

Figure S1: *B. subtilis* does not grow anaerobically on nitrate or nitrite, related to Figure 1.

No growth of *B. subtilis* strain 3610 (bottom left) or strain 168 (bottom right) was observed during anaerobic culturing with nitrate or nitrite. Nitrate may help growth in late exponential and stationary phase during aerobic growth (top panels), as cultures grown in Spizizen medium with nitrate (green) reached their maximum OD₆₀₀ before those grown in Spizizen alone (dark red). *B. subtilis* strains 3610 and 168 were inoculated in aerobic or anaerobic conditions in LB (aerobic only), modified LB+nitrate (LB+NO₃), modified LB+nitrite (LB+NO₂), Spizizen minimal medium (Sp.), and Spizizen minimal medium+nitrate (Sp.+NO₃). Each line represents the mean and shading represents 1 standard deviation (SD), *n*=3.

of $\Delta lytC$ and $\Delta lytD$ mutants, related to Figure 1 and Videos S1 and S2.

- (A) The viability of strain 3610 follows OD (faint lines, representing the mean) between 0 and 24 h, while 168 viability drops rapidly around 4 h post-oxygen depletion. Error bars represent 1 SD (n = 3).
- (B) Culture lysis depends on cell density at the time of oxygen depletion. Two sets of independent lysis curves that varied in initial OD₆₀₀ are shown; see Figure 1D for the other independent experiment.
- (C) Cell lysis is more rapid under anaerobic conditions. Cultures were grown aerobically in 96-well plates to $OD_{600} \sim 1$ and then transferred to an

anaerobic chamber to rapidly remove oxygen from the culture. Line represents the mean and shading represents 1 SD, n=3.

- (D) $\Delta lytD$ cells show similar rates of lysis as wild-type 3610 cells upon oxygen depletion, unlike $\Delta lytC$ cells that exhibit slower lysis. Strains were grown to $OD_{600} \sim 1$ and then oxygen was depleted at t = 0.
- (E) After oxygen depletion, the majority of wild-type cells but only a small subset of $\Delta lytC$ cells resume growth. After 24 h of oxygen depletion, wild-type and $\Delta lytC$ cultures were spotted onto an LB agarose pad with oxygen and cell growth was monitored. Nearly all wild-type cells grew but only a few $\Delta lytC$ cells grew (arrowheads). Images shown are frames from Videos S1 and S2.

Figure S3: Oxygen depletion causes production of wall-less protoplasts in strain 168 and only a low percentage of cells are able to resume growth, related to Figure 2 and Videos S3 and S4.

- (A) Cell-wall staining reveals protoplasts that have lost their cell wall. Phasecontrast and HADA (cell wall) staining of strain 168 cultures at 24 h postoxygen depletion. Cells were stained with HADA for the last doubling before oxygen was depleted and the dye was present during the duration of depletion. Arrowheads: phase-dark spherical cells that lack cell-wall staining. Scale bar: 5 µm.
- (B) Strain 168 $\Delta lytC$ cells remain rod-shaped following oxygen depletion. Left: OD₆₀₀ of 168 $\Delta lytC$ exhibited somewhat slower lysis than the parent. Right: overlay of phase-contrast and propidium iodide staining of 168 $\Delta lytC$ cells.

(C) Almost all strain 3610 cells but only 1% of strain 168 cells grow once oxygen is restored following 24 h of oxygen depletion. Cells from strain 3610 and strain 168 cultures after 24 h of oxygen depletion were spotted onto an LB agarose pad and imaged in time-lapse to determine which cells were capable of growing and dividing. For strain 3610, the arrowhead points to a rare rodshaped cell that did not grow. For strain 168, the arrowhead points to a rare rod-shaped cell that grew. Scale bar: 10 μ m. *n* = 536 and 604 rod-shaped cells for strain 3610 and strain 168, respectively. Images shown are frames from Videos S3 and S4.

Figure S4: Exogenous surfactin reduces the maximum growth rate of *B. subtilis* when grown aerobically, related to Figure 3.

- (A) Surfactin treatment (0.2 mg/mL) significantly reduces the maximum growth rate of strain 3610. Inset: maximum growth rate (the largest positive slope of the $ln(OD_{600})$ curve) of a control (ethanol-treated) and surfactin-treated (dissolved in ethanol) culture. Shading and error bars represent 1 SD, n=3. *: p<0.05, Student's ttest.
- (B) Surfactin treatment (0.05 mg/mL) significantly reduces the maximum growth rate of strain 168. Inset: maximum growth rate (the largest positive slope of the ln(OD₆₀₀) curve) of a control (ethanol-treated) and surfactin-

treated (dissolved in ethanol) culture. Shading and error bars represent 1 SD, n=3. *: p<0.01, Student's ttest.

Figure S5: Characterization of hits from transposon screen, related to Figure 4.

- (A) Schematic of transposon screen design. A transposon mutant library was grown to $OD_{600} \sim 1$, and then oxygen was depleted. We screened cells that were able to recover after oxygen depletion for oxygen-depletion phenotypes.
- (B) Transposon mutants have a reduced lysis rate. OD₆₀₀ curves during oxygen depletion of mutants related to surfactin regulation (green) or flagella

(purple). Lines represent the mean and shading represents 1 SD, n=5. Inset: maximum lysis rates. Error bars represent 1 SD, n=5.

- (C) Viability of clean deletions of *srfAA*, *fliI*, and *rghR* is lower than that of 3610 2 and 4 days following oxygen depletion.
- (D) Addition of 48 μM surfactin increases the lysis rate of hits from transposon mutant screen.

Figure S6: Membrane potential assays of strain 168 cells undergoing various treatments, antibiotic+surfactin viability data, and ATP assay control, related to Figures 5 and 6.

