# **Supplementary Information**

## Switching fatty acid metabolism by an RNA-controlled feed forward loop

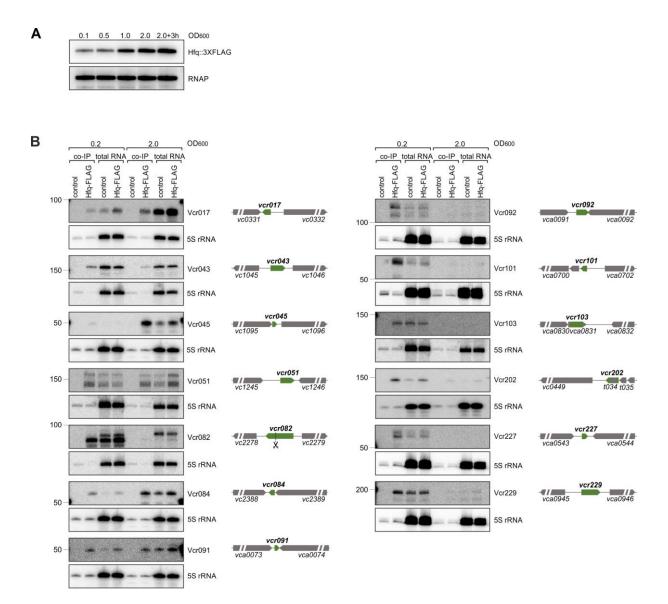
Michaela Huber<sup>1,2</sup>, Kathrin S. Fröhlich<sup>1,2</sup>, Jessica Radmer<sup>2</sup>, and Kai Papenfort<sup>1,2,3 #</sup>

<sup>1</sup> Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany

<sup>2</sup> Faculty of Biology I, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany

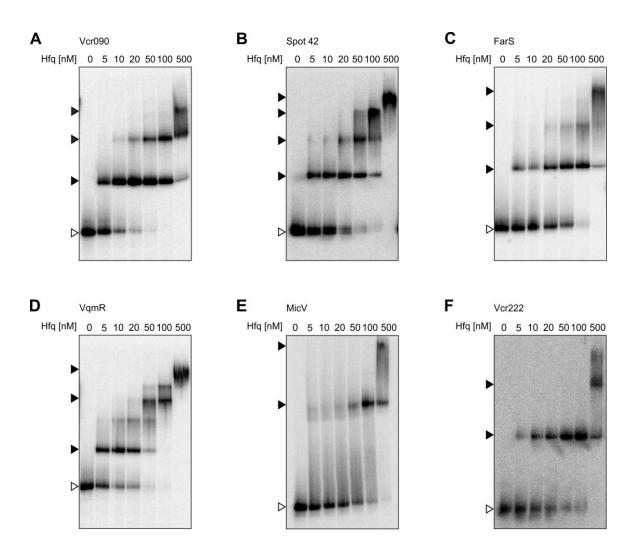
<sup>3</sup> Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany.

## This supplement contains:


Figures S1 to S6 Supplementary Figure Legends Supplementary Materials and Methods Tables S1 to S6 Supplemental References

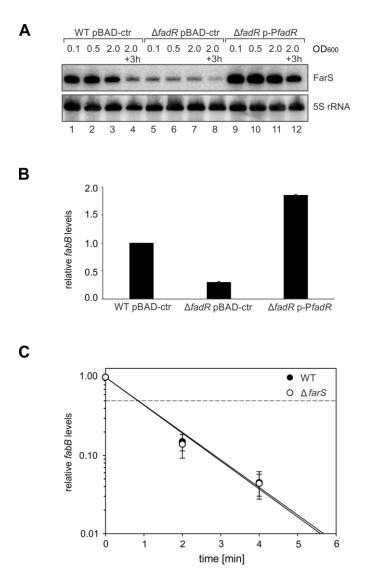
## TABLE OF CONTENTS

| Figure S1 | Expression of Hfq and further RIP-seq analysis            |
|-----------|-----------------------------------------------------------|
| Figure S2 | Hfq - sRNA binding experiments                            |
| Figure S3 | Expression of <i>fabB</i> and <i>farS</i> requires FadR   |
| Figure S4 | Pulse induction of FarS and structure probing experiments |
| Figure S5 | Hfq is required for FarS-mediated target regulation       |
| Figure S6 | Effect of FarS and fatty acids on FadE production         |


# Supplementary Materials and Methods

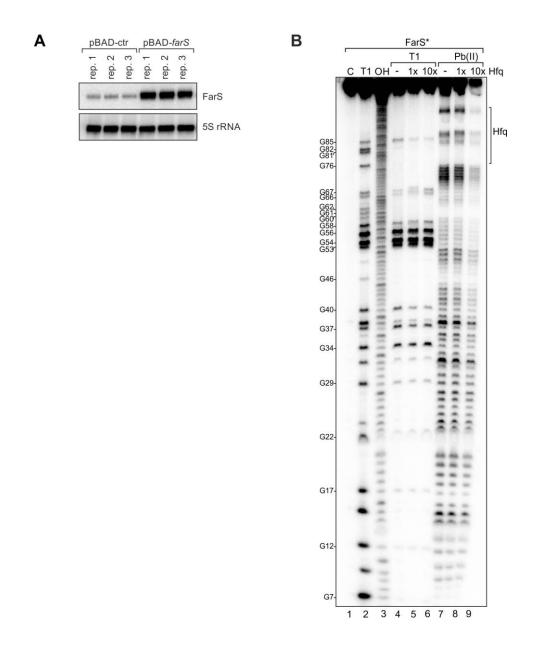
| Table S1 | Statistics of obtained and mapped cDNA reads for co-IP libraries |
|----------|------------------------------------------------------------------|
| Table S2 | Enriched transcripts in Hfq co-IP libraries                      |
| Table S3 | Overview of new sRNA candidates                                  |
| Table S4 | Bacterial strains used in this study                             |
| Table S5 | Plasmids used in this study                                      |
| Table S6 | DNA oligonucleotides used in this study                          |




