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Supplementary Figures 

 

Fig. S1. Failure to cover a sphere with nonstretchable sheets. (A) Wrapping a sphere with a 

rectangular 30 µm-thick Cu foil inevitably forms wrinkles, crumples and overlaps. (B) A 

rectangular flexible glass substrate of a commercial liquid crystal display (LCD) panel breaks 

when wrapped around a sphere (See also Movie S1). (Photo credit: Y.-K. Lee, Seoul National 

University) 

  



 

 

 
Fig. S2. Mathematical limitation of wrapping a planar sheet around a 3D surface with 

nonzero Gaussian curvatures. (A) Gaussian curvature is the vector product of the maximum 

and minimum principal curvatures at a point. At the saddle point (black dot) of the gray surface, 

one of the principal curvatures is the intersection between the red and gray surfaces, and the 

other is the intersection between the blue and gray surfaces. Both the red and blue planes contain 

the normal vector of the saddle point, and their intersections with the gray surface define the 

principal curvatures. A 2D material with zero Gaussian curvature points, such as a sheet of 

paper, is called a “developable surface”, which cannot be transformed into a 3D surface with a 

positive or negative Gaussian curvature (i.e., a “nondevelopable surface”) without stretching or 

compressing. (B) For example, a cylinder or a cone can be covered with cut paper, but a saddle 

or a sphere cannot be wrapped without the formation of wrinkles or cuts. The reverse (flattening) 

process is also the same, which is why there are distortions in the planar map of the Earth. 

  



 

 

 
Fig. S3. Diverse mesh unfolding methods: (A) Steepest edge (SE) unfolding; (B) Flat-Tree 

unfolding; (C) unfolding obtained by the proposed Genetic Algorithm, which is optimized to 

reduce the cut length; (D) Unflat-Tree unfolding, in which the edge weight 𝑤′𝑖  is equal to 

𝑤′𝑖 = 1− 𝑤𝑖, where 𝑤𝑖 is the edge weight used in Flat-Tree unfolding; (E) minimum perimeter; 

and (F) maximum perimeter. 



 

 

 
Fig. S4. Polyhedral spheres that bound the perfect sphere with different numbers of 

meshes. A polyhedral sphere is generated by meshing a perfect sphere with different mesh 

numbers. The polyhedral sphere is then scaled to enclose the perfect sphere while minimizing the 

Hausdorff distance. (A) For example, 80 meshes are used to make a polyhedron sphere out of a 

perfect sphere (blue solid line), and then the scaled-up polyhedron is illustrated in (B). (C) The 

surface area and the scaled radius of the polyhedron decrease and approach those of the perfect 

sphere as the number of meshes increases. (D) Naturally, the folding angles between two 

adjacent meshes decrease as the number of meshes increases. Consequently, the minimal folding 

angles with a sufficiently large number of meshes can lead to a nonpolyhedral developable net 

for computational wrapping, wherein all the crease lines are ignored. (Photo credit: Y.-K. Lee, 

Seoul National University) 

 

 

  



 

 

 
Fig. S5. Finite element analysis for wrapping a part of a sphere with a stainless steel 

developable net. We used an FE simulation approach similar to the Si wafer case for a 100 μm -

thick stainless steel sheet. (A) For the stainless steel sheet, a stress-strain curve (black circular 

dots) is obtained through a uniaxial tensile test. For a constitutive equation of the stainless steel 

implemented in FE simulation, the Swift-Voce model (28, 29) is then used to fit the experimental 

stress-strain curve. The Swift-Voce hardening law is expressed as follows: 

𝜎̅ = 𝑅(𝐾(𝜀0 + 𝜀𝑝)𝑛) + (1 − 𝑅)(𝜎𝑠 − (𝜎𝑠 − 𝜎𝑦)exp⁡(−𝑐𝜀
𝑝)) 

The values obtained by fitting are R = 0.5449, 𝛆𝟎 = 0.018, K = 965.9 MPa, N = 0.2921, C = 

16.63, 𝜎s = 580.0 MPa, and 𝜎y = 304.0 MPa. The root mean square error (RMSE) of the 

regression is 6.098, and R-squared is 0.9925. The elastic properties in the simulation are as 

follows: Young’s modulus 𝐸 = 209.1 GPa and Poisson’s ratio 𝜈 = 0.3. (B) The stress is 

concentrated at the sharp tips between two adjacent strips of the developable net during the 

wrapping process such that the equivalent plastic strain values are higher in this centered area 

where the tips converge. The equivalent plastic strain in the nets is mostly less than 0.005, and 

even the maximum value of the equivalent plastic strain in the centered area is merely 0.014. 

These low values of the equivalent plastic strain indicate that the computational wrapping 

method effectively relieves the stress evolution in the net. 