- (A) DiSC₃(5) (top) and ThT (bottom) both show that surfactin (48 μ M), valinomycin (50 μ M), and CCCP (5 μ M) cause membrane depolarization. The time of drug addition is marked by the black arrow. Two experimental replicates are shown (replicate 1 is shown in Figure 5).
- (B) (i) Tween 80 treatment of strain 168 cells removes protoplasts (right, scale bar: 5 μm) but does not significantly improve viability in plating efficiency measurements (left, *n*=3; *p*>0.05). (ii) Tween 80 alters DiSC₃(5) fluorescence (top) but not ThT (bottom) as compared to untreated strain 168 cells.
- (C) Adding chloramphenicol (5 μg/mL) or rifampin (1 μg/mL) to surfactintreated cells does not reduce viability. A representative plating efficiency image of 4 independent experiments is shown.
- (D) Left: chloramphenicol (5 μg/mL) and rifampin (1 μg/mL) do not depolarize strain 168 cells in either DiSC₃(5) (top) or ThT (bottom) assays. Right: 300 mM NaCl and 300 mM sucrose do not depolarize cells when measured by DiSC₃(5) (top), and only slightly affect ThT measurements (bottom).
- (E) Sub-inhibitory concentrations of CCCP reduce ATP levels of strain 3610 cells when grown aerobically. ATP levels were normalized to OD at the time of the assay (OD_{600} values were 1.04, 0.65, and 0.57 for untreated, 0.2 µg/mL, and 1 µg/mL, respectively).

Gene hit	# independent hits	Gene function
srfAA	1	surfactin synthetase
comA	3	<i>comP/comA</i> quorum sensing response regulator
comP	4	<i>comP/comA</i> quorum sensing sensor histidine
		kinase
rghRA	1	transcriptional repressor
rghRA-	1	transcriptional repressor
upstream		
fliI	1	flagella chaperone
fliF	1	flagella chaperone
fliJ	1	flagella basal ring

\mathbf{r}

			Reference or
Strain name	Nickname	Genotype	source
HA10	3610	trpC+, rapP+, sfp+, epsC+, swrA+, degQ+, pBS32	Kearns lab
DK5073	3610 <i>∆lytC</i>	3610, Δ <i>lytC</i>	This work
DK5075	3610 ΔlytD	3610, Δ <i>lytD</i>	This work
HA1	168	trpC2	Carol Gross lab
BKE35620	168 <i>ΔlytC</i>	168, ΔlytC::MLS	[S1]
HA1417	168 <i>sfp</i> +	168, swrAfs, sfp ^o , amyE::Psfp-sfp cmR	This work
HA1161	parent	3610, Δ <i>SPB</i> , Δ <i>PBSX</i> , Δ <i>pBS32</i>	Kearns lab
HA1235	N/A	3610, ΔSPB, ΔPBSX, ΔpBS32, pMarA-kan	This work
HA1414	N/A	168, pMarA-kan	This work
Back-crossed			
HA1225	comA	3610, ΔSPB, ΔPBSX, ΔpBS32, comA::pMarA-kan	This work
HA1227	comP	3610, ΔSPB, ΔPBSX, ΔpBS32, comP::pMarA-kan	This work
HA1228	fliJ	3610, ΔSPB, ΔPBSX, ΔpBS32, fliJ::pMarA-kan	This work
HA1229	fliI	3610, ΔSPB, ΔPBSX, ΔpBS32, flil::pMarA-kan	This work
HA1233	fliF	3610, ΔSPB, ΔPBSX, ΔpBS32, fliF::pMarA-kan	This work
HA1234	srfAA	3610, ΔSPB, ΔPBSX, ΔpBS32, srfAA::pMarA-kan	This work
HA1281	yvaN	3610, ΔSPB, ΔPBSX, ΔpBS32, yvaN::pMarA-kan	This work
HA1282	yvaN-us (upstream)	3610, ΔSPB, ΔPBSX, ΔpBS32, yvaN-us::pMarA-kan	This work
Clean deletion			
HA1369	ΔsrfAA	3610, <i>srfAA</i>	This work
HA1374	ΔfliI	3610, flil	This work
HA1377	ΔrghRA	3610, rghRA	This work
Deletion and			
BKE03480	N/A	168, srfAA::MLS	[S1]
BKE16240	N/A	168, fli1::MLS	[S1]

BKE33660	N/A	168, rghRA::MLS	[S1]
CAG74772	168 <i>trxA</i> ↓	168, <i>lacA::Pxyl-dcas9</i> (ErmR), <i>amyE::Pveg-sgRNA-trxA</i> (cmR)	[S2]
CAG74814	168 <i>trxB</i> ↓	168, <i>lacA::Pxyl-dcas9</i> (ErmR), <i>amyE::Pveg-sgRNA-</i> <i>trxB</i> (cmR)	[\$2]

Table S2: List of strains used in this study, related to STAR Methods.

Supplemental References

- S1. Koo, B.M., Kritikos, G., Farelli, J.D., Todor, H., Tong, K., Kimsey, H., Wapinski, I.,
 Galardini, M., Cabal, A., Peters, J.M., et al. (2017). Construction and Analysis of
 Two Genome-Scale Deletion Libraries for *Bacillus subtilis*. Cell Syst *4*, 291305 e297.
- S2. Peters, J.M., Colavin, A., Shi, H., Czarny, T.L., Larson, M.H., Wong, S., Hawkins,
 J.S., Lu, C.H.S., Koo, B.M., Marta, E., et al. (2016). A Comprehensive, CRISPRbased Functional Analysis of Essential Genes in Bacteria. Cell *165*, 1493-1506.