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Supplemental Materials and Methods 

TRILOGY-ACS Cohort The primary outcome of the TRILOGY-ACS trial was a composite of 

cardiovascular events including cardiac death, MI and stroke at 36 months [70, 71]. 

Randomization occurred on average after 108 hours (IQR: 64, 155) of the initial cardiovascular 

event, specifically a NSTE-ACS event. Patients that were not able to be randomized to 

treatment within 72 hours of the primary event were first given a standard dose of open label 

clopidogrel prior to randomization [71]. Patients from the TRILOGY-ACS primary trial that were 

additionally enrolled in the secondary platelet function sub-study (N=2564) also provided whole 

blood samples at baseline, after 30 days and after six months of clopidogrel or prasugrel 

medication administration with simultaneous measurement of platelet reactivity (PR) at each 

time point [6]. PR was quantified at each individual trial site using a calibrated VerifyNow P2Y12 

Assay (Accumetrics Inc.). VerifyNow is a whole blood, adenosine diphosphate (ADP)/PGE1 - 

based assay that measures platelet adhesion to fibrinogen-coated beads, with the secondary 

addition of PGE1 increasing the test’s specificity for P2Y12 receptors [72-74].  

Platelet reactivity profiling In the primary TRILOGY-ACS cohort, PR was measured at each 

participating site using the VerifyNow device P2Y12 Assay (Accumetrics Inc), a whole blood, 

adenosine diphosphate (ADP) - based assay that measures platelet agglutination to fibrinogen-

coated polystyrene beads. The addition of prostaglandin E1 during the test reaction increases 

specificity of the test for P2Y12 receptors. Test results are expressed as P2Y12 reaction units 

(PRUs) and lower PRU readings reflected increased inhibition of the P2Y12 receptor. PRU 

values were excluded if platelet adhesion measurements were performed within seven days of 

other anti-platelet medication administration (glycoprotein IIb/IIIa inhibitor therapy), if PRU 

values were determined at fewer than 10 minutes or greater than four hours after sample 

collection, if reported platelet inhibition was measured at greater than 100%, or if PRU values 

were greater > 500 [6]. 
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In Singapore cohort A, the Vasodilator-Stimulated Phosphoprotein (VASP) flow cytometry assay 

(Diagnostica Stago, Asnières, France) was utilized to measure platelet sensitivity to P2Y12 

agonists and was completed within 48 hours of sample collection [40]. Citrated samples were 

incubated with prostaglandin E1 (PGE1) and 10 μmol/l adenosine diphosphate (ADP) for 10 min 

and set to plates with paraformaldehyde, and platelets were permeabilized with non-ionic 

detergent. VASP Analysis was performed on a FACS Canto II flow cytometer (Becton 

Dickinson, NJ, USA). The platelet population was identified via forward and side flow cytometry 

distribution and 5000 platelets were gated. We then calculated Platelet reactivity index (PRI) 

from median fluorescence intensity (MFI) after samples were inoculated with PGE1 or PGE1 

and ADP according to the formula: 

PRI = (MFI(PGE1) – MFI(PGE1 + ADP)/MFI(PGE1)) X 100  

In both Singapore cohorts A and B, PR measurements were performed by whole blood 

impedance aggregometry on a Multiplate analyzer (Roche Diagnostics, Basel, Switzerland) 

without prostaglandin addition. Experimental technique consistency across study sites was 

ensured by conducting centralized training of those who conducted PR testing with only one 

trained person at each study site conducting the testing. VASP testing was performed on 

citrated whole blood within 48 h of collection. All Multiplate testing was performed on whole 

blood samples within 1 hour of collection during cardiac catheterization. 

MiRNA sequencing (miRNA-seq) from whole blood. Total RNA was extracted from 

PaxGENE tubes using the PerfectPure RNA blood kit (5Prime, Gaithersburg, MD) with 

microRNA libraries prepared using TruSeq sample prep kits (Illumina). Prior to miRNA library 

pooling, a Bioanalyzer DNA1000 chip (Agilent) was used for library size validation and then 

computed using the KAPA Library Quantification kit. Library pools were comprised of 24 

libraries. MicroRNA pooled-library sequencing was performed on an Illumina HiSeq2500 as 
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single-end 50bp sequence runs using rapid run flow cells. MiRNA clusters were also produced 

for single read flow cell. Raw miRNA sequence reads were then processed using cutadapt v1.5 

to remove Illumina sequencing adapters and low quality 3’ sequence ends and aligned to the 

human genome (GRCh38) using bowtie (version 1.0.1) [61, 62]. 1423 miRNAs were detected 

with ≥0.1 mapped reads/million aligned reads (rpm) in at least one sample. During alignment, 

reads required a minimum length of 18 NT and no more than one mismatch per read and < 6 

alignments. Reads that mapped to > 10 locations were rejected. Aligned reads were then 

mapped to primary miRNA transcripts through miRBase (v. 21, 2813 miRNAs) using bedtools (v. 

