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Figure S1: Glycolysis, TCA cycle and OXPHOS related gene expressions from GDC (related to Figure 2).
(A,C,E)Gene expression data with normal and cancer samples. (B,D,F)Gene expression data clustered by K-
means. LUSC: lung squamous cell carcinoma; LUAD: lung adenocarcinoma; UCEC: uterine corpus endometrial
carcinoma. N: normal state; P: cancer OXPHOS state; G: cancer glycolysis state; I: cancer intermediate state.
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Figure S2: Global sensitivity analysis for the 13 metabolite-gene regulations (related to Figure 3). X-axis rep-
resents the 13 metabolite-gene regulations. Y-axis represents the barrier changes. Each parameter is increased
by 1% individually. ∆Barriers1n: the change of the barrier from s1 to normal steady state. ∆Barriers1i: the
change of the barrier from s1 to cancer intermediate state. ∆Barriers2n: the change of the barrier from s2
to normal state. ∆Barriers2p: the change of the barrier from s2 to cancer OXPHOS state. ∆Barriers3n: the
change of the barrier from s3 to cancer normal state. ∆Barriers3i: the change of the barrier from s3 to cancer
intermediate state. ∆Barriers4i: the change of the barrier from s4 to cancer intermediate state. ∆Barriers4g:
the change of the barrier from s4 to cancer glycolysis state.
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Figure S3: Global sensitivity analysis for the 28 gene-enzyme regulations (related to Figure 3). X-axis represents
the 28 gene-enzyme regulations. Y-axis represents the barrier changes. Each parameter is increased by 1%
individually. ∆Barriers1n: the change of the barrier from s1 to normal steady state. ∆Barriers1i: the change
of the barrier from s1 to cancer intermediate state. ∆Barriers2n: the change of the barrier from s2 to normal
state. ∆Barriers2p: the change of the barrier from s2 to cancer OXPHOS state. ∆Barriers3n: the change of the
barrier from s3 to cancer normal state. ∆Barriers3i: the change of the barrier from s3 to cancer intermediate
state. ∆Barriers4i: the change of the barrier from s4 to cancer intermediate state. ∆Barriers4g: the change of
the barrier from s4 to cancer glycolysis state.



Figure S4: Landscape topography changes upon increases in regulation γHIF−1−>PDK (related to Figure 4).



Figure S5: Landscape topography changes upon increases in regulation γP53−>PDK (related to Figure 4).



Figure S6: Landscape topography changes upon increases in regulation γHIF−1−>GPI (related to Figure 4).



Figure S7: Landscape topography changes upon increases in regulation γV EGF−>SOD (related to Figure 6).
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Figure S8: Predictions of combined metabolic therapeutic target for OXPHOS cancer based on barrier changes
(related to Figure 10). Red color represents positive therapy and blue color represents negative therapy. The
parameter ci = 1e-4.
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Figure S9: Predictions of combined metabolic therapeutic target for glycolysis cancer based on barrier changes
(related to Figure 10). Red color represents positive therapy and blue color represents negative therapy. The
parameter ci = 1e-4.
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Figure S10: Predictions of metabolic target for cancer metabolism oscillation (related to Figure 10). The param-
eter ci = 1e-4. (A)Therapeutic effect for inhibiting the expressions of the genes and the enzymes. (B)Therapeutic
effect for promoting the expressions of the genes and the enzymes.



Table S1: Genes, enzymes and metabolites for cancer gene-metabolism integrative network modeling (related
to Figure 1).

Genes Enzymes Metabolites
Gene symbol Abbr. Name Abbr. Name
Akt GluT1 Glucose transporter 1 Glu Glucose
AMPK HK Hexokinase G6P Glucose 6-phosphate
cMyc G6PD/6PGD glucose-6-phosphate dehydro-

genase/Phosphogluconate de-
hydrogenase

F6P Fructose 6-phosphate

HIF-1 GPI Phosphoglucose isomerase FBP Fructose 1,6-bisphosphate
mTOR PFKFB2/3 6-phosphofructo-2-

kinase/fructose-2,6-
biphosphatase 2/3

G3P Glyceraldehyde 3-phosphate

NOX PFK-1 Phosphofructokinase DHAP Dihydroxyacetone phosphate
p53 ALD Aldolase 1,3BPG 1,3-Bisphosphoglycerate
PDK TPI Triose phosphate isomerase 3PG 3-phosphoglycerate
PI3K GAPDH Glyceraldehyde 3-phosphate

dehydrogenase
2PG 2-phosphoglycerate

PTEN PGK Phosphoglycerate kinase PEP phosphoenolpyruvate
RAS PHGDH Phosphoglycerate dehydroge-

nase
Pyr Pyruvate

SOD PGAM Phosphoglycerate mutase Lac Lactate
VEGF ENO Enolase R5P Ribose 5-phosphate

PKM2 Pyruvate kinase isozymes M2 F2,6BP Fructose 2,6-bisphosphate
PDH Pyruvate dehydrogenase Ser Serine
ACC Acetyl-CoA carboxylase Cit Citrate
LDH Lactate dehydrogenase AMP Adenosine monophosphate

ADP Adenosine diphosphate
ATP Adenosine triphosphate
NAD+ Nicotinamide adenine dinu-

cleotide
NADH Nicotinamide adenine dinu-

cleotide reduced
complex2 Succinate-Q reductase
ROS Reactive oxygen species



Table S2: Regulations among genes, enzymes and metabolites (related to Figure 1).

