Supplementary Materials

Supplementary Materials and Methods

Generation of 3D Skin Equivalent

3D skin equivalents were generated on polycarbonate culture inserts (Nunc) according to the previously described protocol [1]. Briefly, neutralized type I collagen (Sigma) containing human dermal fibroblast (Thermo Fisher Scientific, Cat# C0135C) were poured on the insert and incubated at 37 °C for 2 hrs to polymerize. The dermal equivalent was incubated with the fibroblast medium for 5 days. Then, 1x10⁶ KCs derived from Ctr-iPSCs and PsO-iPSCs at day 20 of differentiation were seeded on the dermal equivalent. The cells were grown in 1:1 of N2 medium and DMEM containing 10% FBS, 1% NEAA, 1% L-Glutamine for 10 days in the submerged condition, following which the cells were exposed to the air and fed from below for 5 days in medium containing 1.3mM CaCl₂.

Supplementary Results and Discussion

The PSORS1 locus maps to the Major Histocompatibility Complex (MHC) on chromosome 6p21 and is conclusively validated the major genetic determinant of psoriasis [2]. These investigations defined a consensus 150 kb minimal interval spanning the MHC class I region and encompassing nine genes [2,3]. We found HLA-C localized in this region was overexpressed in our psoriasis iPSCs derived keratinocytes. HLA-C encodes a MHC class I receptor that participates to immune responses through the presentation of antigens to CD8+ T lymphocytes. It is therefore a very plausible candidate gene, especially as serological studies carried out as early as the mid-1970s had identified an association between psoriasis, the MHC

region has been the subject of very detailed genetic studies, carried out in European and Asian populations. These have identified many additional association signals that are independent of HLA-C and map to HLA-A, HLA-B and HLA-DQA1 [5,6]. In our RNA-seq results, HLA-DQA1 and DQB1 were down-regulated in both psoriasis iPSCs derived keratinocytes, while HLA-A was up-regulated in 1PSO and down-regulated in 2PSO.

It is generally accepted that T helper cells including Th1, Th17 and Th22 cells contribute to the development of psoriasis by secreting various cytokines [7,8], which results in the excessive proliferation and aberrant differentiation of keratinocytes. However, recent studies show that keratinocyte produces various kinds of cytokines leading to an amplified immune response [8-10] and thus directly or indirectly causes the major histological features of psoriasis. In our RNA-seq results, we found a number of cytokines deregulated in psoriasis iPSCs derived keratinocytes which consequently result in altered expression of downstream genes. In the RNA-seq data analysis, we found members of interferon-inducible protein with tetratricopeptide repeats (IFITs) family, member of interferon induced transmembrane (IFITM) protein family and members of PYHIN (IFI200/HIN-200) family were upregulated in KCs derived from PsO-iPSCs (Table S4).

Figure S1: Characterization of the generated iPSC clones from a healthy individual (Ctr1-iPSCs). (A) The three iPSC clones expressed the endogenous pluripotency markers (OCT4, SOX2, CMYC, KLF4, NANOG, REX1, TERT, and DPPA4) by RT-PCR. (B) RT-PCR showing the loss of the exogenous pluripotency factor, c-MYC and the backbone of the Sendai virus used for the transduction. (C) Western blotting showing expression of the self-renewal markers (OCT4, SOX2, NANOG, KLF4). (D) Immunofluorescence images showing the expression of pluripotency markers in Ctr1-iPSC clone 1 (D) and Ctr-iPSCs clone 2 (E). Representative images of the spontaneously differentiated EBs showing the expression of NESTIN (ectoderm), BRACHYURY (mesoderm) and SOX17 (endoderm) in Ctr1-iPSCs clone 1 (F) and Ctr1-iPSCs clone 2 (G). DW, distal water.

Figure S2: Characterization of the generated iPSCs from a psoriatic patient (PsO2-iPSCs). (A) RT-PCR analysis of iPSC clones generated from a psoriatic patient (PsO2-iPSCs) showing the expression of the endogenous pluripotency markers (OCT4, SOX2, C-MYC, KLF4, NANOG, REX1, TERT, and DPPA4) (A) and the loss of the exogenous expression of pluripotency factor, c-MYC and the backbone of the Sendai virus itself (B). The protein expression of pluripotency markers, including OCT4, SOX2, NANOG, KLF4, SSEA4, TRA81, and TRA60 were confirmed using Western blotting (C) and immunostaining (D & E). Representative images of the spontaneously differentiated EBs showing the expression of NESTIN (ectoderm), BRACHYURY (mesoderm) and SOX17 (endoderm) in clone 1 (F) and clone 2 (G). DW, distal water.