2.21.0) [64, 75]. A false enrichment of miR-486 was seen in the final mapped reads, however 

this is a known artifact of the Illumina library prep, which has previously shown enrichment of 

miR-486 in excess of 50x [65]. Therefore, reads mapping to miR-486 were removed. Overall, 

after applying a final cutoff of ≥ 1 rpm in 16 paired samples, 247 microRNAs were analyzed. 

From the 20 paired samples: one pair was removed for poor alignment, with an additional two 

pairs removed for having high levels of rRNA, and one was removed due to poor 

correspondence with its technical replicate. 

Targeted miRNA profiling from plasma. MiRNA enriched total RNA was extracted from 

plasma samples using the Qiagen miRNAeasy Serum/Plasma kit. All samples had a miRNeasy 

Serum/Plasma Spike-in Control added.  Following extraction, cDNA was acquired using 1.5µl of 

total RNA extracted from plasma in the Qiagen miScript II RT kit, 200 μL of water was added to 

the reaction volume after reverse-transcription reaction to dilute cDNA before storage at -20oC. 

Custom miRNA arrays were designed using miRNA assays from Qiagen; specifically, the 

targeted array consisted of 46 miRNAs (Suppl. Table 1), chosen based on high concentration 

miRNAs associated with recurrent CVD event case-control status from the miRNA-seq analysis 

(N=35) as well as miRNAs determined to have association with potential CVD phenotypes from 

the literature (N=11) (Suppl. Table 2). Each array plate had 48 miRNA assays lyophilized into 
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the plate and repeated eight times. Three Qiagen control assays were added to the custom 

array, specifically: miRTC, our targeted array specific control miRNA (miR-30e-5p, miR-30d-5p, 

miR-23a-3p and SNORD61), cel-miR-39 miScript and the PPC assay. The Qiagen miScript 

SYBR Green PCR kit was used to run the PCR reaction for the array. Each PCR was performed 

on a Viia 7 Real-Time PCR system. For miRNA concentration normalization plasma samples 

were supplemented with a C. elegans miR-39 miRNA mimic. An automatic baseline was used 

with a Ct threshold of 0.02 and Ct values normalized to cel-miR-39* for Ct ≤ 35. Ct ≥ 35 were 

considered as being below the lower limit of quantification. Data below LLOQ for the remaining 

miRNAs was imputed using the minimum concentration values minus 10%. For the Singapore 

cohorts, the miRNeasy Kit (Qiagen) was used to isolate miRNAs from plasma samples. The 

nCounter Human miRNA Panel v2 (Nanostring) was then used to evaluate the concentration of 

~800 miRNAs in these samples. MiRNA ligation and hybridization to fluorescent probes was 

performed at 65ºC for 18 hours, followed by probe purification and counting on the nCounter 

prep station and digital analyzer. Data from the nCounter analyzer contained individual 

fluorescent barcodes that mapped to individual miRNA species and allowed for an exact count 

of miRNAs present in the sample.  

 

Supplemental Figures and Tables 

Supplemental Table 1: 46 miRNA Species within the Targeted qRT-PCR Array Panel 

Let-7a-5p miR-1304-3p miR-191-5p miR-24-3p miR-574-3p  

Let-7d-3p miR-1307-5p miR-192-5p miR-25-3p/5p miR-636  

Let-7g-5p miR-15b-5p miR-20a-5p miR-29a-3p miR-6087  
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miR-1-3p* miR-150-5p miR-20b-5p miR-29c-3p* miR-92a-3p  

miR-126-3p miR-151a-3p miR-208a-3p* miR-296-5p miR-92b-3p  

miR-126-5p miR-17-3p* miR-21-5p miR-30a-5p miR-345-5p  

miR-133a-3p miR-18a-5p miR-22-3p miR-484 miR-197-3p  

miR-133b* miR-181b-5p miR-222-3p miR-4685-3p* miR-324-5p  

miR-134-5p miR-19b-3p miR-223-3p miR-4746-5p miR-939-5p  

* 6 miRNA Species were excluded from the analysis following Internal Quality Control measures 

 

 

Supplemental Table 2: Detailed reasoning for miRNA chosen for targeted qRT-PCR array.  

MicroRNA Involvement in Platelet/CVD [Reference] 

Let-7a, Let-7d, Let-7g • Part of Let-7 family, abundant in platelets  

miR-1-3p 

• Known platelet enriched miR  

• Highly cited in cardiac hypertrophy [76] 

miR-126 

• Athero-protective effects of endothelial apoptotic bodies  

• Known controller of angiogenesis [77]  

miR-1304-3p • Associated with lowering BNP and type I/II MI  

miR-1307-5p 
• miR-1307-5p; predictive of angiogenic response in medication 

[78]  

• Highly expressed in TRILOGY patients with high BNP. 

miR-133a-3p 
• Part of miR-1/133 cluster, many publications on role in 

cardiac hypertrophy and remodeling [79]  

• Considered a key biomarker in heart failure [80] 
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miR-133b 
• Differentially expressed in sample patients on clopidogrel vs 

prasugrel at 30 days.  