Source Target p/n type Refs
Akt cMyc p g2g (Landeghem et al., 2013; Lien et al., 2016)
Akt p53 n g2g (Landeghem et al., 2013)
Akt mTOR p g2g (Lien et al., 2016)
AMPK Akt p g2g (Landeghem et al., 2013)
AMPK mTOR n g2g (Mulukutla et al., 2010)
AMPK NOX n g2g (Song and Zou, 2012; Wang et al., 2010c)
cMyc HIF-1 p g2g (Faubert et al., 2013; Doe et al., 2011)
cMyc VEGF p g2g (Landeghem et al., 2013)
HIF-1 AMPK n g2g (Emerling et al., 2009; Zhang et al., 2008)
HIF-1 NOX p g2g (Yuan et al., 2011)
HIF-1 PDK p g2g (Justus et al., 2015; Courtnay et al., 2015; Lien et al., 2016)
HIF-1 VEGF p g2g (Justus et al., 2015; Courtnay et al., 2015)
mTOR HIF-1 p g2g (Lien et al., 2016; Harada et al., 2008)
p53 cMyc n g2g (Landeghem et al., 2013)
p53 HIF-1 n g2g (Landeghem et al., 2013)
p53 PDK n g2g (Saunier et al., 2015)
p53 PTEN p g2g (Landeghem et al., 2013)
PDK Akt p g2g (Landeghem et al., 2013)
PI3K Akt p g2g (Courtnay et al., 2015)
PI3K mTOR p g2g (Courtnay et al., 2015)
PI3K VEGF p g2g (Landeghem et al., 2013)
PTEN HIF-1 n g2g (Landeghem et al., 2013)
PTEN p53 p g2g (Landeghem et al., 2013)
PTEN PI3K n g2g (Landeghem et al., 2013; Courtnay et al., 2015)
RAS AMPK p g2g (Mihaylova and Shaw, 2011)
RAS HIF-1 p g2g (Mihaylova and Shaw, 2011; Lim et al., 2004)
RAS NOX p g2g (Landeghem et al., 2013)
RAS PI3K p g2g (Landeghem et al., 2013)
SOD p53 p g2g (Landeghem et al., 2013)
VEGF AMPK p g2g (Landeghem et al., 2013)
VEGF RAS n g2g (Landeghem et al., 2013)
VEGF SOD p g2g (Landeghem et al., 2013)
ATP AMPK n m2g (Wegner et al., 2015)
ATP PDK p m2g (Saunier et al., 2015)
Lactate HIF-1 p m2g (Pavlova and Thompson, 2016)
Lactate PI3K p m2g (Pavlova and Thompson, 2016)
Lactate VEGF p m2g (Pavlova and Thompson, 2016)
R5P AMPK n m2g (Hammad et al., 2016)
ROS cMyc p m2g (Landeghem et al., 2013)
ROS HIF-1 p m2g (Li et al., 2014; Brunelle et al., 2005)
ROS NOX p m2g (Landeghem et al., 2013)
ROS PI3K p m2g (Landeghem et al., 2013)
ROS RAS p m2g (Landeghem et al., 2013)
ROS SOD p m2g (Landeghem et al., 2013)
ROS VEGF p m2g (Landeghem et al., 2013)
G6P ACC p m2e (Wegner et al., 2015)
F2,6BP ACC p m2e (Wegner et al., 2015)
Akt GluT1 p g2e (Courtnay et al., 2015; Lien et al., 2016)
Akt HK p g2e (Courtnay et al., 2015; Lien et al., 2016)
Akt PFKFB2/3 p g2e (Lien et al., 2016)
AMPK ACC p g2e (Wegner et al., 2015)
AMPK PFKFB2/3 p g2e (Landeghem et al., 2013)
cMyc GluT1 p g2e (Justus et al., 2015)
cMyc LDH p g2e (Landeghem et al., 2013; Justus et al., 2015; Lien et al., 2016)
HIF-1 GluT1 p g2e (Justus et al., 2015; Courtnay et al., 2015)



HIF-1 HK p g2e (Landeghem et al., 2013; Justus et al., 2015; Courtnay et al., 2015)
HIF-1 G6PD/6PGD p g2e (Landeghem et al., 2013)
HIF-1 GPI p g2e (Landeghem et al., 2013)
HIF-1 PFKFB2/3 p g2e (Landeghem et al., 2013)
HIF-1 PFK-1 p g2e (Hasawi et al., 2014)
HIF-1 ALD p g2e (Landeghem et al., 2013)
HIF-1 TPI p g2e (Landeghem et al., 2013)
HIF-1 GAPDH p g2e (Landeghem et al., 2013)
HIF-1 PGK p g2e (Landeghem et al., 2013)
HIF-1 PGAM p g2e (Landeghem et al., 2013)
HIF-1 ENO p g2e (Landeghem et al., 2013)
HIF-1 PKM2 p g2e (Landeghem et al., 2013; Justus et al., 2015)
HIF-1 LDH p g2e (Justus et al., 2015; Courtnay et al., 2015)
p53 GluT1 n g2e (Justus et al., 2015)
p53 G6PD/6PGD p g2e (Justus et al., 2015)
PDK PDH n g2e (Justus et al., 2015; Lien et al., 2016)
PTEN PDH n g2e (Landeghem et al., 2013)
RAS PFK-1 p g2e (Hasawi et al., 2014)

There is three types of regulations, g2g, m2g and g2e. The g2g type represents the regulations between genes.
The m2g type represents the regulations from metabolite to gene. The g2e type represents the regulations from
gene to enzyme.



Table S3: Metabolic reactions of glycolysis, TCA and oxidative phosphorylation (related to Figure 1).

Enzymes Reactions
r1 GluT1 Gluout −−⇀↽−− Gluin

r2 HK Gluin + ATP −−⇀↽−− G6P + ADP
r3 GPI G6P −−⇀↽−− F6P
r4 PFK-1 F6P + ATP −−⇀↽−− FBP + ADP
r5 ALD FBP −−⇀↽−− DHAP + G3P
r6 TPI DHAP −−⇀↽−− G3P
r7 GAPDH G3P + NAD+ −−⇀↽−− 1,3BPG + NADH
r8 PGK 1,3BPG + ADP −−⇀↽−− 3PG + ATP
r9 PGAM 3PG −−⇀↽−− 2PG
r10 ENO 2PG −−⇀↽−− PEP
r11 PKM2 PEP + ADP −−⇀↽−− Pyruvate + ATP
r12 LDH Pyruvate + NADH −−⇀↽−− Lactate + NAD+

r13 G6PD 6PGD G6P −−⇀↽−− R5P
r14 ATPases ATP −−→ ADP
r15 AK AMP + ATP −−⇀↽−− 2ADP
r16 PFKFB2 3 F6P −−⇀↽−− F2,6BP
r17 PHGDH 3PG −−→ Serine
r18 PDH Pyruvate + ADP −−→ Citrate + ATP + Complex2
r19 ACC Complex2 + 3ATP + AC-CoA −−→ mal-CoA + 3ADP + NAD+

r20 SOD ROS −−→ Null
r21 Lactate −−→ Null
r22 3R5P −−⇀↽−− 2F6P + G3P

r23
NUCLEOTIDE
BIOSYNTHESIS

R5P −−→ Null

r24 SERINE CONSUMPTION Serine −−→ Null
r25 GPDH NADH + ADP −−→ Complex2 + ATP + NAD+

r26 Citrate + 3ADP −−→ 3ATP + 4Complex2
r27 Complex2 + 1.5ADP −−→ 1.5ATP
r28 Complex2 −−→ ROS
r29 NOX null −−→ ROS
r30 Citrate −−→ Null



