Supplement to:

Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in *Pseudomonas aeruginosa*

Yu-ming Cai^{a,b}, Andrew Hutchin^{b,c,*}, Jack Craddock^{a,b}, Martin A. Walsh^{c,d}, Jeremy S. Webb^{a,b} and Ivo Tews^{a,b}

a National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK

^b Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK

^c Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK

^d Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK

* Present Address: Structure and Function of Biological Membranes Lab, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Bruxelles, Belgium

Address correspondence to Ivo Tews, ivo.tews@soton.ac.uk

JSW and IT are last authors on this work

Strains and plasmids	Genotype or phenotypes ^a	Reference
E.coli		
S17-1(λpir)	<i>TpR SmR recA, thi, pro, hsdR-M+RP4</i> : 2-Tc:Mu: Km Tn7	Biomedal corp.
DH5a	$spuE44 \Delta lacU169(\phi 80 lacZ\Delta M15) hsdR17 \lambda pir recA1$	Lab collection
	endA1 gyrA96 thi-1 relA1	
P. aeruginosa		
PAO1	Wild-Type, C.Manoil lab, University of Washington	57
KO mutants		
$\Delta pa0285$	PAO1 mutant (<i>pa0285::aacCl</i>); Gm ^R	This study
$\Delta pa0290$	PAO1 mutant (<i>pa0290::aacCl</i>); Gm ^R	This study
Δ <i>pa</i> 0338	PAO1 mutant (pa0338::aacCl); Gm ^R	This study
$\Delta pa0575$	PAO1 mutant (<i>pa0575::aacCl</i>); Gm ^R	This study
$\Delta pa0847$	PAO1 mutant (<i>pa0847::aacCl</i>); Gm ^R	This study
$\Delta pa0861 \ (\Delta rbdA)$	PAO1 mutant ($pa0861::aacCl$); Gm ^R	This study
Δpa1181 (ΔyegE)	PAO1 mutant (<i>pa1181::aacCl</i>); Gm ^R	This study
$\Delta pa2072$	PAO1 mutant (<i>pa2072::aacCl</i>); Gm ^R	This study
$\Delta pa4601 \ (\Delta morA)$	PAO1 mutant (<i>pa4601::aacCl</i>); Gm ^R	This study
$\Delta pa4959 \ (\Delta fimX)$	PAO1 mutant (<i>pa4959::aacCl</i>); Gm ^R	This study
$\Delta pa5017 (\Delta dipA)$	PAO1 mutant (<i>pa5017::aacCl</i>); Gm ^R	This study
$\Delta pa5442$	PAO1 mutant (<i>pa5442::aacCl</i>); Gm ^R	This study
$\Delta pa1443$ ($\Delta fliM$)	PAO1 mutant (<i>pa4959::aacCl</i>); Gm ^R	This study
$\Delta pa4525$ ($\Delta pilA$)	PAO1 mutant (<i>pa5017::aacCl</i>); Gm ^R	This study
$\Delta pa1443 \Delta pa4525$	PAO1 mutant (<i>pa1443::aacCl,pa4525::Neo</i>); Gm ^R ; Km ^R	This study
$(\Delta pilA\Delta fliM)$		
KO mutants with c-di-GMP reporter gfp vector		
PAO1 Tn7CdrA::gfp	PAO1 WT with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Tet ^R	This study
Δpa0285 Tn7CdrA::gfp	PAO1 mutant (pa0285::aacCl) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa0290 Tn7CdrA::gfp	PAO1 mutant (<i>pa0290::aacCl</i>) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa0338 Tn7CdrA::gfp	PAO1 mutant (pa0338::aacCl) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa0575 Tn7CdrA::gfp	PAO1 mutant (pa0575::aacCl) with mini-Tn7-PcdrA-RBSII-gfp(Mut3)-T0-T1;Gm ^R ;Tet ^R	This study
Δpa0847 Tn7CdrA::gfp	PAO1 mutant (pa0847::aacCl) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa0861 Tn7CdrA::gfp	PAO1 mutant (<i>pa0861::aacCl</i>) with mini-Tn7-P _{cdr4} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa1181 Tn7CdrA::gfp	PAO1 mutant (<i>pa1181::aacCl</i>) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa2072 Tn7CdrA::gfp	PAO1 mutant (<i>pa2072::aacCl</i>) with mini-Tn7-P _{cdr4} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa4601 Tn7CdrA::gfp	PAO1 mutant (<i>pa4601::aacCl</i>) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa4959 Tn7CdrA::gfp	PAO1 mutant (<i>pa4959::aacCl</i>) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa5017 Tn7CdrA::gfp	PAO1 mutant (<i>pa5017::aacCl</i>) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Δpa5442 Tn7CdrA::gfp	PAO1 mutant (<i>pa5442::aacCl</i>) with mini-Tn7-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ ;Gm ^R ;Tet ^R	This study
Plasmids		27
pPS856	Ap ^κ , Gm ^κ ; 0.83-kb blunt-ended SacI fragment from pUCGM	3/
pEX100T	Ap ^R ; oriT ⁺ sacB ⁺ gene replacement vector	37
pCdrA::gfp	pUCP22Not-P _{cdrA} -RBSII-gfp(Mut3)-T ₀ -T ₁ , Amp ^R Tet ^R	41
рСR ^{тм} 4-ТОРО ^{тм}	Km ^R and Amp ^R TOPO cloning expression vector	Invitrogen TM