• Potential biomarker in acute MI [81] 

miR-134 • Reported to be circulating in Acute MI [82] 

miR-150-5p • Prognostic of ventricular remodeling and HF events [83] 

miR-151a-3p 
• Down regulated in experimental models of heart failure, 

increased susceptibility to post-MI arrhythmias [78] 

miR-15b-5p 
• MiR-15 family implicated in ventricular hypertrophy and 

modulation of infarct size [84] 

miR-17-3p* 

• Part of the miR-17/miR-92 supercluster [85]  

• Regulatory unit in ischemia/reperfusion injury [86] 

• Mir-17-5p but not miR-17-3p assessed in the Nanostring 
miRNA set 

miR-181b-5p 
• Down regulated in in response to transverse aortic 

constriction, implicated in cardiac hypertrophy via NF-κB [87]  

miR-18a-5p • miR-18a-5p; Part of the miR-17/miR-92 super cluster. 

miR-191-5p • Platelet enriched miRNA [49]  

miR-192-5p 
• A circulating p53-responsive microRNA predictive indicators 

of heart failure after acute MI [88] 

miR-19b-3p • Altered at baseline in miRNA-Seq (p=0.05).  

miR-208a-3p • Strongly highlighted as potential ACS biomarker [89] 

miR-20a-5p • Part of the miR-17/miR-92 super cluster. 

miR-20b-5p 
• Platelet enriched miR (anti-angiogenic). Responds 

differentially to antiplatelet therapy of different potency [90] 

miR-21-5p 
• Released from cardiac fibroblasts (pro-apoptotic) and induced 

in failing heart [91] 

miR-22-3p • Overexpression in cardiomyocyte causing hypertrophy [92] 

miR-222-3p 
• Inhibits endothelial cell migration, contributes to sex-

dimorphic eNOS expression via ETS-1 [93]  

miR-223-3p 
• miR-223-3p; Platelet enriched miR, often cited as being key 

platelet-derived miR playing role in CV outcomes [15, 94] 

miR-24-3p 
• Platelet enriched miR, expression induces cardiac 

hypertrophy [95, 96] 

miR-25-3p 
• Highly expressed in miRNA-Seq dataset.  

• Inhibition improves contractility in heart failure [97] 
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miR-29a-3p • Significant role of miR-29 in cardiac fibrosis following MI [98]  

miR-29c-5p 
• Critical role in cardiac fibrosis following MI [98]  

• Highly expressed in miR-Seq dataset 

miR-30a-5p 
• Highly expressed in miRNA-Seq dataset, particularly in those 

with low BNP/CRP. 

miR-4685-3p* 
• Highly expressed in miRNA-Seq dataset.  

• Not included in the Nanostring miRNA set 

miR-4746-5p* 
• Highly expressed in miRNA-Seq dataset, particularly in non-

diabetic subjects. 

• Not included in the Nanostring miRNA set 

miR-484 
• Inhibitor of mitochondrial function and potential predictor of 

spontaneous MI [99] 

miR-574-3p • Highly expressed in miRNA-seq dataset 

miR-6087* 

• Highly expressed in miRNA-Seq dataset  

• Down regulates endothelial endoglin expression [100] 

• Not included in the Nanostring miRNA set 

miR-636* 

• Highly expressed in miRNA-Seq dataset 

• Early biomarker of MI in whole blood miRNA sequencing 
study [101] 

• Not included in the Nanostring miRNA set 

miR-92a-3p 
• Highly expressed in the miRNA-Seq dataset.  

• Member of the miR-17/miR-92 super-cluster [85] 

miR-92b-3p • Highly expressed in the miRNA-Seq dataset.  

 

Supplemental Table 3A: Baseline characteristics of Singapore cohort A: A comparison 

between 24 patients with high on-treatment platelet reactivity (VASP PRI > 50%) and 24 

patients with low on treatment platelet reactivity (VASP PRI < 50%). 

