	32	9TRYP	54	36	67
POEFO	19	6	32	ASTMX	19	13	68
MUSPF	18	6	33	ALLMI	16	11	69
PHYPR	24	8	33	AEDAE	10	7	70
CAVPO	20	7	35	PHYRM	10	7	70
ICTTR	17	6	35	CRAGI	17	12	71
CANLF	19	7	37	STRMM	14	10	71
TAKRU	16	6	38	CAEBE	11	8	73
TRIAD	16	6	38	LEIMA	11	8	73
TRYCR	16	6	38	NASVI	11	8	73
FELCA	18	7	39	PEDHC	11	8	73
FUKDA	18	7	39	MYOBR	19	14	74
PANTR	18	7	39	CHEMY	12	9	75
SARHA	18	7	39	CIOSA	12	9	75
9STRA	46	18	39	MICCC	12	9	75
STREA	10	4	40	NAEGR	12	9	75
BRUMA	12	5	42	TOXCA	12	9	75
PHYPN	12	5	42	STRPU	20	15	75
PAPAN	19	8	42	9SPIT	13	10	77
DANRE	21	9	43	HAECO	13	10	77

CASAC	16	7	4.4		12	10	77
OBVLA	16	7	44	NUDDD	13	10	77
OKYLA	10	/	44	NIPBK	10	10	70
ANOCA	18	8	44	AMPQE	18	14	/8
SHEEP	18	8	44	AMAAE	14	11	79
ORENI	20	9	45	PARTE	14	11	79
LOALO	11	5	45	TUPCH	14	11	79
TRICA	11	5	45	ANOGA	10	8	80
TRIVA	13	6	46	ASCSU	10	8	80
HETGA	17	8	47	CAEBR	10	8	80
MONDO	19	9	47	PAPMA	10	8	80
ORNAN	19	9	47	PSEPJ	10	8	80
PARTI	10	5	50	TETUR	10	8	80
CHICK	16	8	50	OIKDI	11	9	82
TRYCC	18	9	50	RHOPR	11	9	82
XENTR	20	10	50	ECTSI	13	11	85
MYODS	15	8	53	9TREM	18	16	89
9EUKA	13	7	54	9TELE	19	17	89
CIOIN	13	7	54	9CHLO	10	9	90
ZOONE	13	7	54	CLOSI	10	9	90
ATTCE	11	6	55	DRAME	10	9	90
CAMFO	11	6	55	NECAM	10	9	90
LEPSE	11	6	55	SCHHA	10	9	90
ONCVO	11	6	55	SCHMA	10	9	90
VOLCA	11	6	55	CAMFR	11	10	91
BRAFL	20	11	55	DANPL	11	10	91
LEPOC	20	11	55	DAPPU	11	10	91
MYOLU	18	10	56	IXOSC	11	10	91
NEMVE	18	10	56	MONBE	11	10	91
LOTGI	16	9	56	PAPXU	12	11	92
SAPPC	16	9	56	DENPD	10	10	100
LATCH	19	11	58	PERM5	10	10	100
PTEAL	19	11	58	SARSC	10	10	100
GUITH	12	7	58	AURAN	11	11	100
STRER	12	7	58	OPHHA	16	16	100
TETTS	12	7	58				

Table S4. Species with at least 10 sequences in the benchmark, ranked by the percentage of Unconfirmed sequences identified.

		DNA sequence		Exon map			Protein sequence
	No. of	Mean	Mean	Mean	Mean	Mean	Mean
	sequences	gene	%GC	no. of	exon	intron	protein
		length		exons	length	length	length
All	283	95584	37.4	14	186	6269	551
Confirmed	133	95533	39.81	14	179	6047	515

With	Unconfirmed	150	95629	39.76	14	192	6466	582
UDT								
regions								
Without	All	1510	15934	44.2	7.6	563	1161	514
UDT	Confirmed	756	18367	43.9	8.0	556	1438	482
regions	Unconfirmed	754	13496	44.6	7.2	570	883	546

Table S5. Comparison of the 283 gene sequences with undetermined (UDT) regions and 1510 sequences without UDT regions for both Confirmed and Unconfirmed sequences.