 

 

 
Fig. S6. Computational wrapping for an ellipsoid model. All of the points on a sphere have 

the same Gaussian curvature, but other solid figures with nonuniform Gaussian curvatures can 

also be deployed by using diverse mesh unfolding methods. An ellipsoidal model with 500 

meshes is flattened by (A) Steepest edge unfolding, (B) Flat-Tree unfolding, and (C) the 

proposed Genetic Algorithm unfolding method, which is optimized to reduce the cut length. (D-

E) By ignoring the crease lines of the flattened figure obtained from Steepest Edge unfolding, the 

computational wrapping concept is demonstrated with a paper for a 3D-printed ellipsoid. (F) An 

EL panel can also be attached on the ellipsoid without gaps and (G) can operate well without any 

failure. (Photo credit: Y.-K. Lee, Seoul National University) 

 



 

 

 
Fig. S7. Computational wrapping for a Korean facial mask. Traditional Korean masks can be 

covered with commercial EL panels. (A) The mask is 3D-scanned, and a complex part 

containing both positive and negative Gaussian curvatures is remeshed with 169 meshes. (B) 

That part is then mesh unfolded, and (C) the crease lines are ignored to apply our bending and 

attaching concept. (D) A commercial EL panel is cut with a laser cutter and (E) stably attached 

on the mask. (F) The light can be operated without failure, and the cut seams are blurred and 

invisible. (Photo credit: Y.-K. Lee, Seoul National University) 

  



 

 

 
Fig. S8. Computational wrapping for curved vehicle exteriors. Meshes are generated for the 

nonzero Gaussian surfaces of an electric toy vehicle: (A) the edge of the rear side bumper, (B) 

the edge of the front side bumper, and (C) the headlights. Then, (D-F) the meshes are 

algorithmically unfolded with the GA unfolding method. Cuttable, nonstretchable, commercial 

EL lighting panels consisting of brittle electrodes are cut with a laser cutter to form the generated 

developable nets, which are attached to the electric toy vehicle with double-sided tape. (G) 

Without having the developable net, the rear side bumper region cannot be wrapped 

conformably, and spaces are left between the simple cut pattern and the vehicle surface. 

However, the developable nets (H and I) are conformably attached without gaps or overlapping, 

and the attached EL panels operate well without any electrical failure (See Movie S3). (Photo 

credit: Y.-K. Lee, Seoul National University)  



 

 

 
Fig. S9. Computational wrapping with a screen-printed flexible zinc-carbon primary 

battery. We fabricated a developable net of a primary battery for a sphere with a radius of 4 cm 

by using the screen printing method. Because the screen printing area is fixed at 30 cm × 30 cm, 

which is a geometric restriction of printing, the diversity of the developable net (See Fig. S3) can 

yield manufacturing advantages. For instance, (A) the Flat-Tree unfolding method generates a 

developable net where two radial patterns are connected through a strip and can be placed on the 

square printing area, whereas (B) the SE unfolding method generates a radial net pattern so that 



 

 

two patterns cannot be placed on the square printing area at the same time. Since two 

developable nets can be placed on the printing area at the same time in the Flat-Tree unfolding 

method, this method produces less material waste than the SE unfolding method. (C-D) 

Furthermore, the developable net via the Flat-Tree method can have the advantage for the serial 

connection of batteries. Since the zinc-carbon primary battery can deliver 1.5 V of direct current, 

two cells should be serially connected to operate a light-emitting diode (LED) lamp that requires 

more than 1.5 V to operate. The Flat-Tree unfolding method generates a developable net with 

180 meshes having two radial patterns connected through a strip. Two serially connected battery 

cells for 3.0 V can be fabricated at once. Current collector materials are printed on a developable 

net. The positive electrode materials are printed on one of the radial patterns of the developable 

net, and the negative electrode materials are printed on the other radial pattern of the developable 

net. On the strip connecting the two radial patterns, only the current collector is printed on one of 

the substrates. An electrolyte-soaked separator with a developable net is placed between the two 

electrodes, and finally, the two substrates are sealed together with double-sided tape. (E) The 

serially connected conformal Zn-carbon battery has a 2.8 open-circuit voltage. (F) This battery 

can stably wrap a steel ball and (G) can illuminate an LED lamp that requires more than 1.5 V to 

operate. We used 50 µm-thick polyethylene terephthalate (PET) films as substrates, conductive 

carbon grease as the current collector, MnO2 and Zn powder-based slurry as electrodes, and a 

solution of 28 wt% ZnCl2 and 3 wt% NH4Cl in water for the electrolyte. Each MnO2 and Zn 

powder-based slurry contains 5 wt% Super P carbon black, 2 wt% polyethylene oxide (PEO) 

powder, 1.5 wt% poly methyl methacrylate (PMMA) powder and 1.5 wt% polyvinyl pyrrolidone 

(PVP). (Photo credit: Y.-K. Lee, Seoul National University) 

 

 

 

  



 

 

Movie S1 
Failure to cover a sphere with nonstretchable sheets. 

 

Movie S2 

FE simulation for wrapping a sphere with a 100 µm-thick Si wafer with a nonpolyhedral 

developable net. 

 

Movie S3 

Demonstration of a conformable device with an electric toy car. 
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