Table S4: Parameters for modeling the regulations (related to Figure 1).

Parameter Value Parameter Value Parameter Value

γAkt−>cMyc 2.23 γAkt−>mTOR 1.33 γAkt−>p53 0.1
γAkt−>GluT1 1.5 γAkt−>HK 1.5 γAkt−>PFKFB2/3 1.71
γAMPK−>Akt 2.26 γAMPK−>mTOR 0.21 γAMPK−>NOX 0.72
γAMPK−>PFKFB2/3 1.84 γAMPK−>ACC 1.51 γcMyc−>HIF−1 2
γcMyc−>VEGF 3.78 γcMyc−>GluT1 1.58 γcMyc−>LDH 2.6
γHIF−1−>AMPK 0.08 γHIF−1−>NOX 2.82 γHIF−1−>PDK 5.81
γHIF−1−>VEGF 3.77 γHIF−1−>GluT1 2.41 γHIF−1−>HK 1.57
γHIF−1−>G6PD/6PGD 1.12 γHIF−1−>GPI 1.01 γHIF−1−>PFKFB2/3 1
γHIF−1−>PFK−1 1.78 γHIF−1−>ALD 1.03 γHIF−1−>TPI 1.46
γHIF−1−>GAPDH 3.07 γHIF−1−>PGK 3.54 γHIF−1−>PGAM 2.52
γHIF−1−>ENO 1.28 γHIF−1−>PKM2 2.18 γHIF−1−>LDH 3.61
γmTOR−>HIF−1 3 γp53−>cMyc 0.29 γp53−>HIF−1 0.4
γp53−>PDK 0.8 γp53−>PTEN 10 γp53−>GluT1 0.8
γp53−>G6PD/6PGD 1.38 γPDK−>Akt 5.69 γPDK−>PDH 0.14
γPI3K−>Akt 2 γPI3K−>mTOR 1.08 γPI3K−>VEGF 1.25
γPTEN−>HIF−1 0.36 γPTEN−>p53 5.86 γPTEN−>PI3K 0.83
γPTEN−>PDH 0.09 γRAS−>AMPK 3.47 γRAS−>HIF−1 1.5
γRAS−>NOX 7.39 γRAS−>PI3K 28.78 γRAS−>PFK−1 1.41
γSOD−>p53 12.87 γVEGF−>AMPK 8.36 γVEGF−>RAS 0.06
γVEGF−>SOD 2 γG6P−>ACC 1.21 γLactate−>HIF−1 10.94
γLactate−>PI3K 4.22 γLactate−>VEGF 3 γR5P−>AMPK 0.05
γF2,6BP−>ACC 1.34 γATP−>AMPK 0.36 γATP−>PDK 29.6
γROS−>cMyc 4.78 γROS−>HIF−1 10 γROS−>NOX 4.07
γROS−>PI3K 5.12 γROS−>RAS 5.99 γROS−>SOD 2.03
γROS−>RAS 3 A 0.005 D 0.005



Table S5: Parameters for modeling the metabolic reactions (related to Figure 1).