Figure S3: RT-PCR for keratinocytes progenitors at day 14 of differentiation. RT-PCR for keratinocytes progenitor's markers (KRT18 and p63) and pluripotency markers (OCT4 and NANOG) at day 14 of differentiation. The PCR products were analyzed on 1% agarose gel. The differentiation showed marked increase in the keratinocyte progenitors' markers (KRT 18 and p63) and loss of the pluripotency markers (OCT4 and NANOG) at day 14 of differentiation both in control and psoriatic. The expression was compared with H1-ESCs and ctrl- iPSCs undifferentiated cells.

Figure S4

Figure S4: Immunostaining of the mature iPSC-derived keratinocytes (KCs) at day 30 of differentiation. The KCs differentiated from Ctr-iPSCs and PsO-iPSCs expressed KRT14 and Loricrin (LOR) proteins, markers of mature KCs. Scale bar = $100 \mu m$.

Figure S5

Figure S5: Immunostaining of the mature iPSC-derived keratinocytes (KCs) at day 30 of differentiation. The KCs differentiated from Ctr-iPSCs and PsO-iPSCs expressed nuclear p63 and cytosolic Laminin (LAM), markers of mature KCs. Scale bar = $100 \mu m$.

Figure S6

Figure S6: Immunostaining of the mature iPSC-derived keratinocytes (KCs) at day 30 of differentiation. The KCs differentiated from Ctr-iPSCs and PsO-iPSCs expressed KRT1 and Involucrin (IVL), markers of mature KCs. Scale bar = $100 \mu m$.

Figure S7

Figure S7. iPSC-derived three-dimensional (3D) skin equivalents. (A) Morphology of keratinocytes generated from Ctr-iPSCs at day 30 of differentiation. (B) Bright field image of iPSC-derived skin equivalents at the end of differentiation protocol. Immunostaining analysis of 3D skin equivalents with antibodies against KRT14 (C), Laminin (LAM) (D), p63 (E), Loricrin (LOR) (F), and Involucrin (IVL) (G). The nuclei were stained with Hoechst. The 3D skin equivalents express markers of epidermal keratinocytes. Scale bars, 100 μm.

For immunostaining				
Antibody	Company	Catalog #	Dilution	
Rabbit anti-OCT4	CST	9656S	1:500	
Rabbit anti-SOX2	CST	9656S	1:500	
Rabbit anti-NANOG	CST	9656S	1:500	
Mouse anti-SSEA4	CST	9656S	1:500	
Mouse anti-TRA60	CST	9656S	1:500	
Mouse anti-TRA81	CST	9656S	1:500	
Mouse anti-NESTIN	R&D	MAB1259	1:500	
Mouse anti-SOX17	OriGene Technologies	CF500096	1:2000	
Mouse anti-Brachyury	Abcam	ab140661	1:1000	
Rabbit anti-Laminin	Abcam	ab14509	1:500	
Rabbit anti-Loricin	Abcam	ab85679	1:500	
Mouse anti-p63	Abcam	ab735	1:500	
Rabbit anti-Involucrin	Abcam	ab53112	1:500	
Rabbit anti-cytokeratin 18	Abcam	ab181597	1:500	
Mouse anti-cytokeratin 1	Abcam	ab81623	1:500	
Mouse anti-cytokeratin 14	ThermoFisher Scientific	MAS-11599	1:500	
Alexa Fluor 488 anti-rabbit IgG	ThermoFisher Scientific	A-21206	1:500	
Alexa Fluor 488 anti-mouse IgG	ThermoFisher Scientific	A-21202	1:500	
Alexa Fluor 568 anti-rabbit IgG	ThermoFisher Scientific	A-10042	1:500	
Alexa Fluor 568 anti-mouse IgG	ThermoFisher Scientific	A-10037	1:500	
	For Western blotting			
Rabbit anti-OCT4	CST	9656S	1:5000	
Rabbit anti-SOX2	CST	9656S	1:5000	
Rabbit anti-NANOG	CST	9656S	1:5000	
Rabbit anti-KLF4	Abcam	ab215036	1:1000	
Mouse anti-cytokeratin 1	Abcam	ab81623	1:1000	
Mouse anti- Cytokeratin 14	ThermoFisher Scientific	MAS-11599	1:1000	
Mouse anti-Cytokeratin 19	EMD Millipore	CBL198	1:1000	
Rabbit anti-E-Cadherin	CST	31958	1:1000	
Rabbit anti-Filaggrin	Abcam	ab81468	1:1000	
Mouse anti-HLA-C	EMD Millipore	MABF233	1:1000	
Managarti hata ACTIN	Santa Cruz	an 17779	1.10000	
Mouse and bela-ACTIN	Biotechnology	SC-4///8	1:10000	
Banavidaga Affini Duna Dankav	Jackson			
Arti Mouse LaG	ImmunoResearch	715-035-150	1:10000	
	Laboratories			
Perovidase Affini Dura Donkou	Jackson			
Anti-Rabbit IgG	ImmunoResearch	711-035-152 1:10000		
	Laboratories			