Table S1: Bacterial strains and plasmids

Primer	Sequence $(5' \rightarrow 3')$	
Used for KO mutant generation and	l sequencing	
-		
$\Delta pa0285$		
PA0285-up-F	ATGC <u>CCCGGG</u> CCTGACCGACAATCTCGAC	
PA0285-up-R	ATGC <u>GAATTC</u> GTTCCAGATCTCTCCGCTC	
PA0285-dn-F	ATGC <u>AAGCTT</u> AGTCACCGAAAGCGCGG	
PA0285-dn-R	ATGC <u>CCCGGG</u> TCAGTCTTCCGGCAGCG	
SeqPA0285-F	GTAACTGCCACCAGTTGC	
SeqPA0285-R	CCATCCAGGCTTCTGAG	
$\Delta pa0290$		
PA0290-up-F	ATGC <u>CCCGGG</u> GCGAATGGTCTACGTCAGC	
PA0290-up-R	ATGC <u>GAATTC</u> CAGGAACGCCAACGGTATC	
PA0290-dn-F	ATGC <u>AAGCTT</u> GCGACCTGTTCGGGC	
PA0290-dn-R	ATGC <u>CCCGGG</u> TCAGCCCACGACGATG	
SeqPA0290-F	GTATCGCTCGGCAACTG	
SeqPA0290-R	CCTTTCTGGCGAGTTACC	
$\Delta pa0338$		
PA0338-up-F	ATGCCCCGGG GTGCGGCGCTTACGC	
PA0338-up-R	ATGC <u>GAATTC</u> CTCGGGATGGATGGATGC	
PA0338-dn-F	ATGC 4 AGCTT CCTGTTCGGCC ACTCC	
PA0338-dn-R		
SecDA0338 E		
SeqDA0338 D	CTCCAGCGTGTCATCG	
Seqi A0558-K	CICCAGCOIGHCAICG	
. 0575		
$\Delta pa0375$		
PA0575-up-F	ATGC <u>CCCGGG</u> GATCATCATCCTGGCACG	
PA0575-up-R	ATGC <u>GAATTC</u> GGACGATGGGAAGACCG	
PA0575-dn-F	ATGC <u>AAGCTT</u> GCCGAGGATTGCGG	
PA0575-dn-R	ATGC <u>CCCGGG</u> CACCGTGAGCTGCATG	
SeqPA0575-F	GACGAGTGACGAACGAAC	
SeqPA0575-R	GTTGCCATCAGATAAGGAC	
$\Delta pa0847$		
PA0847-up-F	ATGCCCCGGG CCGTCGCCGAGGAC	
PA0847-up-R	ATGCGAATTC GTCGTAGCTGGCATCCC	
PA0847-dn-F	ATGCAAGCTT CGCGCCATGCAGAG	
PA0847-dn-R	ATGCCCCGGG CGCCCAGGCGGTAG	
SeaPA0847-F	GGAACTTATCCATGCGGTTG	
SeaPA0847-R	GTGGCTGAACTGCTGCATC	
Apa0861		
PA0861-up-F	ATGC <u>CCCGGG</u> ATGAGGCAGAACCCGGACTC	
PA0861-up-R	ATGC <u>GAATTC</u> AGCTCGATGGCGCG	
PA0861-dn-F	ATGC <u>AAGCTT</u> GGTTGCCAACCTGGCC	
PA0861-dn-R	ATGC <u>CCCGGG</u> CTACCGGAGGTTCTGTCCC	
SeqPA0861-F	CAGCCACTAGACTCCTACTG	
SeqPA0861-R	CAGTCGACGATCAGTTGC	
Δpa1181		
PA1181-up-F	ATGC <u>CCCGGG</u> TTCGCGTGCTCTGGG	
PA1181-up-R	ATGC <u>GAATTC</u> AGGCCATCGGCAGGTAC	
PA1181-dn-F	ATGC <u>AAGCTT</u> CTTCGAGCTGACCGAGACG	
PA1181-dn-R	ATGC <u>CCCGGG</u> TCAGCCCAACTCCTGGC	
SeqPA1181-F	CTGAGCCTGGACGATTC	
SeqPA1181-R	CTGCACATGAGTTCGCAG	

