Native LESA-TWIMS-MSI: spatial, conformational and mass analysis of proteins and protein complexes.

Oliver J. Hale¹, Emma K. Sisley¹, Rian L. Griffiths^{1#}, Iain B. Styles², Helen J. Cooper^{1*}

1. School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K.

2. School of Computer Science, University of Birmingham, Edgbaston B15 2TT, U.K.

*Current address: School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK *To whom correspondence should be addressed: h.j.cooper@bham.ac.uk

Supporting Information

Contents	Page
File S1: Details of ion image generation and .m files.	
Table S1: Manual quadrupole profile.	S2
Figure S1: Broad DriftScope selection rule.	S2
Figure S2: Ion images for small proteins detected by LESA-TWIMS-MSI.	S3
Figure S3: Ion images for 3 charge states of hemoglobin-related ions.	S4
Figure S4: Unfiltered and t_A filtered ion images for ubiquitin [M+5H] ⁵⁺ .	S5
Figure S5: ATD for Hb tetramer 16 ⁺ .	S6

m/z	Dwell Time (%)	Ramp (%)
1000	2	40
3000	3	55
4500	-	-

Table S1: Manual quadrupole profile. Times given are a percentage of each TOF scan (5 s)

Figure S1: 2D heatmap plot of arrival time vs. m/z. Broad filtering arrival time selection rule for broad selection of proteinaceous ions is shown highlighted in blue. Singly-charged ion region is indicated in orange. The selection rule was exported as a text file and imported into in-house software and applied to each data file (pixel) in the imaging dataset.

Figure S2: Ion images for small proteins detected by LESA-TWIMS-MSI. Ubiquitin (8560 Da, m/z 1714, 5⁺ charge state) was found to be generally homogenously distributed, particularly when specific t_A filtering was performed. The unknown protein with m/z 2081 (~ 14568 Da, 7⁺ charge state) was distributed towards the left side of the image, coinciding with location of the large blood vessels. CID MS/MS (not shown) of the protein suggests the presence of heme, i.e., that it is a haemoglobin-related species. The ions with m/z 2230.98 and m/z 2236.37 (unknown mass; charge state unresolvable) featured more intense signals in the renal cortex.

Figure S3: Arrival time filtered images for hemoglobin ions. (a-c) heme-bound α -monomer 8⁺-6⁺, (d-f) heterodimer 12⁺-10⁺, (g-i) heterotetramer 16⁺-14⁺. The middle column represents the image for the most intense charge state.

Figure S4: Unfiltered and t_A filtered ion images for ubiquitin [M+5H]⁵⁺. The unfiltered image (a) features an intense signal for the selected m/z in pixel 32, whereas the arrival time filtered image does not (d). In the raw mass spectra (b, e), peaks for ubiquitin [M+5H]⁵⁺ were not present, yet the noise in the unfiltered mass spectrum results in peaks in the baseline-subtracted mass spectrum (c). That was not the case for the t_A filtered mass spectrum (f).

Figure S5: Arrival time distribution for 16⁺ Hb tetramer ions measured at three wave heights, 24 V (red), 25 V (blue) and 26 V (black). A minor peak with a later arrival time was detected, corresponding to a 200 Å² larger ^{TW}CCS_{N2→N2} than for the major peak.