	Nucl	leotide	level]	Exon le	evel	Protein level		
	Sm	Sm	E 1	Sm	Sm	ME	WE	5' (first	3' (last	%	Perfect
	511	Sp	ГІ	511	Sp	NIE	WE	exon)	exon)	Identity	(100%)
Augustus	0.51	0.58	0.52	0.27	0.30	0.65	0.62	31.0 (27.6)	31.2 (32.5)	75.39	209
Genscan	0.50	0.57	0.51	0.23	0.28	0.74	0.69	31.5 (25.6)	33.3 (24.0)	71.74	135
GeneID	0.38	0.52	0.40	0.14	0.19	0.85	0.79	24.6 (19.7)	27.0 (18.0)	52.57	91
GlimmerHMM	0.74	0.43	0.45	0.18	0.22	0.81	0.75	24.8 (22.7)	31.4 (23.2)	60.06	136
Snap	0.38	0.45	0.39	0.15	0.18	0.67	0.64	20.5 (19.1)	21.8 (20.5)	46.60	112

Table S6. Overall performance the 5 gene prediction programs, using the 889 Confirmed sequences. Sn=sensitivity; Sp=specificity; F1=F1 score; ME=Missing Exons; WE=Wrong Exons; 5'=Percentage of correctly predicted 5' exon boundaries (first exon=Percentage of correctly predicted 5' boundaries of first exons only); 3'=Percentage of correctly predicted 3' exon boundaries (last exon=Percentage of correctly predicted 3' boundaries of the last exons only). % Identity indicates the average sequence identity observed between the predicted proteins and the benchmark sequences. 'Perfect' indicates proteins predicted with 100% identity compared to the benchmark sequence.

Program	CPU time for gene sequence +150bp upstream and downstream (seconds)	CPU time for gene sequence +10Kb upstream and downstream (seconds)
Augustus	1826	4172
Genscan	484	897
GeneID	196	260
GlimmerHMM	540	698
Snap	266	443

Table S7. Total time required to process the 1793 genomic sequences covering the gene region with 150bp (total length = 51,699,512 nucleotides) and with 10Kb upstream/downstream flanking sequences (total length = 86,970,612 nucleotides).

Augı	istus								
	Nu	cleotide l	level		Exor	n level	Protein level		
	Sn	Sp	F1	Sn	Sp	ME	WE	% Identity	Perfect (100%)
10Kb	0.50	0.61	0.53	0.25	0.28	0.67	0.62	67.71	172
8Kb	0.51	0.60	0.53	0.26	0.28	0.67	0.62	68.25	172
6Kb	0.51	0.60	0.53	0.26	0.28	0.67	0.62	68.68	176
4Kb	0.51	0.60	0.53	0.26	0.28	0.67	0.63	69.50	177
2Kb	0.51	0.59	0.53	0.26	0.28	0.67	0.62	72.43	186
150b	0.51	0.58	0.52	0.27	0.30	0.65	0.62	75.39	209