Parameter Value Refs Parameter Value Refs

Gluout 5 (Maŕın-Hernández et al., 2011) Pi 4 (Maŕın-Hernández et al., 2011)
bx6PG 0.39 (Maŕın-Hernández et al., 2011) Ery4P 0.016 (Maŕın-Hernández et al., 2011)
Lacout 2.57 (Maŕın-Hernández et al., 2014) O2 0.03
Citrate 1.7 (Moreno-Sánchez et al., 2010) Vmf 1 0.03 (Maŕın-Hernández et al., 2011)
Keq 1 1 (Maŕın-Hernández et al., 2011) Kgluout 1 9.3 (Rodŕıguez-Enŕıquez et al., 2009)
Kgluin 1 10 (Maŕın-Hernández et al., 2011) Vm 2 0.0475 (Maŕın-Hernández et al., 2011)
Ka 2 0.1 (Maŕın-Hernández et al., 2011) Kb 2 1.1 (Maŕın-Hernández et al., 2011)
Keq 2 651 (Maŕın-Hernández et al., 2011) Kp 2 0.02 (Wilson, 2003)
Kq 2 3.5 (Maŕın-Hernández et al., 2011) Vmf 3 0.24
Kg6p 3 0.4 (Maŕın-Hernández et al., 2014) Vmr 3 0.54
Kf6p 3 0.05 (Maŕın-Hernández et al., 2014) Kery4p 3 0.001 (Maŕın-Hernández et al., 2014)
Kfbp 3 0.06 (Maŕın-Hernández et al., 2014) Kpg 3 0.015 (Maŕın-Hernández et al., 2014)
Vm 4 0.026 (Maŕın-Hernández et al., 2014) Katp 4 0.0292 (Maŕın-Hernández et al., 2014)
beta 4 1.18 (Maŕın-Hernández et al., 2014) alfa 4 0.75 (Maŕın-Hernández et al., 2014)
Kf26bp 4 0.00099 (Maŕın-Hernández et al., 2014) Kf6p 4 1.1 (Maŕın-Hernández et al., 2014)
L 4 6.6 (Maŕın-Hernández et al., 2014) Kcit 4 6.7 (Maŕın-Hernández et al., 2014)
Kiatp 4 1.1 (Maŕın-Hernández et al., 2014) Kadp 4 5 (Maŕın-Hernández et al., 2011)
Kfbp 4 5 (Maŕın-Hernández et al., 2011) Keq 4 247 (Maŕın-Hernández et al., 2014)
Vmf 5 0.08 (Maŕın-Hernández et al., 2011) Kfbp 5 0.009 (Maŕın-Hernández et al., 2011)
Vmr 5 0.063 (Maŕın-Hernández et al., 2011) Kdhap 5 0.08 (Maŕın-Hernández et al., 2011)
Kg3p 5 0.16 (Maŕın-Hernández et al., 2011) Kms 6 1.6 (Maŕın-Hernández et al., 2011)
Kmp 6 0.51 (Maŕın-Hernández et al., 2011) Vf 6 3.4 (Maŕın-Hernández et al., 2011)
Vr 6 28 (Maŕın-Hernández et al., 2011) Vmf 7 0.58 (Maŕın-Hernández et al., 2011)
Knad 7 0.09 (Maŕın-Hernández et al., 2011) Kg3p 7 0.19 (Maŕın-Hernández et al., 2011)
Kp 7 29 (Maŕın-Hernández et al., 2011) Vmr 7 0.72 (Maŕın-Hernández et al., 2011)
Kdpg 7 0.022 (Maŕın-Hernández et al., 2011) Knadh 7 0.01 (Maŕın-Hernández et al., 2011)
Vmf 8 8.7 (Maŕın-Hernández et al., 2011) alfa 8 1 (Maŕın-Hernández et al., 2011)
Ka 8 0.079 (Maŕın-Hernández et al., 2011) Kb 8 0.04 (Maŕın-Hernández et al., 2011)
Vmr 8 2.5 (Maŕın-Hernández et al., 2011) beta 8 1 (Maŕın-Hernández et al., 2011)
Kp 8 0.13 (Maŕın-Hernández et al., 2011) Kq 8 0.27 (Maŕın-Hernández et al., 2011)
Kms 9 0.19 (Maŕın-Hernández et al., 2011) Kmp 9 0.12 (Maŕın-Hernández et al., 2011)
Vf 9 0.94 (Maŕın-Hernández et al., 2011) Vr 9 0.36 (Maŕın-Hernández et al., 2011)
Kms 10 0.038 (Maŕın-Hernández et al., 2011) Kmp 10 0.06 (Maŕın-Hernández et al., 2011)
Vf 10 0.34 (Maŕın-Hernández et al., 2011) Vr 10 0.38 (Maŕın-Hernández et al., 2011)
Vmax 11 0.083333 (Maŕın-Hernández et al., 2014) Kpep 11 0.05 (Maŕın-Hernández et al., 2014)
Kadp 11 0.4 (Maŕın-Hernández et al., 2014) Keq 11 195172.4 (Maŕın-Hernández et al., 2014)
Kpyr 11 10 (Maŕın-Hernández et al., 2014) Katp 11 0.86 (Maŕın-Hernández et al., 2014)
Vmf 12 3.4 (Maŕın-Hernández et al., 2011) alfa 12 1 (Maŕın-Hernández et al., 2011)
Ka 12 0.002 (Maŕın-Hernández et al., 2011) Kb 12 0.3 (Maŕın-Hernández et al., 2011)
Vmr 12 0.54 (Maŕın-Hernández et al., 2011) beta 12 1 (Maŕın-Hernández et al., 2011)
Kp 12 4.7 (Maŕın-Hernández et al., 2011) Kq 12 0.07 (Maŕın-Hernández et al., 2011)
Vm 13 0.01 Km 13 0.5
k 14 0.01 k1 15 1 (Maŕın-Hernández et al., 2011)
k2 15 2.26 (Maŕın-Hernández et al., 2011) Vf 16 0.5
Vr 16 0.1 Kms 16 0.5
Kmp 16 0.5 Vm 17 0.001
Km 17 0.5 Vm 18 0.2
Km 18 0.5 Vm 19 0.01
Km 19 0.5 Vm 20 0.01
Km 20 0.05 Vmf 21 0.053333 (Maŕın-Hernández et al., 2014)
Keq 21 1 (Maŕın-Hernández et al., 2014) Klacin 21 8.5 (Maŕın-Hernández et al., 2014)
Klacout 21 0.5 (Maŕın-Hernández et al., 2014) k1 22 0.001
k2 22 0.01 k 23 0.01
k 24 0.001 k 25 0.074
k 26 0.015 k 27 0.1



k 28 0.5 Vm 29 0.05
Km 29 0.5 k 30 0.01



Table S6: Genes related to glycolysis, TCA cycle and oxidative phosphorylation (related to Figure 2).

Glycolysis TCA cycle/OXPHOS
Gene/Enzyme Symbols Gene/Enzyme Symbols
Akt AKT1 AMPK PRKAA1

AKT2 PRKAA2
AKT3 PRKAB1

HIF-1 HIF1A PRKAB2
HIF1B PRKAG1

mTOR MTOR PRKAG2
NOX NOX1 PRKAG3

NOX2 cMyc MYC
NOX3 p53 TP53
NOX4 SOD SOD1
NOX5 SOD2
DUOX1 SOD3
DUOX2 Pyruvate dehydrogenase complex PDHA1

PDK PDK1 PDHA2
PDK2 PDHB
PDK3 DLAT
PDK4 DLD

PI3K PIK3CA Citrate synthase CS
PIK3CB Aconitase ACO1
PIK3CG ACO2
PIK3CD Isocitrate dehydrogenase IDH3A
PIK3R1 IDH3B
PIK3R2 IDH3G
PIK3R3 IDH1
PIK3R4 IDH2
PIK3R5 Alpha-Ketoglutarate dehydrogenase complex OGDH
PIK3R6 DHTKD1
PIK3C2A OGDHL
PIK3C2B DLST
PIK3C2G Succinyl CoA synthetase SUCLG2
PIK3C3 SUCLG1

RAS KRAS SUCLA2
HRAS Succinate dehydrogenase SDHA
NRAS SDHB

Hexokinase HK1 Fumarase FH
HK2 Malate dehydrogenase MDH1
HK3 MDH2
HKDC1 NADH-Q oxidoreductase NDUFS7

