1	Supplemental Information
2	Table S1. Metabolic pathways changed by KSHV compared to uninfected TIME cells
3	in 3D culture.
4	Significantly affected metabolic pathway by KSHV with cut-off with impact >0.15 and p-
5	value <0.05 are considered the most influenced pathways in TIME cells.
6	
7	Table S2. Metabolic pathways changed by KSHV compared to uninfected MCF10A
8	cells in 3D culture.
9	Significantly affected metabolic pathway by KSHV with cut-off with impact >0.15 and p-
10	value <0.05 are considered the most influenced pathways in MCF10A cells.
11	
12	Table S3. Peptides of PYCR identified by mass spectrometry.
13	
14	Table S4. Primers list for qPCR.
15	
16	Fig. S1. Heat mans and PCA plots of metabolitos in control and KSHV infected colls.
10	rig. 51. heat maps and r CA plots of metabolites in control and Norty infected cens.
17	(A) Clustered heatmap depicting levels of 176 metabolites in TIME cells, 165 metabolites
18	in MCF10A cells. Columns indicate samples from 2D grown Mock or KSHV infected cells
19	or 3D grown Mock or KSHV infected cells. Rows depict individual metabolites. (B)
20	Principal component PCA score plots reveal separation in metabolite profiles between
21	samples.

22

23 Fig. S2. *PYCR* alteration profile in various cancer samples.

24 (A) *PYCR1* and (B) *PYCR2* alterations (Mutation, Deletion, Amplification) were detected
25 and visualized from cBioPortal.

26

27 Fig. S3. K1-PYCR interaction and mapping.

28 (A) A series of GST-K1 cytoplasmic region mutants depicted in the upper panel were 29 transfected into HEK293T cells. Cell lysates were used for GST PD, followed by 30 immunoblotting with anti-PYCR1, anti-PYCR2 and anti-GST antibodies. (B) A series of 31 GST-PYCR2 truncated mutants depicted in the upper panel were co-transfected with fulllength K1 in HEK293T cells. Cell lysates were then applied to GST-PD, followed by 32 33 immunoblotting with anti-PYCR1, anti-PYCR2 and anti-GST antibodies. (C) In vitro GST-34 PD assay. Purified GST-K1(C) and GST-K1(C)pY proteins from E. coli TKX1 strain were 35 stained by Coomassie blue and their tyrosine phosphorylation were examined with anti-36 phosphotyrosine (p-Tyr) antibody. Purified His-tagged PYCR2 (His-PYCR2) were 37 incubated with GST, GST-K1(C) or GST-K1(C)pY for GST-PD. Input represents 10% of 38 samples used in vitro binding assay. Arrowhead indicates the His-PYCR2 and asterisks indicate GST, GST-K1 and GST-K1(C)pY. (D) The cytoplasmic domain of K1 A, B, C and 39 40 D subtypes fused with GST depicted in the upper panel were transfected into HEK293T 41 cells. Cell lysates were used for GST-PD, followed by immunoblotting with anti-PYCR1, 42 anti-PYCR2 and anti-GST antibodies. (E) The cytoplasmic domain of LMP2, R1, and K1 43 fused with GST were transfected into HEK293T cells. Cell lysates were used for GST-PD, 44 followed by immunoblotting with anti-PYCR1, anti-PYCR2 and anti-GST antibodies.

45

46 Fig. S4. Mitochondria localization of K1 B, C and D subtypes.

47 (A) Subcellular fractionation of mock- or K1-transfected HEK293T cells to cytosolic (Cyto). 48 plasma membrane (PM), mitochondrial (Mito) and nuclear (Nu) fractions. K1 was detected by immunoblotting with anti-K1 antibody. Arrowhead indicates 46 kDa K1 and asterisk 49 50 indicates 70 kDa glycosylated K1. Mitofillin, β-actin, Histone H3 and Na-K-ATPase were 51 used as organelle-specific markers of mitochondria, cytosol, nucleus, and plasma 52 membrane respectively. (B) Representative confocal fluorescence images of K1 subtypes 53 in Hela cell. At 48 hours of transfection of the C-terminal Flag-tagged K1, Hela cells were 54 stained with mitotracker, anti-PYCR2 antibody and anti-K1 antibody. Merged images of 55 K1 (Red) and PYCR2 (Green) and nucleus (Blue). Scale bar=10 µm.

56

57 Fig. S5. Expression of K1 in 2D and 3D culture.

(A) TIME and (B) MCF10A cells cultured in 2D and 3D condition were harvested to
determine KSHV gene expression by RT-qPCR. Data represents normalized (with actin
mRNA) fold change (3D/2D). Data are presented as the mean ± SEM. *, P < 0.05; **, P <
0.01; ***, P= 0.0002, by Student's t test.

62

Fig. S6. Relative abundance of metabolites in proline metabolic pathway measured
by LC-MS.

Fold changes in metabolite associated with proline metabolic pathway in Mock, KSHV WT infected and KSHV K1 Δ C infected TIME cells. The level of each metabolite in Mock cells was set at 1. Data are mean ± SD. *, P < 0.05; **, P < 0.01, by 1-way ANOVA.

68

Fig. S7. K1 expression in TIME, MCF10A and MDA-MB-231 cells and PYCR1/2 knockdown in TIME and KMM cells.