 HPR LPR P-value  

Age  57 (51–64) 53 (50–64.5) 0.705 

Female  33.3 13.5 0.519 

Ethnicity    0.132 

Chinese  67.4 56.8  

Malay   20.4 32.4  
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Indian  12.2 10.8  
Diabetes   34.7 48.7 0.426 

BMI (kg/m2) 25 (23, 27) 26 (24, 28.5) 0.371 

Serum creatinine 

(μmol/L)  75 (67.5, 85) 84.5 (70.5, 99.25) 0.07 

Coronary artery 
disease†  91.8 86.4 0.945 

Proton pump inhibitor 30.6 29.7 1 

DHP calcium channel 
antagonist 26.9 32.5 0.893 

Statin  66.7 78.4 0.461 

Aspirin  100 100 1 

Smoking  34.7 32.4 0.659 

* Continuous variables are presented as median (25th and 75th  percentile) and categorical 
variables are  presented as percentages 

 

Supplemental Table 3B: Baseline characteristics of Singapore cohort B: A comparison 

between 24 patients with high on-treatment platelet reactivity (ADP > 46 aggregation units) and 

24 patients with low on treatment platelet reactivity (ADP < 46 aggregation units). 

 
HPR (N=24) LPR (N=24)  P-value 

Age (years)    56 (47, 60)           56 (50,63) 0.27 

Men (%)     95        95 0.74 

Race   0.08 

              Chinese (%) 50 85  

              Malay (%) 14 5  

              Indian (%) 36 10  

Body-Mass Index (kg/m2)  24.3 (23.4-27.1) 24.2 (23.4-26.8) 0.68 

Hypertension (%) 67 63 0.08 

Dyslipidemia (%) 68.2 52.4 0.36 

Current Smoker (%) 40.9 33.3 0.70 

Diabetes (%) 37 35 0.46 

GRACE Score  102 (79-112) 86 (79-98) 0.11 

NSTE-ACS (%) 82 79 0.16 

ADP test result (AU*min)   926 (765-1191)  210 (185-226)  <0.01 
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Initial serum creatinine 
value (μmol/dL)  

85 (67-101) 75 (68-84) 0.24 

Baseline platelet count 
(×10³ cells per mm³)  

254 (212-316) 210 (204-234) <0.01 

 

Continuous variables expressed as median (25th, 75th percentile) HPR = High on-ADP receptor 

antagonist platelet reactivity (ADP test ≥ 468 AU*min). LPR= Low on-ADP receptor antagonist 

platelet reactivity (ADP test < 468 AU*min) 

 

Supplemental Table 4. MiRNAs significantly associated with platelet reactivity in the 

Singapore cohort in baseline plasma samples. Fold Changes represent Log2 Fold Changes 

in miRNA concentration per 1 SD PRU unit. MiRNA species are listed from smallest to largest p-

value in cohort A. MiRNA species significant in either cohort A or B were included. MiRNA effect 

sizes (Fold Changes) ranged from -0.279 to 0.630 with p-values from 1.6x10-13 to 0.18. § 

MiRNA species that were also significantly associated with PRU in the TRILOGY cohort. 

MiRNA Cohort A Log2 Fold 
Change (P-value) 

Cohort B Log2 Fold 
Change (P-value) 

Let-7a-5p 0.24 (0.033) 0.50 (1.3x10-12) 

Let-7b-5p 0.30 (7.3x10-4) 0.35 (3.1x10-7) 

miR-106a-5p 0.21 (0.024) 0.24 (4.5x10-4) 

miR-126-3p§ 0.33 (0.009) 0.45 (3.2x10-11) 

miR-142-3p 0.17 (0.091) 0.29 (1.1x10-5) 

miR-142-5p -0.18 (0.07) -0.1 (0.02) 

miR-146a-5p 0.18 (0.07) 0.44 (1.4x10-10) 

miR-155-5p -0.25 (0.01) -0.44 (7.2x10-8) 

miR-15b-5p§ 0.2 (0.06) 0.46 (2.0x10-11) 
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miR-17-5p 0.21 (0.02) 0.24 (4.5x10-4) 

miR-181a-5p 0.34 (2.4x10-3) 0.38 (5.2x10-8) 

miR-1912 -0.29 (0.01) -0.1 (0.03) 

miR-19b-3p 0.29 (2.0x10-3) 0.21 (2.1x10-3) 

miR-20a-5p/miR-
20b-5p 

0.28 (2.4x10-3) 0.25 (2.6x10-4) 

miR-223-3p 0.52 (1.4x10-9) 0.27 (3.8x10-5) 

miR-23a-3p 0.38 (9.1x10-5) 0.16 (0.013) 

miR-361-3p 0.24 (0.074) 0.16 (0.045) 

miR-4454 0.37 (1.5x10-5) 0.32 (8.5x10-7) 

miR-451a 0.63 (1.6x10-13) 0.16 (0.023) 

miR-576-5p -0.16 (0.16) -0.1 (0.024) 

miR-601 -0.13 (0.18) -0.31 (6x10-6) 

miR-720 0.24 (4.2x10-3) 0.28 (5.4x10-5) 

miR-92a-3p 0.34 (3.4x10-4) 0.25 (2.8x10-4) 

miR-93-5p§ 0.23 (0.01) 0.24 (4.0x10-4) 
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