Phosphoglucose isomerase GPI ND1
Phosphofructokinase PFKL ND2

PFKM ND3
PFKP ND4

Aldolase ALDOA ND4L
ALDOB ND5
ALDOC ND6

Triose phosphate isomerase TPI1 NDUFS1
Glyceraldehyde 3-phosphate dehydrogenase GAPDH NDUFS2

GAPDHS NDUFS3
Phosphoglycerate kinase PGK1 NDUFV1

PGK2 NDUFS8
Phosphoglycerate mutase PGAM4 NDUFV2

PGAM1 Succinate-Q oxidoreductase SDHC
PGAM2 SDHD
BPGM Q-cytochrome c oxidoreductase UQCRFS1

Enolase ENO1 Cytochrome c oxiddase COX1
ENO2



ENO3
ENO4

Pyruvate kinase PKLR
PKM

lactate dehydrogenase LDHA
LDHB



Transparent Methods

Metabolic Kinetic Equations

The metabolic reactions are listed in Table S3. The metabolic reactions contain single directional and bidi-
rectional reactions. For every bidirectional reaction, which is reversible reaction, the kinetic velocity can be
positive or negative determined by the metabolite concentrations. As an example, the simplest representation
of enzyme-catalyzed reversible reaction is(Segel, 1975):

E + S
k1−−⇀↽−−−
k−1

ES
k2−−⇀↽−−−
k−2

E + P

Each k represents rate constant for each reaction respectively. If we focus on only one central complex , the
net velocity in the forward direction is given by:

vnet = k2[ES]− k−2[E][P ] (1)

The condition at steady state is given as:

d[ES]

dt
= 0 (2)

+
d[ES]

dt
= k1[E][S] + k−2[E][P ] (3)

−d[ES]

dt
= k2[ES] + k−1[ES] (4)

Eq. 1 can be transformed into(Segel, 1975):

vnet =
Vmaxf

[S]
Kms

− Vmaxr [P ]
Kmp

1 + [S]
Kms

+ [P ]
Kmp

(5)

where:

k2[E]t = Vmaxf (6)

k−1[E]t = Vmaxr (7)

k2 + k−1
k1

= Kms (8)

k2 + k−1
k−2

= Kmp (9)



[E]t = [E] + [ES] (10)

[ES] represents the concentration of total enzyme. Vmaxf represents the maximal velocity in the forward
reaction and Vmaxr represents the maximal velocity in the reverse reaction.

The metabolic kinetic velocities are showed as follow.

1. Reaction r1(GluT1):

v = V mf
[Gluout]− [Gluin]/Keq

KGluout(1 + [Gluin]/KGluin) +Gluout
(11)

The kinetics of GluT1 is described as a monosubstrate reversible Michaelis–Menten equation (Segel, 1975).
Gluout and Gluin are the extra-cellular and intra-cellular glucose concentrations. KGluout and KGluin are the
enzyme’s affinity respectively. Keq is the equilibrium constant. V mf is the maximal velocity in the forward
reaction.

2. Reaction r2(HK) and reaction r11(PKM2):

v = V mf
([A][B]− [P ][Q]

Keq )/(KaKb)

1 + [A]
Ka + [B]

Kb + [A][B]
KaKb + [P ]

Kp + [Q]
Kq + [P ][Q]

KpKq + [A][Q]
KaKq + [P ][B]

KpKb

(12)

The kinetics of HK and PKM2 are described as random bi-substrate Michaelis–Menten (Segel, 1975). For
reaction r2 [A] and [B] represent the Gluin and ATP concentrations, whereas [P] and [Q] represent the G6P and
ADP concentrations. For reaction r11 [A] and [B] represent the PEP and ADP concentrations, whereas [P] and
[Q] represent the Pyruvate and ATP concentration. Ka, Kb, Kp and Kq represent the enzymes Km values for
their respective ligands.

3. Reaction r3(GPI):

v =
V mf [G6P ]

KG6P
− V mr [F6P ]

KF6P

1 + [G6P ]
KG6P

+ [F6P ]
KF6P

+ [ERY 4P ]
KERY 4P

+ [6PG]
K6PG

+ [FBP ]
KFBP

(13)

The kinetics of GPI is described as a monoreactant reversible equation with competitive inhibition by Ery4P,
6PG and FBP (Maŕın-Hernández et al., 2011). V mf is the maximal velocity in the forward reaction, while
V mr is the maximal velocity in the reverse reaction.

4. Reaction r4(PFK-1):

v = V m((

[ATP ]
KATP

1 + [ATP ]
KATP

)(
1 + β[F26BP ]

αKaF26BP

1 + [F26BP ]
αKaF26BP

)(

[F6P ](1+
[F26BP ]

αKaF26BP
)

KF6P (1+
[F26BP ]
KaF26BP

)(1 +
[F6P ](1+

[F26BP ]
αKaF26BP

)

KF6P (1+
[F26BP ]
KaF26BP

)
)3

L(1+
[Citrate]
KiCit

)4(1+
[ATP ]
KiATP

)4

(1+
[F26BP ]
KaF26BP

)4
+ (1 +

[F6P ](1+
[F26BP ]

αKaF26BP
)

KF6P (1+
[F26BP ]
KaF26BP

)
)4

)

−
[ADP ][ATP ]

KADPKFBPKeq

[ADP ]
KADP

+ [FBP ]
KFBP

+ [ADP ][FBP ]
KADPKFBP

+ 1
)

(14)

The kinetics of PFK-1 could be considered as the concerted transition model of Monod, Wyman and
Changeux for exclusive ligand binding (F6P, activators, and inhibitors) together with mixed-type activation
(F2,6BP or AMP or Pi) and simple Michaelis–Menten terms for ATP and reverse reaction (Maŕın-Hernández
et al., 2011). L is the allosteric transition constant.

