Supporting information

Edge detection

The method of solving for **B** and μ closely follows the steps in [1] with a few minor adjustments to account for the differences in our model structure.

The log-likelihood function of the model defined in Eq (3) is:

$$L(\mathbf{Y}|\mathbf{B}, \boldsymbol{\mu}) = \frac{-MN}{2} \log[2\pi\sigma^2] + N \log[|\mathbf{I} - \mathbf{B}|] - \frac{1}{2\sigma^2} ||\mathbf{Y} - \mathbf{B}\mathbf{Y} - \boldsymbol{\mu}\mathbf{1}^T||_F^2.$$
 (S1)

By removing terms that do not depend on $\bf B$ and adding a regularization term, the sparse maximum likelihood (SML) function becomes:

$$\hat{\mathbf{B}} = \arg \max_{\mathbf{B}} N \log[|\mathbf{I} - \mathbf{B}|] - \frac{1}{2\sigma^2} ||\mathbf{Y} - \mathbf{B}\mathbf{Y} - \boldsymbol{\mu}\mathbf{1}^T||_F^2 - \lambda ||\mathbf{B}||_{1,\mathbf{W}}$$

$$s.t. \ B_{ij} = 0 \ \forall (i,j) \in \mathcal{S}_q.$$
(S2)

Where S_q contains the set of row and column indices of the entries of **B** constrained to 0, and $||\mathbf{B}||_{1,\mathbf{W}} := \sum_{i=1}^{M} \sum_{j=1}^{M} w_{ij} |B_{ij}|$. The weights w_{ij} are chosen as $\frac{1}{\tilde{B}_{ij}}$, where \tilde{B}_{ij} is from a preliminary estimate of **B** using ridge regression (Eq (S3)). These weights are added to the regularization term to improve estimation accuracy in line with the adaptive lasso [1, 2]. Additionally, the sample variance from the ridge regression estimate is used as the estimate of σ^2 in Eq (S2).

$$\tilde{\mathbf{B}} = \arg\min_{\mathbf{B}} \frac{1}{2} ||\mathbf{Y} - \mathbf{B}\mathbf{Y} - \boldsymbol{\mu} \mathbf{1}^T||_F^2 + \rho ||\mathbf{B}||_F^2$$

$$s.t. \ B_{ij} = 0 \ \forall (i, j) \in \mathcal{S}_q.$$
(S3)

Both the ridge regression and SML estimates, $\hat{\mathbf{B}}$ and $\hat{\mathbf{B}}$ respectively, can be solved on a row by row basis. This allows us to remove the experiments that targeted the i^{th} component when solving for $\mathbf{b}_i^T = \begin{bmatrix} B_{i1} & \cdots & B_{iM} \end{bmatrix}$, the i^{th} row of \mathbf{B} . Removing these experiments for each component prevents fitting \mathbf{b}_i^T to data where an outside influence is controlling the abundance of the associated component.

Ridge Regression

For the ridge regression, this becomes

$$\tilde{\mathbf{b}}_{i} = \arg\min_{\mathbf{b}_{i}} \frac{1}{2} ||\mathbf{y}_{i}^{i} - \mathbf{b}_{i}^{T} \mathbf{Y} - \overset{i}{\mu_{i}} \overset{i}{\mathbf{1}}^{T} ||_{2}^{2} + \rho ||\mathbf{b}_{i}||_{2}^{2}$$

$$s.t. \ B_{ij} = 0 \ \forall (i, j) \in \mathcal{S}_{q}.$$
(S4)

Where the overset i implies the variables adjusted for the removed targeted experiments (e.g., $\mathbf{\dot{y}}_{i}$ is the abundances for component i from the experiments that it was not targeted, and $\mathbf{\dot{1}}^{i}$ is a $1 \times N$ vector of ones, with N is the number of experiments that do not target component i).

Minimizing Eq (S4) w.r.t $\stackrel{i}{\mu}_{i}$ gives

$$\overset{i}{\mu}_{i} = \frac{\dot{i}}{\ddot{y}_{i}} - \mathbf{b}_{i}^{T} \overset{\dot{i}}{\ddot{\mathbf{y}}} \tag{S5}$$

where $\frac{i}{\bar{y}_i} = \sum_{j=1}^{i} \mathbf{y}_{ij}^i / N^i$ and $\frac{i}{\bar{\mathbf{y}}} = \sum_{j=1}^{N} \mathbf{Y}_j / N^i$. Eq (S4) then becomes

$$\tilde{\mathbf{b}}_{i} = \arg\min_{\mathbf{b}_{i}} \frac{1}{2} || \tilde{\tilde{\mathbf{y}}}_{i}^{T} - \mathbf{b}_{i}^{T} \tilde{\tilde{\mathbf{Y}}} ||_{2}^{2} + \rho ||\mathbf{b}_{i}||_{2}^{2}.$$

$$s.t. \ B_{ij} = 0 \ \forall (i, j) \in \mathcal{S}_{a}.$$
(S6)

where $\overset{i}{\tilde{\mathbf{y}}_{i}}^{T} = \overset{i}{\mathbf{y}_{i}}^{T} - \overset{i}{\bar{y}_{i}}\overset{i}{\mathbf{1}}^{T}$ and $\overset{i}{\tilde{\mathbf{Y}}} = \overset{i}{\mathbf{Y}} - \overset{i}{\bar{\mathbf{y}}}\overset{i}{\mathbf{1}}^{T}$.