Gens	can								
	Nuc	leotide l	evel		Exor	n level		Protein	level
	Sn	Sp	F1	Sn	Sp	ME	WE	% Identity	Perfect (100%)
10Kb	0.50	0.61	0.53	0.20	0.24	0.77	0.72	58.79	106
8Kb	0.50	0.61	0.52	0.20	0.24	0.77	0.72	59.35	106
6Kb	0.50	0.60	0.52	0.20	0.24	0.77	0.72	59.97	105
4Kb	0.50	0.60	0.52	0.20	0.24	0.77	0.72	61.11	104
2Kb	0.50	0.59	0.52	0.20	0.24	0.77	0.72	64.20	103
150b	0.50	0.57	0.51	0.23	0.28	0.74	0.69	71.74	135
Gene	ID								
Nucleotide level				Exor	n level		Protein	level	
	Sn	Sp	F1	Sn	Sp	ME	WE	% Identity	Perfect (100%)
10Kb	0.38	0.56	0.42	0.13	0.17	0.87	0.76	48.61	74
8Kb	0.38	0.56	0.42	0.13	0.17	0.87	0.76	48.74	75
6Kb	0.38	0.56	0.42	0.13	0.17	0.87	0.76	49.06	75
4Kb	0.38	0.56	0.42	0.13	0.17	0.87	0.76	49.61	75
2Kb	0.38	0.55	0.41	0.13	0.17	0.87	0.77	50.31	76
150b	0.38	0.52	0.40	0.14	0.19	0.85	0.79	52.57	91
Glim	merHM	N							
	Nuc	leotide l	evel		Exor	ı level		Protein	level
	1.010								
	Sn	Sp	F1	Sn	Sp	ME	WE	% Identity	Perfect (100%)
10Kb	Sn 0.83	Sp 0.45	F1 0.49	Sn 0.19	Sp 0.23	ME 0.81	WE 0.74	% Identity 59.25	Perfect (100%) 139
10Kb 8Kb	Sn 0.83 0.83	Sp 0.45 0.45	F1 0.49 0.49	Sn 0.19 0.19	Sp 0.23 0.23	ME 0.81 0.81	WE 0.74 0.74	% Identity 59.25 59.59	Perfect (100%) 139 139
10Kb 8Kb 6Kb	Sn 0.83 0.83 0.82	Sp 0.45 0.45 0.45	F1 0.49 0.49 0.49	Sn 0.19 0.19 0.19	Sp 0.23 0.23 0.23	ME 0.81 0.81 0.80	WE 0.74 0.74 0.74	% Identity 59.25 59.59 59.81	Perfect (100%) 139 139 141
10Kb 8Kb 6Kb 4Kb	Sn 0.83 0.83 0.82 0.81	Sp 0.45 0.45 0.45 0.45	F1 0.49 0.49 0.49 0.49	Sn 0.19 0.19 0.19 0.19	Sp 0.23 0.23 0.23 0.23	ME 0.81 0.80 0.80 0.80	WE 0.74 0.74 0.74 0.74	% Identity 59.25 59.59 59.81 60.32	Perfect (100%) 139 139 141 141
10Kb 8Kb 6Kb 4Kb 2Kb	Sn 0.83 0.83 0.82 0.81 0.78	Sp 0.45 0.45 0.45 0.45 0.44	F1 0.49 0.49 0.49 0.49 0.49	Sn 0.19 0.19 0.19 0.19 0.19 0.18	Sp 0.23 0.23 0.23 0.23 0.23	ME 0.81 0.81 0.80 0.80 0.80	WE 0.74 0.74 0.74 0.74 0.74	% Identity 59.25 59.59 59.81 60.32 60.21	Perfect (100%) 139 139 141 141 138
10Kb 8Kb 6Kb 4Kb 2Kb 150b	Sn 0.83 0.83 0.82 0.81 0.78 0.74	Sp 0.45 0.45 0.45 0.45 0.44 0.43	F1 0.49 0.49 0.49 0.49 0.49 0.48 0.45	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18	Sp 0.23 0.23 0.23 0.23 0.23 0.22 0.22	ME 0.81 0.80 0.80 0.80 0.80 0.81	WE 0.74 0.74 0.74 0.74 0.75 0.75	% Identity 59.25 59.59 59.81 60.32 60.21 60.06	Perfect (100%) 139 139 141 141 138 136
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap	Sn 0.83 0.83 0.82 0.81 0.78 0.74	Sp 0.45 0.45 0.45 0.45 0.45 0.44 0.43	F1 0.49 0.49 0.49 0.49 0.49 0.48 0.45	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18	Sp 0.23 0.23 0.23 0.23 0.22 0.22	ME 0.81 0.80 0.80 0.80 0.80 0.81	WE 0.74 0.74 0.74 0.74 0.75 0.75	% Identity 59.25 59.59 59.81 60.32 60.21 60.06	Perfect (100%) 139 139 141 141 138 136
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap	Sn 0.83 0.83 0.82 0.81 0.78 0.74	Sp 0.45 0.45 0.45 0.45 0.44 0.43 leotide I	F1 0.49 0.49 0.49 0.49 0.49 0.48 0.45 evel	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18	Sp 0.23 0.23 0.23 0.23 0.22 0.22 Exor	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level	WE 0.74 0.74 0.74 0.74 0.75 0.75	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein	Perfect (100%) 139 139 141 141 138 136 level
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap	Sn 0.83 0.83 0.83 0.83 0.81 0.74	Sp 0.45 0.45 0.45 0.45 0.45 0.44 0.43 leotide l Sp	F1 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.45 evel F1	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn	Sp 0.23 0.23 0.23 0.23 0.22 0.22 0.22 Exor Sp	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME	WE 0.74 0.74 0.74 0.74 0.75 0.75 WE	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%)