## Figure S1: Expression of Hfq and further RIP-seq analysis

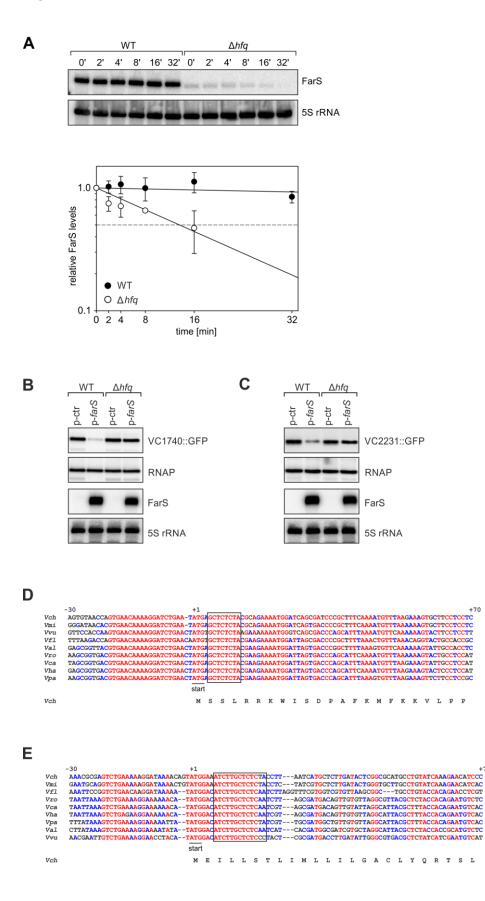
**A)** *V. cholerae* cells carrying a chromosomal 3XFLAG epitope at the *hfq* gene were cultivated in LB medium and protein samples were collected at the indicated  $OD_{600}$  readings. Production of Hfq was monitored by Western blot analysis. RNAP served as loading control. **B)** Co-IP and total RNA (lysate) fractions were obtained from *V. cholerae* wild-type and *hfq::3XFLAG* strains following growth in LB medium to low ( $OD_{600}$  of 0.2) and high cell densities ( $OD_{600}$  of 2.0). The RNA was loaded on Northern blots and probed for the indicated sRNAs. 5S rRNA served as loading control. The genomic locations of the sRNAs are shown to the right. Flanking genes are shown in gray, sRNAs are shown in green. Scissors indicate putative processing site.




## Figure S2: Hfq - sRNA binding experiments

**A** – **F)** Electrophoretic mobility shift assays (EMSAs) using *in vitro* synthesized, 5'end-labelled sRNAs (4nM; A: Vcr090, B: Spot 42, C: FarS, D: VqmR, E: MicV, F: Vcr222) and increasing concentrations of purified *V. cholerae* Hfq protein. Open triangles indicate free sRNAs, solid triangles indicate sRNA-Hfq complexes.





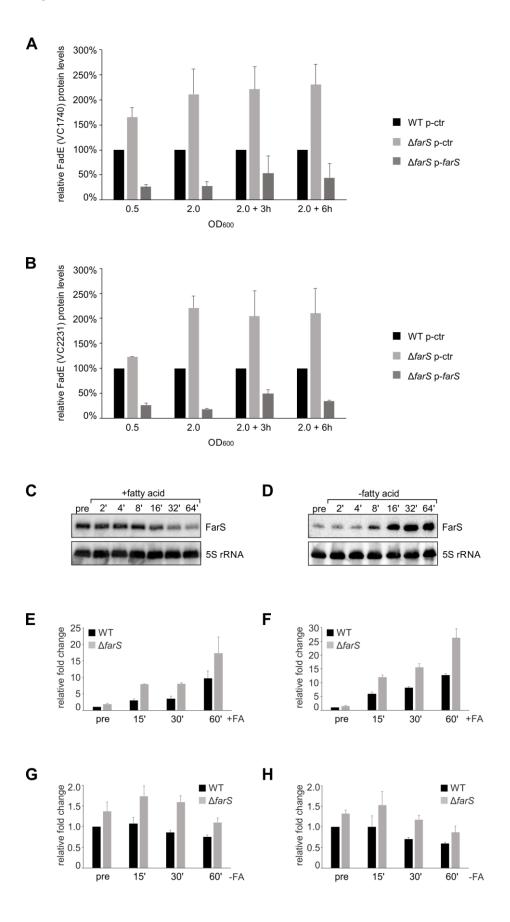

A) *V. cholerae* wild-type and  $\Delta fadR$  cells harboring either a control plasmid (pBAD-ctr) or a plasmid containing the *fadR* gene with its native promotor (p-P*fadR*) were cultivated in M9 minimal medium. Total RNA samples were collected at different stages of growth and Northern blot analysis was performed to determine FarS levels. 5S rRNA served as loading control. **B)** *V. cholerae* wild-type and  $\Delta fadR$  strains harboring the indicated plasmids were cultivated in LB medium to an OD<sub>600</sub> of 1.0. RNA samples were collected and *fabB* mRNA levels were analyzed using qRT-PCR. Data are presented as mean ± SD. **C**) *V. cholerae* wild-type and  $\Delta farS$  strains were grown in LB medium to an OD<sub>600</sub> of 1.0. Cells were treated with rifampicin to terminate transcription. Total RNA samples were collected at the indicated time points and qRT-PCR was performed to monitor *fabB* transcript levels. Data are presented as mean ± SD.



## Figure S4: Pulse induction of FarS and structure probing experiments

**A)** *V. cholerae* wild-type cells carrying the indicated plasmids were cultivated in LB medium to exponential phase (OD<sub>600</sub> of 0.5) and induced with L-arabinose (0.2% final conc.) for 15 minutes. FarS levels were determined by Northern blot analysis and 5S rRNA was used as loading control. **B)** *In vitro* structure probing of 5'-end-labelled FarS sRNA (0.4 pmol) with RNase T1 (lanes 4 to 6) and lead(II) acetate (lanes 7 to 9) in the presence of 0.4 pmol (1x) or 4 pmol (10x) Hfq protein. RNase T1 and alkaline ladders of FarS were used to map the position of individual nucleotides. The positions of G residues are indicated relative to the transcriptional start site.




+70

+70

#### Figure S5: Hfq is required for FarS-mediated target regulation

A) V. cholerae wild-type and  $\Delta hfg$  strains were cultivated in LB medium to an OD<sub>600</sub> of 1.5. Cells were treated with rifampicin and total RNA was collected at the indicated time points. Northern blot analysis was performed to monitor FarS levels. 5S rRNA was used as loading control. Data are presented as mean  $\pm$  SD. **B and C)** *E. coli* wild-type and  $\Delta hfg$  strains harboring a reporter plasmid for VC1740::GFP (A) or for VC2231::GFP (B) were cotransformed with plasmids p-ctr or p-farS and grown in LB medium to stationary phase (OD<sub>600</sub> of 2.0). GFP levels were analyzed by Western blotting and FarS levels were determined by Northern blot analysis. RNAP and 5S rRNA served as loading controls for Western and Northern blots, respectively. **D** and **E**) Alignments of *fadE* sequences in different *Vibrio* species (D: vc1740, E: vc2231). The sequences were aligned using the Multalign algorithm (1). Numbers above the sequences indicate the distance to the first nucleotides of the fadE start codons (marked with +1). The start codons are underlined. Black boxes indicate sequences base-pairing to FarS. The corresponding amino acid sequences for V. cholerae are shown below, respectively. Vch, Vibrio cholerae; Vmi, Vibrio mimicus; Vvu, Vibrio vulnificus; Vfl, Vibrio fluvialis; Val, Vibrio alginolyticus; Vro, Vibrio rotiferianus; Vca, Vibrio campbellii; Vha, Vibrio harveyi; Vpa, Vibrio parahaemolyticus.