The constraint $B_{ij} = 0 \,\forall (i,j) \in \mathcal{S}_q$ can be applied directly by removing the j^{th} element(s) from \mathbf{b}_i^T and the j^{th} row(s) from $\tilde{\mathbf{Y}}$. Let $\check{\mathbf{b}}_i^T$ and $\check{\mathbf{Y}}$ represent these adjustments. Then Eq (S6) becomes

$$\tilde{\dot{\mathbf{b}}}_i = \arg\min_{\tilde{\mathbf{b}}_i} \frac{1}{2} || \tilde{\dot{\mathbf{y}}}_i^T - \tilde{\mathbf{b}}_i^T \tilde{\dot{\mathbf{Y}}} ||_2^2 + \rho || \tilde{\mathbf{b}}_i ||_2^2.$$
 (S7)

This has a close form solution

$$\tilde{\dot{\mathbf{b}}}_{i} = (\dot{\mathbf{Y}}\dot{\mathbf{Y}}^{T} + \rho\mathbf{I})^{-1}(\dot{\mathbf{Y}}\dot{\tilde{\mathbf{y}}}_{i}^{i})$$
(S8)

Sparse Maximum Likelihood

Using the cyclic block-coordinate ascent iteration algorithm from [1], we define the matrix $\hat{\mathbf{B}}(B_{ij})$ to be a matrix equal to $\hat{\mathbf{B}}$ except for the (i,j)th entry which is replace by B_{ij} , such that $\hat{\mathbf{B}}(B_{ij}) := \hat{\mathbf{B}} + \mathbf{e}_i \mathbf{e}_j^T (B_{ij} - \hat{B}_{ij})$. Eq (S2) can then be expressed as

$$B_{ij} = \arg\max_{B_{ij}} {}^{i} \sigma^{2} \log[|\mathbf{I} - \hat{\mathbf{B}}(B_{ij})|] - \frac{1}{2} ||\hat{\mathbf{Y}} - \hat{\mathbf{B}}(B_{ij})\hat{\mathbf{Y}} - \hat{\mathbf{\mu}}\hat{\mathbf{1}}^{i}||_{F}^{2} - \lambda w_{ij} |B_{ij}|$$
 (S9)

Similar to the ridge regression, maximizing Eq (S9) w.r.t $\stackrel{\imath}{\boldsymbol{\mu}}$ gives

$$\overset{i}{\boldsymbol{\mu}} = \left(\mathbf{I} - \hat{\mathbf{B}}(B_{ij})\right)^{\frac{i}{\mathbf{\bar{y}}}}$$
(S10)

Substituting into Eq (S9),

$$B_{ij} = \arg\max_{B_{ij}} \overset{i}{N} \sigma^2 \log[|\mathbf{I} - \hat{\mathbf{B}}(B_{ij})|] - \frac{1}{2} ||\overset{i}{\tilde{\mathbf{Y}}} - \hat{\mathbf{B}}(B_{ij})\overset{i}{\tilde{\mathbf{Y}}}||_F^2 - \lambda w_{ij}|B_{ij}|$$
(S11)

Following the steps from [1], by rearranging and removing constant terms, this becomes

$$B_{ij} = \arg\max_{B_{ij}} N^{i} \sigma^{2} \log[|\alpha_{0} - c_{ij}B_{ij}|] + \alpha_{1}B_{ij} - \frac{1}{2}\alpha_{2}B_{ij}^{2} - \lambda w_{ij}|B_{ij}|$$
 (S12)

where c_{ij} represents the (i,j)th co-factor of the matrix $\mathbf{I} - \hat{\mathbf{B}}$, and

$$\alpha_0 := |\mathbf{I} - \hat{\mathbf{B}}|$$

$$\alpha_1 := \left[\left(\mathbf{I} - \hat{\mathbf{B}} + \mathbf{e}_i \mathbf{e}_j^T \hat{B}_{ij} \right) \tilde{\mathbf{Y}} \tilde{\mathbf{Y}} \tilde{\mathbf{Y}}^T \right]_{ij}$$

$$\alpha_2 := ||\tilde{\mathbf{Y}} \mathbf{e}_j||_2^2$$

The value of B_{ij} can then be solved for as described in equations (12)-(16) and the associated text in [1].

Regularization parameters

The regularization parameters ρ and λ , were found using 5-fold cross-validation while stepping through a set range of values for ρ and λ in the ridge regression and SML algorithms respectively. To improve stability, the cross-validations were run multiple times and the ρ and λ resulting in the lowest mean error across the testing folds were selected and used to solve for $\tilde{\mathbf{B}}$ and $\hat{\mathbf{B}}$ in Eq (S3) and Eq (S2).

Algorithm implementation

The Matlab code for the SML algorithm provided by [1] was modified based on the changes described above. Additionally, the abundances of the monolignol transcripts and proteins ranged from on the order of 10^{-1} nM and 10^{4} nM. For this reason, we included a function to scale each transcript and protein by its maximum value in the training data to bring the range of each transcript and protein to between 0 and 1 when solving for $\tilde{\bf B}$ and $\hat{\bf B}$. The coefficients of the returned $\tilde{\bf B}$ and $\hat{\bf B}$ were then accordingly untransformed to work with un-scaled data.

References

- [1] Cai X, Bazerque JA, Giannakis GB. Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations. PLoS Computational Biology. 2013;9(5):e1003068. doi:10.1371/journal.pcbi.1003068.
- [2] Zou H. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association. 2006;101(476):1418–1429.