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap	Sn 0.83 0.83 0.82 0.81 0.78 0.74 Nuc Sn 0.38	Sp 0.45 0.45 0.45 0.45 0.44 0.43 leotide l Sp 0.53	F1 0.49 0.49 0.49 0.49 0.49 0.48 0.45 evel F1 0.40	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn 0.14	Sp 0.23 0.23 0.23 0.23 0.22 0.22 0.22 Exor Sp 0.17	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME 0.72	WE 0.74 0.74 0.74 0.75 0.75 WE 0.67	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity 45.52	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%) 109
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap 10Kb 8Kb	Sn 0.83 0.83 0.83 0.83 0.81 0.78 0.74 Nuc Sn 0.38 0.38	Sp 0.45 0.45 0.45 0.45 0.45 0.44 0.43 leotide I Sp 0.53 0.53	F1 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.45 evel F1 0.40 0.40	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn 0.14 0.15	Sp 0.23 0.23 0.23 0.23 0.22 0.22 0.22 Exor Sp 0.17 0.18	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME 0.72 0.71	WE 0.74 0.74 0.74 0.75 0.75 0.75 WE 0.67 0.67	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity 45.52 45.68	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%) 109 111
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap 10Kb 8Kb	Sn 0.83 0.83 0.83 0.81 0.74 Nuc Sn 0.38 0.38 0.38	Sp 0.45 0.45 0.45 0.45 0.44 0.43 leotide l Sp 0.53 0.53 0.52	F1 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.45 F1 0.40 0.40 0.40	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn 0.14 0.15 0.15	Sp 0.23 0.23 0.23 0.23 0.22 0.22 0.22 Exol Sp 0.17 0.18 0.18	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME 0.72 0.71 0.71	WE 0.74 0.74 0.74 0.75 0.75 WE 0.67 0.67 0.67	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity 45.52 45.68 45.58	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%) 109 111 112
10Kb 8Kb 6Kb 2Kb 150b Snap 10Kb 8Kb 6Kb	Sn 0.83 0.83 0.83 0.83 0.83 0.81 0.78 0.74 Nuc Sn 0.38 0.38 0.38 0.38	Sp 0.45 0.45 0.45 0.44 0.43 leotide I Sp 0.53 0.53 0.52 0.52	F1 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.45 F1 0.40 0.40 0.40 0.40	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn 0.14 0.15 0.15 0.15	Sp 0.23 0.23 0.23 0.23 0.22 0.22 0.22 Exor Sp 0.17 0.18 0.18	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME 0.72 0.71 0.71 0.70	WE 0.74 0.74 0.74 0.75 0.75 0.75 WE 0.67 0.67 0.67 0.66	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity 45.52 45.68 45.58 46.14	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%) 109 111 112 113
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap 10Kb 8Kb 6Kb 4Kb 2Kb	Sn 0.83 0.83 0.83 0.83 0.81 0.74 Nuc Sn 0.38 0.38 0.38 0.38 0.38	Sp 0.45 0.45 0.45 0.45 0.44 0.43 leotide I Sp 0.53 0.53 0.52 0.52 0.49	F1 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.45 evel F1 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Sn 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn 0.14 0.15 0.15 0.15 0.15 0.15	Sp 0.23 0.23 0.23 0.23 0.22 0.22 Exor Sp 0.17 0.18 0.18 0.18 0.18	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME 0.72 0.71 0.71 0.70 0.69	WE 0.74 0.74 0.74 0.75 0.75 0.75 WE 0.67 0.67 0.67 0.66 0.66	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity 45.52 45.68 45.58 46.14 46.21	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%) 109 111 112 113 113
10Kb 8Kb 6Kb 4Kb 2Kb 150b Snap 10Kb 8Kb 6Kb 4Kb 2Kb 150b	Sn 0.83 0.83 0.83 0.83 0.81 0.78 0.74 Nuc Sn 0.38 0.38 0.38 0.38 0.38 0.38 0.38	Sp 0.45 0.45 0.45 0.45 0.44 0.43 leotide l Sp 0.53 0.53 0.52 0.52 0.49 0.45	F1 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	Sn 0.19 0.19 0.19 0.19 0.19 0.18 0.18 Sn 0.14 0.15 0.15 0.15 0.15 0.15 0.15	Sp 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.24 Exot Sp 0.17 0.18 0.18 0.18 0.18	ME 0.81 0.80 0.80 0.80 0.80 0.81 n level ME 0.72 0.71 0.71 0.70 0.69 0.67	WE 0.74 0.74 0.74 0.75 0.75 0.75 WE 0.67 0.67 0.67 0.67 0.66 0.66 0.66 0.64	% Identity 59.25 59.59 59.81 60.32 60.21 60.06 Protein % Identity 45.52 45.68 45.58 46.14 46.21 46.60	Perfect (100%) 139 139 141 141 138 136 level Perfect (100%) 109 111 112 113 113 113 112

