Supporting information

Edge detection

The method of solving for B and p closely follows the steps in [1] with a few minor adjustments
to account for the differences in our model structure.

The log-likelihood function of the model defined in Eq (3) is:
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By removing terms that do not depend on B and adding a regularization term, the sparse maximum
likelihood (SML) function becomes:
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s.t. B;j = 0v(i,j) € Sy

Where S, contains the set of row and column indices of the entries of B constrained to 0, and
1Bl w = Ef\i 1 Ejj\i 1 Wij|Bij|. The weights w;; are chosen as Blij , where B;; is from a preliminary
estimate of B using ridge regression (Eq (S3)). These weights are added to the regularization term
to improve estimation accuracy in line with the adaptive lasso [1, 2]. Additionally, the sample
variance from the ridge regression estimate is used as the estimate of o2 in Eq (S2).
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s.t. Bz‘j = OV(Z,]) € Sq.
Both the ridge regression and SML estimates, B and B respectively, can be solved on a row by
row basis. This allows us to remove the experiments that targeted the ¥ component when solving
for bl-T = [Bﬂ BiM], the ith row of B. Removing these experiments for each component

prevents fitting biT to data where an outside influence is controlling the abundance of the associated
component.

Ridge Regression
For the ridge regression, this becomes
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s.t. Bjj = 0v(i,j) € Sy
Where the overset ¢ implies the variables adjusted for the removed targeted experiments (e.g., }Zfz is

7 (2
the abundances for component ¢ from the experiments that it was not targeted, and 1 isa 1 x N

7
vector of ones, with N is the number of experiments that do not target component 7).



Minimizing Eq (S4) w.r.t ,&l gives
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where gljl = Z;VZI :;fij/N and y = Z;VZI Y;/N. Eq (54) then becomes
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s.t. B;j = 0v(i,j) € Sy
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where y; =y; —y;1
The constraint B;; = 0Y(4,7) € S, can be applied directly by removing the j element(s) from bl
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and the j* row(s) from Y. Let b} and Y represent these adjustments. Then Eq (S6) becomes
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This has a close form solution
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Sparse Maximum Likelihood

Using the cyclic block-coordinate ascent iteration algorithm from [1], we define the matrix B(B;;)
to be a matrix equal to B except for the (i,j)th entry which is replace by B;j, such that B(Bij) =
B + eie;fF(Bij - BU) Eq (S2) can then be expressed as
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Similar to the ridge regression, maximizing Eq (S9) w.r.t ;1, gives
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p = (I-B(By))y (S10)
Substituting into Eq (S9),
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Following the steps from [1], by rearranging and removing constant terms, this becomes
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where ¢;; represents the (i,j)th co-factor of the matrix T — B, and

ag := |I — B
. il
ap = [(I—B+eieJTBij)YY ]
L)
iT
Y, 2
az =Y el

The value of B;; can then be solved for as described in equations (12)-(16) and the associated text
in [1].

Regularization parameters

The regularization parameters p and A, were found using 5-fold cross-validation while stepping
through a set range of values for p and A in the ridge regression and SML algorithms respectively.
To improve stability, the cross-validations were run multiple times and the p and A resultlng in the
lowest mean error across the testing folds were selected and used to solve for B and B in Eq (S3)
and Eq (52).

Algorithm implementation

The Matlab code for the SML algorithm provided by [1] was modified based on the changes described
above. Additionally, the abundances of the monolignol transcripts and proteins ranged from on
the order of 10~'nM and 10% nM. For this reason, we included a function to scale each transcript
and protein by its maximum value in the training data to bring the range of each transcript and
protein to between 0 and 1 when solving for B and B. The coefficients of the returned B and B
were then accordingly untransformed to work with un-scaled data.
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