5. Reaction r5(ALD):

v =
V mf [FBP ]

KFBP
− V mr [DHAP ][G3P ]

KDHAPKG3P

1 + [FBP ]
KFBP

+ [DHAP ]
KDHAP

+ [G3P ]
KG3P

+ [DHAP ][G3P ]
KDHAPKG3P

(15)



The kinetics of ALD rate equation is the reversible Uni–Bi Michaelis–Menten equation(Segel, 1975). V mf
is the maximal velocity in the forward reaction, while V mr is the maximal velocity in the reverse reaction.

6. Reaction r6(TPI), reaction r9(PGAM) and reaction r10(ENO):

v =
V mf [S]

Ks − V mr
[P ]
Kp

1 + [S]
Ks + [P ]

Kp

(16)

The kinetics of TPI, PGAM and ENO are described as monosubstrate simple reversible Michaelis–Menten
equation (Segel, 1975). [S] and [P] represent the respective concentrations of substrates and products with their
respective affinity constants. V mf is the maximal velocity in the forward reaction, while V mr is the maximal
velocity in the reverse reaction.

7. Reaction r7(GAPDH):

v =
V mf [NAD][G3P ][Pi]

KNADKG3PKPi
− V mr [BPG][NADH]

KBPGKNADH

1 + [NAD]
KNAD

+ [NAD][G3P ]
KNADKG3P

+ [NAD][G3P ][Pi]
KNADKG3PKPi

+ [BPG][NADH]
KDPGKNADH

+ [NADH]
KNADH

(17)

The kinetics of GAPDH is described as a simplified ordered Ter–Bi reversible Michaelis–Menten equation
(Maŕın-Hernández et al., 2011). V mf is the maximal velocity in the forward reaction, while V mr is the maximal
velocity in the reverse reaction.

8. Reaction r8(PGK) and reaction r12(LDH):

v =
V mf [A][B]

αKaKb − V mr
[P ][Q]]
βKpKq

1 + [A]
Ka + [B]

Kb + [A][B]
αKaKb + [P ][Q]

βKpKq + [P ]
Kp + [Q]

Kq

(18)

The kinetics of PGK and LDH are described as the random Bi–Bi reversible Michaelis–Menten equa-
tion(Maŕın-Hernández et al., 2011). For reaction r8, [A] and [B] represent the 1,3BPG and ADP concentrations,
whereas [P] and [Q] represent the 3PG and ATP concentrations. For reaction r12, [A] and [B] represent the
Pyruvate and NADH concentrations, whereas [P] and [Q] represent the intra-cellular Lactate and NAD con-
centrations. V mf is the maximal velocity in the forward reaction, while V mr is the maximal velocity in the
reverse reaction.

9. Reaction r13(G6PD/6PGD), reaction r18(PDH), reaction r19(ACC) and reaction r20(SOD):

v = V m
[S]

[S] +Km
(19)

The kinetics of G6PD/6PGD, PDH, ACC, SOD are described as Michaelis–Menten equation. [S] represent
the G6P, Pyruvate, complex2 and ROS concentrations respectively.

10. Reaction r14(ATPases):

v = k[ATP ] (20)

The kinetics of ATPases is described as the irreversible mass-action reaction, in which k is the rate constant.

11. Reaction r15(AK):

v = k1[ATP ][AMP ]− k2[ADP ]2; (21)

The kinetics of AK is described as reversible mass-action reactions, in which k1 and k2 are the rate constants.

12. Reaction r16(PFKFB2/3):



v =
V mf [F6P ]

Ks − V mr
[F2,6BP ]

Kp

1 + [F6P ]
Ks + [F2,6BP ]

Kp

(22)

The kinetics of PFKFB2/3 is described as monosubstrate simple reversible Michaelis–Menten equation
(Segel, 1975). V mf is the maximal velocity in the forward reaction, while V mr is the maximal velocity in
the reverse reaction.

13. Reaction r17(PHGDH):

v =
V mf [3PG]

Ks − V mr
[Serine]
Kp

1 + [3PG]
Ks + [Serine]

Kp

(23)

The kinetics of PHGDH is described as monosubstrate simple reversible Michaelis–Menten equation (Segel,
1975). V mf is the maximal velocity in the forward reaction, while V mr is the maximal velocity in the reverse
reaction.

14. Reaction r21:

v =
V mf([Lacin]− [Lacout]

Keq )

Klacin(1 + [Lacout]
Klacout

) + [Lacin]
(24)

The kinetics is described as the monosubstrate reversible Michaelis–Menten equation. [Lacin] and [Lacout]
are the extra-cellular and intra-cellular lactate concentrations. Klacin and Klacout are the enzyme’s affinity
respectively. Keq is the equilibrium constant.

15. Reaction r22:

v = k1[R5P ]3 − k2[F6P ]2[G3P ]; (25)

The kinetics is described as reversible mass-action reactions, in which k1 and k2 are the rate constants.

16. Reaction r23(NUCLEOTIDE BIOSYNTHESIS) and Reaction r24(SERINE CONSUMPTION):

v = k[S] (26)

The kinetics of Nucleotide biosynthesis and Serine consumption are described as the irreversible mass-action
reaction, in which k is the rate constant. [S] represent the R5P and Serine concentration respectively.

17. Reaction r25, Reaction r26 and Reaction r27:

v = k[S]; (27)

The kinetics are described as the irreversible mass-action reaction, in which k is the rate constant. [S]
represent the NADH, Citrate and complex2 concentration respectively.

18. Reaction r28:

v = k[Complex2][O2]; (28)

The kinetics is described as the irreversible mass-action reaction, in which k is the rate constant.

19. Reaction r29(NOX):

v = V m
[O2]

[O2] +Km
; (29)



The kinetics of NOX is described as Michaelis–Menten equation.

20. Reaction r30:
v = k[Citrate] (30)

The kinetics is described as the irreversible mass-action reaction, in which k is the rate constant. Citrate
consumption could be used for other biological functions such as substrate for fatty acids biosynthesis.