Table S8. Effect of the genomic context based on the different lengths of upstream/downstream flanking genomic sequences on the performance of the 5 gene prediction programs at the nucleotide, exon and protein levels, using 889 Confirmed sequences. Sn=sensitivity; Sp=specificity; F1=F1 score; ME=Missing Exons; WE=Wrong Exons. %Identity indicates the average sequence identity observed between the predicted proteins and the benchmark sequences. 'Perfect' indicates proteins predicted with 100% identity compared to the benchmark sequence.

	Nuc	leotide	level	Exon level						Protein level		
	Sn	Sp	F1	Sn	Sp	ME	WE	5' (start)	3' (stop)	% Identity	Perfect (100%)	
Augustus	0 44	0.55	0.47	0.23	0.26	0.69	0.64	32 1 (21 6)	33 2 (26 2)	74 44	94	
Genscan	0.45	0.57	0.48	0.19	0.24	0.79	0.73	33.1 (14.9)	33.4 (24.7)	67.13	46	
GeneID	0.34	0.52	0.38	0.14	0.18	0.86	0.77	25.7 (14.8)	26.5 (15.3)	52.26	41	
Glimmer												
HMM	0.77	0.38	0.42	0.14	0.18	0.85	0.79	25.8 (17.7)	26.3 (19.0)	59.36	57	
Snap	0.33	0.46	0.35	0.14	0.17	0.73	0.68	23.5 (17.5)	25.4 (15.5)	44.20	51	

542 Metazoan sequences without UDT regions

133 Metazoan sequences with UDT regions

						U					
	Nuc	leotide	level			Protein level					
	Sm	Sm	E1	Sm	Sm	ME	WE	5' (stort)	2^{2} (stop)	%	Perfect
	511	Sp	ГІ	511	Sp	NIE	WE	5 (start)	5 (stop)	Identity	(100%)
Augustus	0.27	0.35	0.27	0.22	0.26	0.71	0.64	33.9 (20.3)	34.0 (18.0)	66.87	4
Genscan	0.29	0.27	0.25	0.17	0.22	0.82	0.76	28.3 (12.0)	29.7 (7.5)	52.88	3
GeneID	0.19	0.22	0.17	0.11	0.16	0.89	0.82	22.9 (9.0)	24.8 (3.8)	34.91	0
Glimmer HMM	0.71	0.08	0.12	0.12	0.17	0.88	0.82	20.8 (6.0)	22.3 (5.3)	42.97	5
Snap	0.15	0.19	0.14	0.07	0.09	0.72	0.70	12.7 (12.8)	14.9 (0.0)	25.19	0