Table S2: Primer sequences

$\Delta pa2072$ PA2072-up-F ATGCCCCGGG ATGCTTGCTTCAGCGATTG PA2072-up-R ATGCGAATTC TCGACGAAGACCATCACC PA2072-dn-F ATGCAAGCTT AGGCGAGGTGATGGTCTC PA2072-dn-R ATGCCCCGGG TGAGCAGGAACCCTTGC ATGAAGGTCGAGGTGGTG SeaPA2072-F TGACGCCTCGTTGTTATTGC SeqPA2072-R $\Delta pa4601$ PA4601-up-F ATGCCCCGGGTTCGCGGACTCTACGACAG PA4601-up-R ATGCGAATTCAACTCGCTACGGGTCTCG PA4601-dn-F ATGCAAGCTTATCCTGATGAGTGACGTCGC PA4601-dn-R ATGCCCCGGGCTCAGCCCTCGTTGAACATG SeqPA4601-F GACAAAGTGCCTCGAC SeqPA4601-R GTCAAATCACGGCTGAAC $\Delta pa4959$ PA4959-up-F ATGCCCCGGG CACGTACGACGGCGAAC PA4959-up-R ATGCGAATTC GTTCTCGACTTTCTTCAGCAG PA4959-dn-F ATGCAAGCTT GAGGTGCTCCTGCGC PA4959-dn-R ATGCCCCGGG GGTCCTGGACGAAGGAG SeqPA4959-F GTTCGAATACCGCTCG SeqPA4959-R TGGACGGCATCCTCTAC $\Delta pa5017$ PA5017-up-F ATGCCCCGGG CGACTACCCTCTGCGC PA5017-up-R ATGCGAATTC GTGCCGTAGGCTTCGC PA5017-dn-F ATGCAAGCTT GCCGATCGGCAAGTG PA5017-dn-R ATGCCCCGGG CCATGGCGATCACCG SeqPA5017-F CAATCGGCATAATGCACC SeqPA5017-R CAGAACCATGGCTCTCG $\Delta pa5442$ PA5442-up-F ATGCCCCGGG ATGACCGTCCATGTCGAG PA5442-up-R ATGC GAATTC CGAACACCAGCACCTGC PA5442-dn-F ATGCAAGCTT CGGCGCAACTGGAGC PA5442-dn-R ATGCCCCGGG TCAACGAGCCTGGCG SeqPA5442-F GTCGTTGAGGGAGTTCAG SeqPA5442-R GACCAATCGGGATAGCAG $\Delta pa1443$ PA1443-up-F ATGCCCCGGG AGCAAGCTGAAGCTGATC PA1443-up-R ATGCGAATTC TTTCATCCTGGGAAAGCAG PA1443-dn-F ATGCAAGCTT TACAGATTCTCGAAGCGG PA1443-dn-R ATGCCCCGGG AGCTTCTTGATGCGTTCG SeqPA1443-F AGCAAGCTGAAGCTGATC SeqPA1443-R AGCTTCTTGATGCGTTCG $\Delta pa4525$ PA4525-up-F ATGCCCCGGG TTGTCCAGGCTATTCAGG ATGC<u>GAATTC</u> ACCACGATCATCAGTTCGATC PA4525-up-R PA4525-dn-F ATGCAAGCTT TACCTTTACCTTCCAGACTG PA4525-dn-R ATGCCCCGGG TGACCAAGGATGTCAGG SeqPA4525-F TTGTCCAGGCTATTCAGG SeqPA4525-R TGACCAAGGATGTCAGG Gentamicin resistance and kanamycin resistance gene cassettes Gm-F ATGCGAATTC GAATTGACATAAGCCTGTTCGG Gm-R ATGCAAGCTT GAATTGGCCGCGG Km-F ATGCGAATTC AATGTCAGCTACTGGGCTATC

ATGCAAGCTT CTGATGCGGTGTGAAATAC

Km-R

b

NO-induced biofilm dispersal

Figure S1. NO-induced biofilm dispersal of flagellum and pili deletion mutants. (A) Confocal laser scanning microscopy images used for phenotypic analysis of 72 hrs mature biofilms before or after 2 hrs treatment with 250 μ M SNP for the flagellum mutant $\Delta fliM$, the pili mutant $\Delta pilA$ and the double mutant $\Delta pilA\Delta fliM$ compared with PAO1 WT (scale bar 50 μ m). (B) COMSTAT analysis of biomass reduction after treatment normalised against WT, highlighting differences in biomass reduction for the mutants. The Student's T-test was used to determine significances, where *** denotes a confidence level of p<0.01, and ** denotes a confidence level of 0.01<p<0.05. Data acquired from 3 independent experiments.