#### Figure S6: Effect of FarS and fatty acids on FadE production

**A** and **B**) V. cholerae wild-type and  $\Delta farS$  strains carrying a chromosomal 3XFLAG epitope either at the vc1740 (A) or at the vc2231 (B) gene and harboring the indicated plasmids were cultivated in M9 minimal medium. FadE::3XFLAG protein production (A: VC1740::3XFLAG, B: VC2231::3XFLAG) was analyzed by Western blotting (see Figs. 5A-B). Bar graphs show quantification of Western blots obtained from three independent biological replicates. FadE levels in the wild-type strains were set to 100%. Data are presented as mean  $\pm$  SD. C) V. cholerae wild-type cells were grown in M9 minimal medium and fatty acids (sodium oleate, 0.005% final conc.) were added when cells reached an OD<sub>600</sub> of 1.0. RNA samples were collected at the indicated time points before and after treatment. Northern blot analysis was performed to determine FarS levels. 5S rRNA was used as loading control. D) V. cholerae wild-type cells were cultivated in M9 minimal medium supplemented with external fatty acids (sodium oleate, 0.005% final conc.). When reaching an OD<sub>600</sub> of 1.0, cells were washed and transferred into fresh M9 minimal medium lacking fatty acids. RNA samples were collected at the indicated time points. The Northern blot was probed for FarS and 5S rRNA served as loading control. **E and F)** V. cholerae wild-type and  $\Delta farS$  strains carrying a chromosomal 3XFLAG epitope either at the vc1740 (E) or at the vc2231 (F) gene were cultivated in M9 minimal medium. When cells reached stationary phase (OD<sub>600</sub> of 2.0), fatty acids (+FA, sodium oleate, 0.005% final conc.) were added and FadE expression patterns were analyzed on Western blots (see Figs. 6B-C). Bar graphs show quantification of Western blots obtained from three independent biological replicates. Expression in the wild-type strain before treatment (pre) was set to 1. Data are presented as mean ± SD. G and H) V. cholerae wild-type and  $\Delta$  farS strains carrying a chromosomal 3XFLAG epitope either at the vc1740 (G) or at the vc2231 (H) gene were cultivated in M9 minimal medium containing sodium oleate (0.005% final conc.). When reaching stationary phase, cells were washed and resuspended in M9 minimal medium lacking fatty acids (-FA) and FadE levels were monitored on Western blots (see Figs. 6D-E). Bar graphs show quantification of Western blots obtained from three independent biological replicates. Expression in the wild-type strain before treatment (pre) was set to 1. Data are presented as mean  $\pm$  SD.

#### **Supplementary Materials and Methods**

#### **Plasmid construction**

All plasmids used in this study are listed in Table S5, and all DNA oligonucleotides in Table S6. The plasmid pMH029 was constructed by amplifying the hfg gene (vc0347) from V. cholerae (KPS-0014) genomic DNA (gDNA) with KPO-2292 and KPO-2293 and inserting it into the linearized pTYB11 plasmid (NEB, KPO-2294/2295), using Gibson assembly (GA). To generate the sRNA expression plasmids pJR5 and pJR6, the farS gene was PCR amplified from gDNA, using primer sets KPO-2450/2452 and KPO-2451/2452, respectively. The fragments were fused to linearized pBAD1K (pMD004) or pEVS143 plasmid backbones (KPO-0196/1397 or KPO-0092/1397) via GA. pJR6 served as template to insert a single point mutation in the farS gene using site-directed mutagenesis and oligonucleotides KPO-3026/3027, yielding plasmid pJR14. The plasmid pMH034 was obtained by linearizing pMD004 with KPO-1792 and KPO-1397, and inserting the fragment amplified from gDNA with oligonucleotides KPO-2453 and KPO-2452, using GA. The *fabB* promotor truncation plasmids pJR8, pJR9 and pJR10 were cloned in the same way as pMH034 using the oligonucleotide combinations KPO-2454/2452, KPO-2455/2452 and KPO-2456/2452, respectively, for insert amplification. pMH034 served as template to construct pJR34 via site-directed mutagenesis using the oligonucleotides KPO-3963 and KPO-3964. To generate pJR22 by GA, the fabBfarS fragment was amplified from gDNA with KPO-3771 and KPO-2452 and pMD004 was linearized with pBAD-ATGrev and KPO-1397. To construct plasmid pJR12, the farS flanking regions were amplified with primer sets KPO-1278/2458 and KPO-2459/1281 respectively, and subsequently cloned via GA into the pKAS32 plasmid backbone, linearized with KPO-0267 and KPO-0268. pMH043 was obtained by linearizing pMH001 with KPO-1792 and KPO-1423 and inserting the fragment amplified from gDNA with oligonucleotides KPO-2764 and KPO-2765 via GA. GFP fusions were cloned as described previously (2). Briefly, vc2231 (pMH037) and vc1741/40 (pMH042) inserts for translational reporters were PCR amplified with the oligonucleotide sets KPO-2797/2798 and KPO-2546/2923 and introduced via GA into linearized pXG10 (KPO-1702/1703) and pXG30 (KPO-2662/1703) backbones, respectively. Single point mutations in the vc2231 and vc1740 genes were implemented by PCR using KPO-3030/3031 and KPO-3028/3029, resulting in plasmids pJR16 and pMH051, respectively. The plasmids pJR20 and pJR21 were constructed by GA using pKAS32 backbone that was linearized with KPO-0267 and KPO-0268. The insert fragments for pJR20 were amplified from KPS-0014 gDNA (KPO-3080/3081 and KPO-3084/3019) and KPS-0995 gDNA (KPO-3082/3083) that carries the 3XFLAG coding sequence. For pJR21, primer pairs KPO-3075/3076 (KPS-0014), KPO-3079/3015 (KPS-0014) and KPO-3077/3078 (KPS-0995) were used for insert amplification.

