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Table S1: Manual quadrupole profile. Times given are a percentage of each TOF scan (5 s)

m/z Dwell Time (%) Ramp (%)
1000 2 40
3000 3 55
4500 - -
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Figure S1: 2D heatmap plot of arrival time vs. m/z. Broad filtering arrival time selection rule for 
broad selection of proteinaceous ions is shown highlighted in blue. Singly-charged ion region is 
indicated in orange. The selection rule was exported as a text file and imported into in-house 
software and applied to each data file (pixel) in the imaging dataset.
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Figure S2: Ion images for small proteins detected by LESA-TWIMS-MSI. Ubiquitin (8560 Da, m/z 
1714, 5+ charge state) was found to be generally homogenously distributed, particularly when 
specific tA filtering was performed. The unknown protein with m/z 2081 (~ 14568 Da, 7+ charge state) 
was distributed towards the left side of the image, coinciding with location of the large blood 
vessels. CID MS/MS (not shown) of the protein suggests the presence of heme, i.e., that it is a 
haemoglobin-related species. The ions with m/z 2230.98 and m/z 2236.37 (unknown mass; charge 
state unresolvable) featured more intense signals in the renal cortex.
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Figure S3: Arrival time filtered images for hemoglobin ions. (a-c) heme-bound -monomer 8+–6+, (d-
f) heterodimer 12+–10+, (g-i) heterotetramer 16+–14+.  The middle column represents the image for 
the most intense charge state. 
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Figure S4: Unfiltered and tA filtered ion images for ubiquitin [M+5H]5+. The unfiltered image (a) 
features an intense signal for the selected m/z in pixel 32, whereas the arrival time filtered image 
does not (d). In the raw mass spectra (b, e), peaks for ubiquitin [M+5H]5+ were not present, yet the 
noise in the unfiltered mass spectrum results in peaks in the baseline-subtracted mass spectrum (c). 
That was not the case for the tA filtered mass spectrum (f).
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Figure S5: Arrival time distribution for 16+ Hb tetramer  ions measured at three wave heights, 24 V 
(red), 25 V (blue) and 26 V (black). A minor peak with a later arrival time was detected, 
corresponding to a 200 Å2 larger TWCCSN2N2 than for the major peak. 