Table S9. Performance of the 5 gene prediction programs, using all 542 metazoan sequences without undetermined (UDT) regions in reference genes and all 133 metazoans with UDT regions in reference gene. Sn=sensitivity; Sp=specificity; F1=F1 score; ME=Missing Exons; WE=Wrong Exons; 5'=Percentage of correctly predicted 5' exon boundaries (first exon=Percentage of correctly predicted 5' boundaries of first exons only); 3'=Percentage of correctly predicted 3' exon boundaries (last exon=Percentage of correctly predicted 3' boundaries of the last exons only). % Identity indicates the average sequence identity observed between the predicted proteins and the benchmark sequences. 'Perfect' indicates proteins predicted with 100% identity compared to the benchmark sequence.

A)						
	No. of exons in G3PO	Augustus	Genscan	GeneID	GlimmerHMM	Snap
[0-50]	374	18.4%	13.6%	12.3%	6.7%	9.4%
]50-100]	1919	24.4%	20.0%	11.8%	12.6%	11.6%
]100-150]	1846	25.6%	22.4%	12.7%	13.3%	12.7%
]150-200]	792	25.1%	21.3%	15.4%	15.0%	13.9%
>200	1180	17.3%	15.2%	10.9%	14.0%	12.5%
Total exons	6111	23.1%	19.6%	12.4%	13.0%	12.3%

B)							
		Compat	Waaaa		W	rong	
		Correct	wrong	Both	5'	3'	Fusion
Augustus	[0-50]	69	187	147	24	16	0
]50-100]	468	795	700	45	50	0
]100-150]	473	871	739	65	67	0
]150-200]	199	371	306	38	26	1
	>200	204	343	145	104	80	14
	[0-50]	51	116	98	8	10	0
can]50-100]	384	704	619	44	41	0
nsc]100-150]	413	916	776	74	66	0
Ge]150-200]	169	455	365	48	39	3
	>200	180	448	226	134	73	15
	[0-50]	46	359	296	34	29	0
Ð]50-100]	226	595	518	38	39	0
sue]100-150]	234	625	520	54	51	0
Ğ]150-200]	122	304	242	26	36	0
	>200	129	387	207	102	74	4
	[0-50]	25	177	153	11	13	0
ner M]50-100]	241	749	661	41	47	0
M]100-150]	245	709	606	57	46	0
Gli H]150-200]	119	327	252	37	37	1
	>200	165	392	209	86	90	7
	[0-50]	35	292	261	13	18	0
ď]50-100]	222	594	501	46	47	0
NA]100-150]	235	514	408	49	57	0
S]150-200]	110	259	187	38	33	1
	>200	148	304	154	78	65	7

Table S10. Effect of exon length on exon prediction quality. A) Proportion of all benchmark exons correctly predicted depending on the exon length. B) Number of internal exons predicted correctly, with either the 5' or 3' exon boundaries correct, or with both sites wrongly predicted, for each of the five programs.

	Protoin longth (amino agida)	%	Perfect
	r rotein length (annuo acius)	Identity	(100%)
	<100	57.45	4
tus	100-300	67.37	40
Augus	300-550	75.27	58
	550-650	81.78	55
,	>650	70.04	25
	<100	60.65	1
an	100-300	52.56	13
Gensca	300-550	62.77	27
	550-650	78.78	42
	>650	70.29	17
	<100	51.31	2
Ð	100-300	44.06	6
sne	300-550	54.47	21
Ğ	550-650	61.74	34
	>650	51.10	13
	<100	68.30	5
ner	100-300	58.03	27
M	300-550	63.21	38
Gli H	550-650	70.09	48
	>650	60.32	15
	<100	34.29	3
d	100-300	47.58	16
na	300-550	57.66	42
	550-650	56.10	39
	>650	38.85	13

Table S11. Effect of protein length on prediction accuracy at the protein level. %Identity indicates the average sequence identity observed between the predicted proteins and the benchmark sequences (Confirmed without UDT regions). 'Perfect' indicates proteins predicted with 100% identity compared to the benchmark sequence.