#### Strain construction

All strains used in this study are listed in Table S4. *V. cholerae* C6706 was used as wild-type strain throughout the study. KPVC-11255 was constructed using natural transformation as described previously (3). Briefly, the flanking regions of *fadR* were amplified from *V. cholerae* gDNA with KPO-2766/2767 and KPO-2768/2769 and the FRT-flanked kanamycin cassette was amplified with KPO-1771/1772 from pBR-FRT-KAN-FRT (3). The three fragments were fused and amplified using KPO-2766/2769. Mutant cells were selected on kanamycin plates and confirmed by PCR using KPO-2698/1820. All other *V. cholerae* mutants were generated using the pKAS32 suicide vector (4) and established cloning strategies (5). Briefly, pKAS32-plasmids (pJR12, pMD003, pJR20 and pJR21) were conjugated into *V. cholerae* and cells were selected for ampicillin resistance. Polymyxin B was used to specifically inhibit *E. coli* growth. Single colonies were transferred to fresh plates and selected for streptomycin resistance. Mutants were confirmed by PCR and sequencing. KFS-01032 was established by P1 *vir* transduction of the  $\Delta hfq::KanR$  allele from the KEIO collection (6) using standard protocols.

#### T7 transcription and 5' end labelling of RNA

DNA templates carrying a T7 promoter for *in vitro* synthesis of RNA were prepared by PCR using the oligonucleotides listed in Table S6. Template DNA (200 ng) was *in vitro* transcribed using the AmpliScribe T7-Flash transcription kit (Epicentre) following the manufacturer's recommendations. RNA size and integrity were verified on denaturing polyacrylamide gels. 5' end labelling was performed as described previously (7). Briefly, RNA (20 pmol) was dephosphorylated using 10 units of calf alkaline phosphatase (NEB), followed by P:C:I extraction and ethanol precipitation of RNA. Dephosphorylated RNA was incubated with [<sup>32</sup>P]- $\gamma$ ATP (20 µCi) and 1 unit of polynucleotide kinase (NEB) for 1 h at 37°C. Unincorporated nucleotides were removed using Microspin G-50 columns (GE Healtcare). Labelled RNA was loaded on a 6% / 7 M urea gel, cut from the gel, eluted overnight at 4°C with RNA elution buffer (0.1 M sodium acetate, 0.1% SDS, 10 mM EDTA), and recovered by P:C:I extraction.

#### **Purification of Hfq**

The Hfq protein was expressed from the pTYB11 expression vector (NEB) in *E. coli* ER2566  $\Delta hfq$  cells and purified following the Impact Kit (NEB) protocol. Briefly, cells were grown to OD<sub>600</sub> of 0.5 and induced with IPTG (0.5 mM final conc.) for 15 h at 20°C. Cells were harvested, resuspended in column buffer (20 mM Tris-HCI [pH 8.5], 500 mM NaCl, 1 mM EDTA) and lysed by sonication. Cleared lysates were loaded on a column containing the chitin binding domain. After 40 h of incubation at room temperature, on column cleavage was induced using cleavage buffer (20 mM Tris-HCI [pH 8.5], 500 mM DTT, 1mM EDTA). Protein purification

was verified by SDS-PAGE analysis. The Hfq protein was concentrated and buffer was exchanged to storage buffer (25 mM Tris-HCI [pH 7.6], 150 mM NaCl, 0.5 mM EDTA) using 5 kDA MWCO Vivaspin columns (GE Healthcare).

### **Electrophoretic Mobility Shift Assays (EMSA)**

To analyze complex formation between sRNAs and Hfq *in vitro*, gel shift assays were performed following previously established protocols (8). Briefly, 5' end-labelled RNA (4 pmol) was supplemented with 1x structure buffer (0.01 M Tris-HCI [pH 7], 0.1 M KCI, 0.01 M MgCl<sub>2</sub>) and 1  $\mu$ g yeast RNA and incubated with increasing concentrations of purified Hfq or Hfq dilution buffer (1x structure buffer, 1% [vol/vol] glycerol, 0.1% [vol/vol] Triton X-100) at 37°C for 15 min. Prior to loading, reactions were mixed with native loading buffer (50% glycerol, 0.5x TBE, 0.2% [wt/vol] bromphenol blue) and separated by native PAGE. Signals were visualized on a Typhoon Phosphorimager (Amersham).

## Quantitative real-time PCR (qRT-PCR)

Quantitative real-time PCR was performed as described previously (9). Briefly, RNA was extracted using the SV total RNA Isolation System (Promega) and *fabB* transcript levels were measured using the Luna Universal One-Step RT-qPCR Kit (NEB) and the MyiQ Single-Color Real-Time PCR Detection System (Bio-Rad). Oligonucleotides used for qRT-PCR are listed in Table S6.

## **Transcript stability experiments**

In order to analyze RNA stability, cells were treated with rifampicin (250  $\mu$ g/ml final conc.) at the designated ODs to terminate transcription. RNA samples were collected at the indicated time points and transcript levels were determined either by Northern blot analysis or by qRT-PCR.

### **RNA structure probing**

RNA structure probing was carried out as described previously (10) with few modifications. In brief, 0.4 pmol 5' end-labelled FarS sRNA was denatured, quickly chilled on ice and mixed with 0.4 pmol or 4 pmol of purified *V. cholerae* Hfq protein or an equal volume of Hfq dilution buffer in the presence of 1x structure buffer and 1 µg yeast RNA. Samples were incubated at 37°C for 15 min, and treated with RNase T1 (0.1 U; Ambion, #AM2283) for 2.5 min or with lead(II) acetate (5 mM final conc.; Sigma, #316512) for 1.5 min. Reactions were stopped by the addition of 2 vol. stop/precipitation buffer (1 M guanidinium thiocyanate, 0.167% N-lauryl-sarcosine, 10 mM DTT, 83% 2-propanol). RNA was precipitated for 2 h at -20°C, and collected

by centrifugation (30 min, 4°C, 13.000 rpm). Samples were dissolved in GLII loading buffer, and separated on 10% polyacrylamide sequencing gels.

| strain           | condition | replicate | number of<br>reads<br>(million) | reads<br>mapped on<br>chr I<br>(million) | reads<br>mapped on<br>chr II<br>(million) | mapped<br>reads in<br>total |
|------------------|-----------|-----------|---------------------------------|------------------------------------------|-------------------------------------------|-----------------------------|
| untagged control | 0.2       | I         | 11.0                            | 10.4                                     | 0.3                                       | 97.6%                       |
| untagged control | 0.2       | Ш         | 13.3                            | 12.5                                     | 0.4                                       | 97.8%                       |
| Hfq::3XFLAG      | 0.2       | I         | 13.5                            | 12.5                                     | 0.7                                       | 97.9%                       |
| Hfq::3XFLAG      | 0.2       | Ш         | 12.3                            | 10.8                                     | 1.2                                       | 97.6%                       |
| untagged control | 2.0       | I         | 39.1                            | 36.9                                     | 0.9                                       | 96.7%                       |
| untagged control | 2.0       | Ш         | 12.1                            | 11.7                                     | 0.2                                       | 98.0%                       |
| Hfq::3XFLAG      | 2.0       | I         | 7.9                             | 6.8                                      | 0.8                                       | 96.7%                       |
| Hfq::3XFLAG      | 2.0       | Ш         | 14.5                            | 12.6                                     | 1.6                                       | 97.5%                       |