71 (A) Immunoblotting analysis of K1 and mutant expression in TIME cells. (B) Proliferation 72 rate of mock-, K1 WT-, or mutant-overexpressing TIME cells in 2D monolayer. Proliferation 73 was measured by counting the cell numbers. Data are presented as the mean \pm SEM. (C) 74 Immunoblotting analysis of K1 and mutant expression in MCF10A cells. (D) Proliferation 75 rate of mock-, K1 WT-, or mutant-overexpressing MCF10A cells in 2D monolayer. 76 Proliferation was measured by counting cell numbers. Data are presented as mean ± SEM. 77 (E) Immunoblotting analysis of K1 and mutant expression in MDA-MB-231. (F) 78 Proliferation rate of mock-, K1 WT-, or mutant-overexpressing MDA-MB-231 cell in 2D 79 monolayer. Proliferation was measured by counting the cell numbers. Data are presented 80 as the mean ± SEM. (G) Immunoblotting analysis of K1, K1 mutant or PYCR1/2 expression 81 in TIME cells transfected with scramble shRNA control or PYCR-specific shRNA. β-Actin 82 was used as loading control. (H) Proliferation rate of mock-, K1 WT-, or mutant-83 overexpressing and/or PYCR1/2-knockdown TIME cells in 2D monolayer. Proliferation 84 was measured by counting the cell number. Data are presented as the mean \pm SEM. (I) 85 Immunoblotting analysis of PYCR1/2 expression in scramble shRNA- or PYCR-specific 86 shRNA-treated KSHV infected TIME cells (J) KMM cells.

87

88 Fig. S8. 3D hydrogel scaffolds for endothelial cell growth.

(A) 3D printed hydrogel scaffolds designed to feature the shape of a hexagonal prism
(diagonal length: 3 mm; height: 3 mm) consisting of parallel microchannels (diameter: 150 µm) Scale bar: 500 µm. (B) Schematic diagram depicting 3D cell culture in the hydrogel
scaffolds.

93 Fig. S9. Targeted metabolomics profile of mock-, K1 WT- or mutant-expressing

- 94 MDA-MB-231 tumors from nude mice.
- Heat map generated from log_2 value of fold-change compared to mock tumors (n = 3-4).

Table S1. Metabolic pathways changed by KSHV compared to uninfected TIME cells in 3D culture.

Pathway	P-value	Impact
Alanine, aspartate and glutamate metabolism	0.000013073	0.48718
Cysteine and methionine metabolism	0.0017537	0.1703
Arginine and proline metabolism	0.0019014	0.28937
Thiamine metabolism	0.017911	0.15346
Pantothenate and CoA biosynthesis	0.024622	0.18014
D-Glutamine and D-glutamate metabolism	0.026424	0.28342

Table S2. Metabolic pathways changed by KSHV compared to uninfected MCF10A cells in

3D culture.

Pathway	P-value	Impact
Glutathione metabolism	0.00011031	0.26552
Taurine and hypotaurine metabolism	0.00067474	0.36331
Alanine, aspartate and glutamate metabolism	0.0013899	0.54416
Glycine, serine and threonine metabolism	0.0030097	0.18845
Arginine and proline metabolism	0.0050402	0.23591

Bands	ands Protein Total Peptides		Peptides detected
			(R) ELQSMADQEQVSPAAIK
			(K) IMASSPDMDLATVSALR
			(R) EGATVYATGTHAQVEDGR
	PYCR1	21	(K) VKLDSPAGTALSPSGHTK
			(F) ILDEIGADIEDR
			(R) HIVVSCAAGVTISSIEK
			(F) TALDALADGGVK
D25			(R) ELQSMADQEQVSPAAIK
F 30			(K) MLLHSEQHPGQLK
			(K) LDSPAGTALSPSGHTK
			(K) GFTAAGVLAAHK
			(F) TAAGVLAAHK
			(F) ILDEIGADIEDR
			(K) DNVSSPGGATIHALHVLESGGFR
	DVCD2	2	(R) LGAQALLGAAK
	PICRZ	Ζ	(R) SLLINAVEASCIR
		2	(R) ELQSMADQEQVSPAAIK
P32	FICKI	۷ ک	(K) MLLHSEQHPGQLK
	PYCR2	1	(R) SLLINAVEASCIR

Table S3. Peptides of PYCR identified by mass spectrometry.

Table S4. List of primers used in this study.

Gene	Primer
Actin_F	CCACAGCCAGAGGTCCTCAG
Actin_R	AGGAGCTCTTGGAGGGCATG
K1_F	TACGCTGATGGACCAAACGG
K1_F	ACGCGCCGAAAAACATAGAC
LANA_F	GAAGTGGATTACCCTGTTGTTAGC
LANA_R	TTGGATCTCGTCTTCCATCC
ORF36_F	ATTGCCAACGACCTGATGCA
ORF36_R	ACTCCAGTCCAGCTGCAGCA
ORF57_F	AGGGATATCACCGCTCTCATAAGA
ORF57_R	CTGCGGTTTCTCGACGGCAACTCA
RTA_F	CACAAAAATGGCGCAAGATGA
RTA_R	TGGTAGAGTTGGGCCTTCAGTT

Fig. S1. Heat maps and PCA plots of metabolites in control and KSHV infected cells

В

Α

Fig. S4. Mitochondria localization of K1 B,C and D subtypes

Fig. S5. Expression of K1 in 2D and 3D culture

Fig. S6. Relative content of metabolites in proline metabolic pathway measured by LC-MS

Fig. S7. Stable expression of K1 in TIME, MCF10A and MDA-MB-231 cell lines and Knockdown of PYCR1 and PYCR2 in TIME and KMM cell lines

Fig. S8. 3D hydrogel scaffolds for endothelial cell growth

Fig. S9. K1 WT and K1 TYF induce tumorigenesis