Parameter Setting

The driving forces of the dynamics for the gene expression or enzyme levels regulated by one gene could be
described as:

Ẋ = AH(Y )−DX (31)

H(Y ) =
Sn

Sn + Y n
+ γ

Y n

Sn + Y n
(32)

where X represents the regulated gene expression or enzyme level and Y represents expression of the regulating
gene. At the steady state, where Ẋ = 0, the regulated gene expression or enzyme levels can be determined as:

X =
A

D
H(Y ) (33)

As shown in Eq. 33, if there is no regulations on X(γ = 1), the gene expression or enzyme level at steady
state can be represented as:

X0 =
A

D
(34)

The fold change of gene expression regulated by gene Y can be represented as:

fold changer =
X

X0
=

A
DH(Y )

A
D

= H(Y ) (35)

The fold change of gene expression between cancer sample and normal sample can be represented as the
ratio of gene expression level of cancer cell to normal cell at steady state:

fold changec2n =
Xc

Xn
=
H(Yc)

H(Yn)
(36)

Xc and Xn represent the gene expression level at steady state in cancer cell and normal cell respectively.
If X is regulated by Y and Y → +∞, the gene expression or enzyme level is equal to γ(A/D). Thus the gene
regulation strength γ reflects the regulation of X from Y when saturate. We consider that the gene regulation
could get the saturation in cancer cell(γ ≈ H(Yc))). The gene regulation strength can be represented as:

γ ≈ H(Yc) = H(Yn)× H(Yc)

H(Yn)
= fold changer × fold changec2n (37)



The fold change of gene expressions in response to knockdown of certain gene is around 4 in adult fibrob-
lasts(Trapnell et al., 2012). The fold changes of gene expressions between cancer and normal sample in all 13
cancer types reach 10 in previous studies(Hu et al., 2017). Thus we choose the gene regulation strength within
range from 1/40 to 40. The degradation rate of certain gene can be estimated from previous study(Chua et al.,
2010). We set the degradation of all genes with same order amplitude as D=0.005/min, the range of which
consistent with the available inferred values(Lu et al., 2014) . Genes have different expression or concentration
range. To study the gene expression dynamics, it is more convenient to normalize the gene expression as the
relative level to be in the range around 1. As shown in Eq. 33, without any gene regulation, X is equal to 1 when
A=D. Thus we can represent the gene expression as relative level for each gene and set the basic production
rate of the gene or the enzyme as A=0.005. The parameter set of gene regulations are listed in Table S4. The
parameters for kinetic velocity equations are from previous studies and listed in Table S5.

Landscape and Flux Decomposition

For the non-equilibrium biological networks, the dynamics of the whole networks can be described stochastically
as:

dx

dt
= F(x) + ζ (38)

The variable, x represents the concentrations of genes, enzymes or metabolites. F(x) is the driving force.
The term ζ represents the noise caused by the fluctuations, of which is statistical nature is assumed as Gaussian
and < ζ(t)ζ(t′) > = 2Dδ(t− t′). D is the diffusion coefficient tensor describing the level of noise.

The probabilistic evolution in terms of the diffusion equation can be depicted as(NG, 1992):

∂P

∂t
+∇ · J(x, t) = 0 (39)

Eq. 39 represents the conservation law of probability. The local change of the probability is equal to the
net flux. The probability flux vector J of the system in space x is defined as(Feng and Wang, 2011):

J(x, t) = FP −D · ∇P (40)

If the steady state of the system exists, i.e. ∂P
∂t = 0 then ∇ · J(x) = 0. There are several outcomes.

When J = 0, the zero net flux is the detailed balance condition and the system is in equilibrium. As the
definition of flux, F = −D ·∇U , where U = −lnPeq. So the driving force F can be represented as a gradient of a
potential U . The equilibrium probability represents the weight of each state of the equilibrium system, thus the
global nature and stability can be quantified as the equilibrium potential(equilibrium probability). The driving
force is the gradient of potential, which controls the dynamics of the system.

For the other outcome, J(x) 6= 0, J is a rotational curl vector field, due to the divergent free nature of the flux
in steady state. For example of J(x) = ∇×A in three dimensions, A is a vector with non-zero curl. J(x) 6= 0
represents the deviation from detailed balance. Even in steady state, the system is still in non-equilibrium.
The magnitude of flux quantifies the degree away from detailed balance or degree away from equilibrium. The
probability landscape at steady state represents the weight of each state of the system. It is able to quantify the
global nature and stability of the system. Therefore, for non-equilibrium systems and networks, the dynamical
driving force F can be decomposed into a gradient of a potential and a curl flow flux(Wang et al., 2008; Feng
and Wang, 2011) as:

F = −D∇U +
Jss(x)

Pss
(41)

The potential U is defined as U = −lnPss and Pss represents steady state probability distribution. In detailed
balance, the underlying dynamics of the system is controlled by the gradient of the potential. The equilibrium
potential quantifies the global nature and the stability of the system. For non-equilibrium systems or networks,
the global nature and stability are determined by the underlying non-equilibrium potential landscape. The
dynamics in this case is determined by both the gradient of potential landscape and probabilistic flux.



Self Consistent Mean Field Approximation

The evolution of probability distribution on dynamic system can be described by the probabilistic Fokker-Planck
diffusion equations in continuous variables such as concentrations. Given the state (X1,X2,...,Xn,t), where X1,
X2, ...,Xn represent the expression levels of genes or the enzymes, it is difficult to exactly solve high dimensional
partial differential equations for the probability P(X1,X2,...,Xn,t). Here, we apply self consistent mean field
approximation for the individual variable. The probability P(X1,X2,...,Xn,t) can be splitted into the products
of the probability of the individual variable,

∏
P (Xi, t) according to (Li and Wang, 2013, 2014; Wang et al.,

2010a; Sasai and Wolynes, 2003; Zhang and Wolynes, 2014). Thus the dimensionality of the system is reduced
to polynomial M × N from exponential MN , which makes the computation and storage tractable. Here M
represents the possible number of values of a specific variable X.

It is often difficult to solve self-consistent mean field equation due to its non-linearity. We then start from the
moment equations. In principle, once all the moments are known, we can obtain the probability distributions of
the dynamic system. Here, Gaussian distribution ansatz is used as an approximation to calculate the probability,
and the two moments, mean and variance are needed to compute.