# Table S1: Statistics of obtained and mapped cDNA reads for co-IP libraries

| name       | start     | stop      | orientation | size (nt) | enriched in<br>Hfq co-IP |
|------------|-----------|-----------|-------------|-----------|--------------------------|
| chromosome | 1         |           |             |           |                          |
| Vcr200     | 218.072   | 218.336   | sense       | 265       | yes                      |
| Vcr201     | 455.266   | 455.354   | sense       | 89        | yes                      |
| Vcr202     | 481.285   | 481.138   | antisense   | 148       | yes                      |
| Vcr203     | 606.829   | 606.883   | sense       | 55        | yes                      |
| Vcr204     | 677.937   | 678.072   | sense       | 136       | yes                      |
| Vcr205     | 714.030   | 714.121   | sense       | 92        | no                       |
| Vcr206     | 944.382   | 944.313   | antisense   | 70        | no                       |
| Vcr207     | 1.106.591 | 1.106.734 | sense       | 144       | yes                      |
| Vcr208     | 1.531.755 | 1.531.675 | antisense   | 81        | yes                      |
| Vcr209     | 1.578.023 | 1.578.082 | sense       | 60        | yes                      |
| Vcr210     | 1.582.874 | 1.582.933 | sense       | 60        | yes                      |
| Vcr211     | 1.861.483 | 1.861.570 | sense       | 88        | no                       |
| Vcr212     | 2.000.800 | 2.001.130 | sense       | 331       | yes                      |
| Vcr213     | 2.059.854 | 2.060.038 | sense       | 185       | yes                      |
| Vcr214     | 2.376.028 | 2.376.142 | sense       | 115       | yes                      |
| Vcr215     | 2.396.723 | 2.396.633 | antisense   | 91        | yes                      |
| Vcr216     | 2.518.934 | 2.518.785 | antisense   | 150       | yes                      |
| Vcr217     | 2.537.176 | 2.537.226 | sense       | 51        | yes                      |
| Vcr218     | 2.558.990 | 2.558.878 | antisense   | 113       | yes                      |
| Vcr219     | 2.639.102 | 2.639.035 | antisense   | 68        | yes                      |
| Vcr220     | 2.653.872 | 2.654.007 | sense       | 136       | yes                      |
| Vcr221     | 2.669.966 | 2.670.113 | sense       | 148       | no                       |
| Vcr222     | 2.783.908 | 2.783.840 | antisense   | 69        | yes                      |
| Vcr223     | 2.855.213 | 2.855.093 | antisense   | 121       | no                       |
| chromosome | 2         |           |             |           |                          |
| Vcr224     | 14.695    | 14.764    | sense       | 70        | yes                      |
| Vcr225     | 42.166    | 42.215    | sense       | 50        | yes                      |
| Vcr226     | 334.397   | 334.515   | sense       | 119       | no                       |
| Vcr227     | 479.958   | 480.023   | sense       | 66        | yes                      |
| Vcr228     | 787.266   | 787.431   | sense       | 166       | yes                      |
| Vcr229     | 897.527   | 897.726   | sense       | 200       | yes                      |
| Vcr230     | 937.994   | 938.066   | sense       | 73        | yes                      |

### Table S3: Overview of new sRNA candidates

| Strain      | Relevant markers / genotype                                                                                                    | Reference /<br>Source  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|
| V. cholerae |                                                                                                                                |                        |
| KPS-0014    | C6706 wild-type                                                                                                                | (11)                   |
| KPS-0054    | C6706 ∆ <i>hfq</i>                                                                                                             | (12)                   |
| KPS-0995    | C6706 hfq::3Xflag                                                                                                              | (13)                   |
| KPVC-11063  | C6706 ∆farS                                                                                                                    | This study             |
| KPVC-11255  | C6706 ∆fadR::kan                                                                                                               | This study             |
| KPVC-11437  | C6706 Δvc2231/Δvc1740                                                                                                          | This study             |
| KPVC-11488  | C6706 ∆farS vc2231::3Xflag                                                                                                     | This study             |
| KPVC-11492  | C6706 vc2231::3Xflag                                                                                                           | This study             |
| KPVC-11525  | C6706 vc1740::3Xflag                                                                                                           | This study             |
| KPVC-11526  | C6706 ∆farS vc1740::3Xflag                                                                                                     | This study             |
| KPVC-11527  | C6706 rne-3071 ∆farS                                                                                                           | This study             |
| E. coli     | ·                                                                                                                              |                        |
| Top10       | F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1<br>araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-         | Invitrogen             |
| S17λpir     | ΔlacU169 (ΦlacZΔM15), recA1, endA1, hsdR17, thi-1, gyrA96, relA1, λpir                                                         | (14)                   |
| ER2566      | fhuA2 lacZ::T7 gene1 [lon] ompT gal sulA11 R(mcr-73::miniTn10<br>TetS)2 [dcm] R(zgb-210::Tn10TetS) endA1 Δ(mcrC-mrr) 114::IS10 | New England<br>Biolabs |
| KFS-01032   | ER2566 ∆hfq::kan                                                                                                               | This study             |
| KPEC-50812  | MC4100 ∆hfq                                                                                                                    | (15)                   |