Clada		Augustus		Genscan		GeneID		GlimmerHMM		Snap			
			e	% Identity	Perfect (100%)								
		data	Craniata	72.23	44	69.71	31	49.22	19	55.86	23	33.03	16
nta	IZOA	Chor	Tunicata	85.90	1	54.44	0	59.22	0	27.38	0	77.87	0
oko	leta	Mollusca		89.64	2	68.22	1	30.60	1	70.80	2	56.14	1
sthe	2	Panarthropo		82.60	30	69.11	13	66.57	14	69.18	15	73.82	21
jpi		N	ematoda	78.38	15	47.16	1	76.35	7	89.19	15	81.80	12
\cup		Cnidaria		32.34	1	50.98	0	30.11	0	61.43	2	39.35	0
	Fungi		20.68	0	28.93	1	23.54	0	57.82	4	50.27	0	
	Ch	oano	flagellida	20.57	0	66.07	0	38.06	0	26.44	0	15.62	0
	Stra	ameno	opila	67.73	21	70.33	22	59.66	16	76.55	19	76.08	28
	Eu	gleno	zoa	97.65	53	77.02	29	77.58	18	97.36	48	84.55	33

Viridiplantae	94.77	2	43.57	0	73.50	0	62.34	0	48.46	0
Alveolata	47.89	5	26.79	0	17.52	0	26.47	1	16.55	0
Rhizaria	56.16	0	44.74	0	47.03	0	62.28	0	54.91	0
Others	71.13	8	54.79	2	23.01	2	52.85	4	38.81	2

Table S12. Performance of the 5 gene prediction programs for sequences from different clades. The 'Others' group contains the Apusozoa, Cryptophyta, Diplomonadida, Haptophyceae, Heterolobosea, Parabasalia clades, as well as Placozoa, Annelida and urchin. %Identity indicates the average sequence identity observed between the predicted proteins and the benchmark sequences (Confirmed without UDT regions). 'Perfect' indicates proteins predicted with 100% identity compared to the benchmark sequence.

Figure S1. Distribution of A) gene length, B) number of exons and C) protein length for each orthologous protein family.

Figure S2. Main characteristics of the 1793 test cases in the benchmark for All sequences, Confirmed and Unconfirmed sequences only.

Figure S3. Schematic view of an MSA, showing the 9 categories of sequence errors, highlighted by orange boxes. A: N-terminal deletion B: N-terminal mismatched segment C: N-terminal insertion D: Internal deletion E: Internal mismatched segment F: Internal insertion G: C-terminal deletion H: C-terminal mismatched segment I: C-terminal insertion.

Figure S4. A) Number of Confirmed and Unconfirmed sequences in each orthologous protein family. B) Number and types of error in each orthologous protein family.

Figure S5. Number of sequences with undetermined (UDT) regions in each species.

Figure S6. Effect of the %GC content of the gene on prediction accuracy: A) average percent identity between the predicted and the benchmark protein sequences, B) number of proteins perfectly predicted with 100% sequence identity.

Figure S7. A) Number of Confirmed sequences with exon count ranging from 1 to 24. B) Distribution of gene lengths for sequences with exon count ranging from 1 to 24. 45% of

sequences have 1 to 6 exons. A second peak is observed at 17-19 exons, which correspond mostly to sequences from higher metazoans. The average gene sequence length increases with the complexity of the exon map (correlation=0.749, p-value=1.833e⁻¹⁶⁰).

Figure S8. A) Distribution of protein lengths for Confirmed sequences. B) Number of Confirmed sequences with different protein lengths.

Figure S9. Evaluation metrics at the exon level.