When the diffusion coefficient D is small, the moment equations can be approximated to (NG, 1992):

˙̄x(t) = F( ¯x(t)) (42)

σ̇(t) = σ(t)AT(t) + A(t)σ(t) + 2D(x̄(t)) (43)

Here, x̄(t) is the mean of the certain variable and σ(t) is the covariance matrix of the system evolution.

A(t) is a tensor and its matrix element is Aij = ∂Fi(x(t))
∂xj(t)

. AT(t) is the transpose of A(t). In terms of these

equations, we can solve x(t) and σ(t). The diagonal elements of σ(t) is considered. Therefore the evolution
of probabilistic distribution for each variable can be expressed by Gaussian approximation determined by the
mean and variance:

P (x, t) =
1√

2πσ(t)
e−

(x−x̄(t))2

2σ(t) (44)

The equation above represents the expression of the probability for one steady state. For multistable system,
the total probability is equal to the combination of the probabilities of all the steady states. The probability
of x in multistable system has the form: P (x, t) =

∑
wiPi(x). Here the weight factor wi for each individual

attractors can be obtained through Langevin simulations with multiple initial conditions. In this way, the weight
can be computed by the partitions of how many trajectories with different initial conditions fall into different
attractors. Finally, the landscape can be quantified through the steady state probability, U(x) = −lnPss(x).

Langevin Stochastic Dynamics Method

For the system in fluctuating environments, the dynamics is often described by the stochastic ordinary dif-
ferential equations as ẋ = F(x) + ζ. Here, x(t) represents the vector of the gene expression level and en-
zyme concentration level. F(x) represents the vector for the driving force through the gene-gene regulations,
gene-enzyme regulations/interactions or metabolite-gene regulations/interactions. External fluctuations and
intrinsic fluctuations are important to the biology systems(Kærn et al., 2005; Swain et al., 2002). The fluctu-
ation term ζ is added to the force ẋ = F(x), the deterministic dynamics of the system. The fluctuation term
ζ is assumed to follow Gaussian distribution and the correlation functions are given as: ζj(x, t) >= 0 and
< ζi(x, t)ζj(x, t′) >= 2Dijδijδ(t − t′) (δij = 1 for i = j and δij = 0 for i 6= j). Here δ(t) is the Dirac delta
function and D is diffusion coefficient matrix. The fluctuation term is associated with the intensity of cellular
fluctuations either from the environmental external sources or intrinsic sources. Under long time Langevin
dynamics simulations, we can obtain the steady state distribution P (x) for the state variable x through the
cumulation of statistics. Finally the potential landscape is obtained by U = −ln(P (x)).



Path Integral

There are in general many paths from one state to another state. The dominant path is important for biological
process and functional switch. Under fluctuations, the dominant path determined based on the path integral
method over many possible paths (Wiener, 1921; Onsager and Machlup, 1953).

We can formulate the dynamics for the probability of starting from initial configuration xi at t = 0 and
end at the final configuration of xf at time t. The probability from initial state to the end state is determined
by(Wang et al., 2010b, 2011):

P (xf , t|xi, 0) =

∫
Dxe−S(x) (45)

S(x) =

∫
L[x(t)]dt (46)

In Eq. 45, S(x) is the action, Dx represents the sum of all possible path from state xi at t = 0 to the state
xf . L(x) is Lagrange and is determined by:

L =
1

4
D−1ẋ ·D−1 · ẋ− 1

2
D−1F ·D−1 · ẋ + V (47)

V =
1

4
D−1F ·D−1 +

1

2
D∇ · (D−1 · F) (48)

D is the diffusion coefficient matrix tensor. The probability of the path is decided by e−S(x). The path is
dominant, when the action S is the least.

Not all the paths give the same contribution. We can approximate the path integrals with a set of dominant
paths. Because each path is exponentially weighted, contributions of the other sub-leading paths are often small
and can be ignored. The optimal paths of the biological paths or transition paths between steady states can be
identified.

Entropy Production Rate

In a nonequilibrium system, exchange in energy and information results the dissipation of energy. It depicts
a global physical characterization of the nonequilibrium system. In the steady state, the dissipation of energy
is closely associated with the entropy production rate, which could be described as the well-known entropy
formula(Qian, 2001):

S = −kB
∫
P (x, t)lnP (x, t)dx (49)

By differentiating the Eq. 49, the increase of the entropy at constant temperature T is shown as follows:

T Ṡ = kB ∗ T
∫

(lnP + 1)∇ · Jdx = −
∫

(kBT∇lnP − F) · Jdx−
∫

F · Jdx = ep − hd (50)

ep = −
∫

(kBT∇lnP − F) · Jdx (51)



hd =

∫
F · Jdx (52)

As shown in Eq. 50, the entropy can be transformed into the difference between two terms. The former
term, ep is the entropy production rate following Onsager(Onsager and Machlup, 1953), and the latter term,
hd is the mean rate of the heat dissipation. For a steady state, and the entropy production ep equal to the heat
dissipation hd.

Metabolic Therapeutic Target Prediction

We predict the metabolic therapeutic targets based on the landscape analysis. For each gene or enzyme xi,
F (xi) is changed to F ′(xi) = F (xi) + ci. The term ci represents the corresponding changes in activation or
inhibition regulations due to the perturbations on the variable. The potential landscape of the four steady state
attractors are quantified for the corresponding ci respectively. If ci > 0, it represents the activation of the gene
or the enzyme. If ci < 0, it represents the inhibition of the gene or the enzyme. We define the changes of the
cancer OXPHOS state as the degree of therapeutic effect on the OXPHOS cancer type and the changes of the
cancer glycolysis state as the degree of therapeutic effect on glycolysis cancer type. If the changes of the barrier
height is negative, this leads the instability of certain cancer steady state. This represents the positive effect on
the therapeutic target.

We also predicted the effects of combination therapy. This is according to the landscape topography changes
in terms of the barrier heights which lead to the higher stability/lower stability for the cancer basins of attraction.

For the malignancy of cancer metabolism oscillation, we aim to weaken the oscillation capability of the limit
cycle and drive the system to become mono-stable at normal state by promoting or inhibiting certain genes or
enzymes. The oscillation capability can be estimated by the barrier height from the highest point at the center
island to the lowest point on the limit cycle.
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