# Table S4: Bacterial strains used in this study

# Table S5: Plasmids used in this study

| Plasmid trivial name            | asmid trivial name Plasmid Relevant Comment<br>stock name fragment |                                        | Origin,<br>marker                                     | Reference                   |                                 |
|---------------------------------|--------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------|---------------------------------|
| p-ctr                           | pCMW-1                                                             |                                        | control plasmid                                       | P15A,<br>Kan <sup>R</sup>   | Papenfort plasmid<br>collection |
| pBAD1K-ctr                      | pMD004                                                             |                                        | control plasmid                                       | P15A,<br>Kan <sup>R</sup>   | Papenfort plasmid collection    |
| pBAD1C-ctr                      | pMH001                                                             |                                        | control plasmid                                       | P15A,<br>Cm <sup>R</sup>    | Papenfort plasmid collection    |
| pEVS143                         | pEVS143                                                            | Ptac promotor                          | constitutive<br>overexpression plasmid                | P15A,<br>Kan <sup>R</sup>   | Papenfort plasmid collection    |
| pKAS32                          | pKAS32                                                             |                                        | suicide plasmid for allelic<br>exchange               | R6K,<br>Amp <sup>R</sup>    | (4)                             |
| pXG10- <i>gfp</i>               | pXG10- <i>gfp</i>                                                  | lacZ'::gfp                             | template plasmid for<br>translational reporters       | pSC101*,<br>Cm <sup>R</sup> | (2)                             |
| pXG30- <i>gfp</i>               | pXG30- <i>gfp</i>                                                  | flag::lacZ'::gfp                       | template plasmid for<br>translational reporters       | pSC101*,<br>Cm <sup>R</sup> | (2)                             |
| pTYB11- <i>hfq</i>              | pMH029                                                             | hfq (vc0347)                           | intein fusion vector for Hfq<br>protein purification  | pBR322,<br>Amp <sup>R</sup> | This study                      |
| pBAD-farS                       | pJR5                                                               | farS                                   | farS expression plasmid                               | P15A,<br>Kan <sup>R</sup>   | This study                      |
| p- <i>far</i> S                 | pJR6                                                               | farS                                   | farS expression plasmid                               | P15A,<br>Kan <sup>R</sup>   | This study                      |
| p-PfabB-farS                    | pMH034                                                             | PfabB-farS                             | fabB-farS expression plasmid                          | P15A,<br>Kan <sup>R</sup>   | This study                      |
| p-PfabB-farS -300 bp            | pJR8                                                               | fabB-farS                              | fabB-farS promotor<br>truncation plasmid              | P15A,<br>Kan <sup>R</sup>   | This study                      |
| p-P <i>fabB-farS</i> -600 bp    | pJR9                                                               | fabB-farS                              | fabB-farS promotor<br>truncation plasmid              | P15A,<br>Kan <sup>R</sup>   | This study                      |
| p-PfabB-farS -900 bp            | pJR10                                                              | fabB-farS                              | fabB-farS promotor<br>truncation plasmid              | P15A,<br>Kan <sup>R</sup>   | This study                      |
| pKAS32-∆ <i>far</i> S           | pJR12                                                              | up/downstream<br>flanks of <i>farS</i> | suicide plasmid for farS<br>knock-out                 | R6K,<br>Amp <sup>R</sup>    | This study                      |
| p-P <i>fadR</i>                 | pMH043                                                             | PfadR                                  | fadR expression plasmid                               | P15A,<br>Cm <sup>R</sup>    | This study                      |
| p-PfabB-farS > GGG              | pJR34                                                              | PfabB-farS                             | mutated <i>rne</i> site (TTT1-<br>3GGG)               | P15A,<br>Kan <sup>R</sup>   | This study                      |
| pKAS- <i>rne</i> -3071          | pMD003                                                             | rne-3071                               | suicide plasmid for <i>rne</i><br>C202T base mutation | R6K,<br>Amp <sup>R</sup>    | Papenfort plasmid collection    |
| pBAD-fabB-farS                  | pJR22                                                              | fabB-farS                              | fabB-farS expression plasmid                          | P15A,<br>Kan <sup>R</sup>   | This study                      |
| p- <i>farS</i> *                | pJR14                                                              | farS*                                  | farS* (G54C) expression plasmid                       | P15A,<br>Kan <sup>R</sup>   | This study                      |
| pXG10- <i>vc2231</i>            | pMH037                                                             | vc2231::gfp                            | translational reporter for vc2231                     | pSC101*,<br>Cm <sup>R</sup> | This study                      |
| pXG10- <i>v</i> c22 <i>31</i> * | pJR16                                                              | vc2231*::gfp                           | translational reporter for<br>vc2231* (C17G)          | pSC101*,<br>Cm <sup>R</sup> | This study                      |
| pXG30-1741/40                   | pMH042                                                             | flag::vc1741<br>vc1740::gfp            | translational reporter for vc1741 and 1740            | pSC101*,<br>Cm <sup>R</sup> | This study                      |
| pXG30-vc1741/40*                | pMH051                                                             | flag::vc1741<br>vc1740*::gfp           | translational reporter for<br>vc1741 and 1740* (C10G) | pSC101*,<br>Cm <sup>R</sup> | This study                      |
| pKAS32-vc2231::3Xflag           | pJR20                                                              | vc2231::3Xflag                         | vc2231::3Xflag allelic<br>replacement                 | R6K,<br>Amp <sup>R</sup>    | This study                      |
| pKAS32-vc1740::3Xflag           | pJR21                                                              | vc1740::3Xflag                         | vc1740::3Xflag allelic<br>replacement                 | R6K,<br>Amp <sup>R</sup>    | This study                      |

| Name                 | Sequence 5' to 3'                                     | Description               |
|----------------------|-------------------------------------------------------|---------------------------|
| KPO-0009             | CTACGGCGTTTCACTTCTGAGTTC                              | <i>E.c.</i> 5S oligoprobe |
| KPO-0063             | CGTCTATAAGTGTGAACAATGGTG                              | Qrr4 oligoprobe           |
| KPO-0092             | CCACACATTATACGAGCCGA                                  | plasmid construction      |
| KPO-0002             | GGAGAAACAGTAGAGAGTTGCG                                | plasmid construction      |
| KPO-0130             | AGTCGAGGACTCAGTTTATGATTA                              | Vcr017 oligoprobe         |
| KPO-0210             | TTCGTTTCACTTCTGAGTTCGG                                | V.ch. 5S oligoprobe       |
| KPO-0240             | TAATAGGCCTAGGATGCATATG                                | plasmid construction      |
| KPO-0267             | CGTTAACAACCGGTACCTCTA                                 | plasmid construction      |
| KPO-0200             | GAGCCAATCTACAATTCATCAGA                               | Vcr090 oligoprobe         |
| KPO-0452             | ATCTTGTCGACGTGTAGAAGAGGTT                             | VqmR oligoprobe           |
| KPO-0432             | GTTTTTTTTAATACGACTCACTATAGCAGAGCATGAGTTGCATGAC        | VqmR T7 transcription     |
| KPO-0513             | AAAAAAGCCAGCCTGAAGACG                                 | VqmR T7 transcription     |
| KPO-0820             | GGCCTTCTTAGAGTCTTCTAAGAA                              | MicV oligoprobe           |
| KPO-0020             | AGGTTGTCAGAGAGGCCTTGA                                 | Vcr084 oligoprobe         |
| KPO-0822             | GCCAGGTGAATAATGCGCTTG                                 | Vcr092 oligoprobe         |
| KPO-0842             | GTAAAGCAATTAACTTACGCCAATTG                            | Vcr043 oligoprobe         |
| KPO-0842<br>KPO-0845 | TTGGCCCGTCACAGGCTGAA                                  | Vcr045 oligoprobe         |
| KPO-0873             | CTCTCCATGGGACAGAGTCT                                  | FarS oligoprobe           |
| KPO-0873<br>KPO-1278 | TAGAGGTACCGGTTGTTAACGCACCGGTATGGGTATTATTTCG           | plasmid construction      |
| KPO-1278             | CATATGCATCCTAGGCCTATTAGTTGGCTCATCACATACCTC            | plasmid construction      |
| KPO-1281<br>KPO-1397 | GATCCGGTGATTGATTGAGC                                  | plasmid construction      |
| KPO-1423             | TCTAGATTAAATCAGAACGCAGAAG                             | plasmid construction      |
| KPO-1702             | ATGCATGTGCTCAGTATCTCTATC                              | plasmid construction      |
| KPO-1702             | GCTAGCGGATCCGCTGG                                     | plasmid construction      |
| KPO-1771             | TAATGTCGGAGTAGGCTGGAGCTGCTTCGAAGTTCC                  | strain construction       |
| KPO-1772             | CTTCCAGAGACATATGAATATCCTCCTTAGTTCCTATTC               | strain construction       |
| KPO-1792             | CAGTGCGCCTTTTTATAGTC                                  | plasmid construction      |
| KPO-1820             | ATGGATACTTTCTCGGCAG                                   | strain construction       |
| KPO-2002             | GTTTACCATCGCTTATAGTTATA                               | Vcr091 oligoprobe         |
| KPO-2010             | TAAAGCTTTCAACCTGTGACG                                 | Vcr222 oligoprobe         |
| KPO-2075             | GTGTCTATGGCACAACTTTTAA                                | Vcr202 oligoprobe         |
| KPO-2077             | CCGCGAAAAGTAGGTTGTTTC                                 | Vcr229 oligoprobe         |
| KPO-2155             | GGTATCTAAATTCTTTCGATACG                               | Vcr227 oligoprobe         |
| KPO-2178             | GTTTTTTTAATACGACTCACTATAGGGAGGGTGAATCATATCGACCAAATTTG | Vcr082 riboprobe          |
| KPO-2179             | GTCTGCAATGTTCTGGAACC                                  | Vcr082 riboprobe          |
| KPO-2292             | CCCAGGTTGTTGTACAGAACATGGCTAAGGGGCAATCTCTA             | plasmid construction      |
| KPO-2293             | CGGATCCCCTTCCTGCAGTTACTCTTCAGACTTCTCTGC               | plasmid construction      |
| KPO-2294             | GTTCTGTACAACAACCTGGG                                  | plasmid construction      |
| KPO-2295             | CTGCAGGAAGGGGATCCG                                    | plasmid construction      |
| KPO-2378             | GGTAACCCAGAAACTACCACTG                                | recA gRT-PCR              |
| KPO-2379             | CACCACTTCTTCGCCTTCTT                                  | recA gRT-PCR              |
| KPO-2450             | CGCAACTCTCTACTGTTTCTCCTTTCCAGAACAGATTAGTTTCGC         | plasmid construction      |
| KPO-2451             | TCGGCTCGTATAATGTGTGGTTTCCAGAACAGATTAGTTTCGC           | plasmid construction      |
| KPO-2452             | GCTCAATCAATCACCGGATCCAATCAAAGTTGCAGGCATTG             | plasmid construction      |
| KPO-2453             | GACTATAAAAAGGCGCACTGCAGACCATTGACGTTAGAGAAA            | plasmid construction      |
| KPO-2454             | GACTATAAAAAGGCGCACTGCTAAAAGCTGGCAAGTCAGG              | plasmid construction      |
| KPO-2455             | GACTATAAAAAGGCGCACTGGTGGGTCCTTACATGGTG                | plasmid construction      |
| KPO-2456             | GACTATAAAAAGGCGCACTGGGTTTCGTGATCTCTGGCG               | plasmid construction      |
| KPO-2458             | CTAGGCCGCCGGGCAAACTGTGTTGGATCTGGTGCG                  | plasmid construction      |
| KPO-2459             | TTTGCCCGGCGGCCTAG                                     | plasmid construction      |
| KPO-2546             | CCAGCGGATCCGCTAGCCACTTTCTTAAACATTTTGAAAGC             | plasmid construction      |
| KPO-2549             | AAAAATACCCGACGACCTAGG                                 | FarS T7 transcription     |
| KPO-2650             | CCCTCTTAGGAAAAATTGTCAC                                | Vcr101 riboprobe          |
|                      | GTTTTTTTAATACGACTCACTATAGGGAGGCACCATAAAAAAAGCCCCCG    | Vcr101 riboprobe          |
| NPU-2001             |                                                       |                           |
| KPO-2651<br>KPO-2662 | TTTATCGTCGTCATCTTTGTAG                                | plasmid construction      |

# Table S6: DNA oligonucleotides used in this study

| KPO-2764 | GACTATAAAAAGGCGCACTGGATAGTGTGAGCTGTGTCC                | plasmid construction        |
|----------|--------------------------------------------------------|-----------------------------|
| KPO-2765 | CTGCGTTCTGATTTAATCTAGATTAGCAATCGTCTTCAGTAAAATTG        | plasmid construction        |
| KPO-2766 | GGCAATAACGATACTCAAGTTC                                 | strain construction         |
| KPO-2767 | TCCAGCCTACTCCGACATTATCTAGCACTGTTCGTTTCGTTA             | strain construction         |
| KPO-2768 | TATTCATATGTCTCTGGAAGCCACTAGTTGGTGTACGTCG               | strain construction         |
| KPO-2769 | GCTATCGAAAGGAGAACTTTGG                                 | strain construction         |
| KPO-2797 | GAGATACTGAGCACATGCAT ATCCGAACCCGCGCGCTT                | plasmid construction        |
| KPO-2798 | GAGCCAGCGGATCCGCTAGTTGATACAGGCATGCGCCG                 | plasmid construction        |
| KPO-2923 | CTACAAAGATGACGACGATAAATCGTTAAGCGAATTGCGCCC             | plasmid construction        |
| KPO-3015 | CATATGCATCCTAGGCCTATTAGAGCGGCATCACAGGAATC              | plasmid construction        |
| KPO-3019 | CATATGCATCCTAGGCCTATTACTCCAATCTACAACTCACGAC            | plasmid construction        |
| KPO-3026 | GTCCCATGCAGAGCGGGATAGGATCCTT                           | plasmid construction        |
| KPO-3027 | CTCTGCATGGGACAGAGTCTGCGTCTG                            | plasmid construction        |
| KPO-3028 | GAGCTCTGTACGCAGAAAATGGATCAGCG                          | plasmid construction        |
| KPO-3029 | CATTTTCTGCGTACAGAGCTCATATTCAG                          | plasmid construction        |
| KPO-3030 | CTTGCTCTGTACCTTAATCATGCTCTTG                           | plasmid construction        |
| KPO-3031 | GATTAAGGTACAGAGCAAGATTTCCATAC                          | plasmid construction        |
| KPO-3075 | TAGAGGTACCGGTTGTTAACGGATGGACCAATGAACTATCTGG            | plasmid construction        |
| KPO-3076 | TGCCACACTGTTTAACTTAGG                                  | plasmid construction        |
| KPO-3077 | CCTAAGTTAAACAGTGTGGCAGACTACAAAGACCATGACGG              | plasmid construction        |
| KPO-3078 | CCTCGATACTCTATTTTATTTGTTATTACTATTTATCGTCATCTTTGTAG     | plasmid construction        |
| KPO-3079 | TAACAAATAAAATAGAGTATCGAGG                              | plasmid construction        |
| KPO-3080 | TAGAGGTACCGGTTGTTAACGGTAAAGGCATCTGTTTAGGCC             | plasmid construction        |
| KPO-3081 | AGCCACTTCAGCTTTACGTTG                                  | plasmid construction        |
| KPO-3082 | CAACGTAAAGCTGAAGTGGCTGACTACAAAGACCATGACGG              | plasmid construction        |
| KPO-3083 | GAATACTGCTCAATGTGGAACTTATTACTATTATCGTCATCTTTGTAG       | plasmid construction        |
| KPO-3084 | TAAGTTCCACATTGAGCAGTATTC                               | plasmid construction        |
|          |                                                        | oligoprobe for mutated      |
| KPO-3139 | GGACAGAGTCTGCGTCTG                                     | FarS (G54C)                 |
| KPO-3387 | GTAACGCGGTTGAGCTTAT                                    | fabB qRT-PCR                |
| KPO-3388 | CATGGTTTGTGACCAGTAGAG                                  | fabB qRT-PCR                |
| KPO-3726 | CAGCCTAATCCAATAACGTGAAAC                               | Spot 42 oligoprobe          |
| KPO-3771 | GCTAACAGGAGGAATTAACCATGAAACGAGTCGTCATCAC               | plasmid construction        |
| KPO-3794 | GACCCTTTCCTTTGTTGCTC                                   | Vcr103 oligoprobe           |
| KPO-3751 | ACCTGATTCCATCCCGAA                                     | 5S qRT-PCR                  |
| KPO-3752 | TGGCGATGTTCTACTCTCA                                    | 5S qRT-PCR                  |
| KPO-3963 | CAACACAGGGGCCAGAACAGATTAGTTTCGC                        | plasmid construction        |
| KPO-3964 | CTGTTCTGGCCCCTGTGTTGGATCTGGTG                          | plasmid construction        |
| KPO-4131 | AAGAAAAAGCCCTAAACCTAGTAC                               | MicV T7 transcription       |
| KPO-4154 | GTTTTTTTAATACGACTCACTATAGACCACTGCTTTTTCTTAGAAGAC       | MicV T7 transcription       |
| KPO-4249 | GTTTTTTTAATACGACTCACTATAGGTTTCCAGAACAGATTAGTTTCGC      | FarS T7 transcription       |
| KPO-5083 | GTTTTTTTAATACGACTCACTATAGGAATAGACAACCTTTTGTCCT         | Vcr090 T7<br>transcription  |
| KPO-5084 | AAAAAAGAGCGAGCTATTTAAAC                                | Vcr090 T7<br>transcription  |
| KPO-5085 | GTTTTTTTAATACGACTCACTATAGGACTCTAATCATAATTTATTT         | Vcr222 T7<br>transcription  |
| KPO-5086 | AGCTTTCAACCTGTGACGAA                                   | Vcr222 T7<br>transcription  |
| KPO-5087 | GTTTTTTTAATACGACTCACTATAGGCGTAGGGTACAGAGGTAAG          | Spot 42 T7<br>transcription |
| KPO-5088 | ААТААААААСGCCCCAGTCAAA                                 | Spot 42 T7<br>transcription |
| KPO-5415 | CAACGGGAGAGAAAACGGTT                                   | VSsrna24 oligoprobe         |
| KPO-5468 | CTTGTTAGGCTCATCACTCTTC                                 | Vcr051 riboprobe            |
| KPO-5469 | GTTTTTTTTTAATACGACTCACTATAGGGAGGCAGTTCAGCACAAACTCAATAC | Vcr051 riboprobe            |
| pBAD-    |                                                        |                             |
| ATGrev   | GGTTAATTCCTCCTGTTAGC                                   | plasmid construction        |

## **Supplemental References**

- 1. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res* 16(22):10881-10890.
- 2. Corcoran CP, *et al.* (2012) Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. *Mol Microbiol* 84(3):428-445.
- 3. Blokesch M (2012) TransFLP--a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. *J Vis Exp* (68).
- 4. Skorupski K & Taylor RK (1996) Positive selection vectors for allelic exchange. *Gene* 169(1):47-52.
- 5. Papenfort K, *et al.* (2017) A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. *Nat Chem Biol* 13(5):551-557.
- 6. Baba T, *et al.* (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* 2:2006 0008.
- 7. Papenfort K, *et al.* (2006) SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. *Mol Microbiol* 62(6):1674-1688.
- 8. Frohlich KS, Haneke K, Papenfort K, & Vogel J (2016) The target spectrum of SdsR small RNA in Salmonella. *Nucleic Acids Res* 44(21):10406-10422.
- 9. Papenfort K, Forstner KU, Cong JP, Sharma CM, & Bassler BL (2015) Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. *Proc Natl Acad Sci U S A* 112(7):E766-775.
- 10. Frohlich KS, Papenfort K, Fekete A, & Vogel J (2013) A small RNA activates CFA synthase by isoform-specific mRNA stabilization. *EMBO J* 32(22):2963-2979.
- 11. Thelin KH & Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. *Infect Immun* 64(7):2853-2856.
- 12. Svenningsen SL, Tu KC, & Bassler BL (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. *EMBO J* 28(4):429-439.
- 13. Peschek N, Hoyos M, Herzog R, Forstner KU, & Papenfort K (2019) A conserved RNA seedpairing domain directs small RNA-mediated stress resistance in enterobacteria. *EMBO J* 38(16):e101650.
- 14. de Lorenzo V & Timmis KN (1994) Analysis and construction of stable phenotypes in gramnegative bacteria with Tn5- and Tn10-derived minitransposons. *Methods Enzymol* 235:386-405.
- 15. Herzog R, Peschek N, Frohlich KS, Schumacher K, & Papenfort K (2019) Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. *Nucleic Acids Res* 47(6):3171-3183.