Table S1. The details of the antibodies used for immunostaining and Western blotting

Gene name	Forward	Reverse	Product size
OCT4	GACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CTTCCCTCCAACCAGTTGCCCCA AAC	119
SOX2	GGGAAATGGGAGGGGTGCAAA AGAGG	TTGCGTGAGTGTGGATGGGATTG GTG	126
c-MYC	GCGTCCTGGGAAGGGAGATCCG GAGC	TTGAGGGGGCATCGTCGCGGGAG GCTG	328
KLF4	CCCAATTACCCATCCTTCCT	ACGATCGTCTTCCCCTCTTT	108
NANOG	CATGAGTGTGGATCCAGCTTG	CCTGAATAAGCAGATCCATGG	192
REX1	TCACAGTCCAGCAGGTGTTTG	TCTTGTCTTTGCCCGTTTCT	205
TERT	CCTGCTCAAGCTGACTCGACAC CGTG	GGAAAAGCTGGCCCTGGGGTGG AGC	446
DPPA4	GGAGCCGCCTGCCCTGGAAAAT TC	TTTTTCCTGATATTCTATTCCCAT	384
EXO-cMYC	TAACTGACTAGCAGG CTTGTCG	TCC ACA TAC AGT CCT GGA TGATGATG	532
Sendai-V	GGATCACTAGGTGATATCGAGC	ACCAGACAAGAGTTTAAGAGA TATGTATC	181
MAP2	CAGGTGGCGGACGTGTGAAAAT TGAGAGTG	CACGCTGGATCTGCCTGGGGACT GTG	187
PAX6	CGAATTCTGCAGGTGTCCAA	ACAGACCCCCTCGGACAGTAAT	207
Т	GCCCTCTCCCTCCCCCCCACGCA CAG	CGGCGCCGTTGCTCACAGACCA CAGG	258
GATA6	AAGCGCGTGCCTTCATCA	TCATAGCAAGTGGTCTGGGC	157
SOX17	TCCTGGAGGAGCTAAGGAAA	GCCACTTCCCAAGGTGTAAA	773
GAPDH	ACGACCACTTTGTCAAGCTCAT TTC	GCAGTGAGGGTCTCTCTCTCTCT CT	132
KRT18	GTACTGGTCTCAGCAGATTG	CTGGCCTTCAGATTTCTCAT	150
P63	TTCGGACAGTACAAAGAAC	CCCTCACTGGTAAGTATAAC	128
IRS2	ACTTCTTGTCCCACCACTTG	TGACATCCTGGTGATAAAGCC	78
PSORS1C1	GATGGCATCTAGAAGTAGAC	GATGGTTTCTGTTGCATTT	138
TNFAIP2	CAATGTGAGGGAGTTGATG	GAGGTGATCTGGATGATGT	129
Filaggrin	GGTCACTTTAGTAGTCTTTC	CATAATCTGCACTACCATAG	169
SLC39A4	GTCAGAGAGGGTATCTGTACG	GAAGGTCTGCAGGATGTAG	124
HLA-C	TGATGTGTAGGAGGAAGAG	GTCTCAGGCTTTACAAGTG	113
BST2	CAATGTCACCCATCTCCTG	TGTAGTGATCTCTCCCTCAA	175
OAS1	GGATTCTGCTGGCTGAAAG	GCTGGGTCTATGAGAGAAATG	116
OAS3	CTTCAATGTCCTGGGTCAG	GCTTCACCAGCAAGATTAG	176
IFI44	TGATAGATACCAGTTTAATCCC	CATCTGAGAGGAGAAGTATTG	142

Table S2: The	e list of primers f	for RT-PCR and qPCR	used in this study
---------------	---------------------	---------------------	--------------------

IFI44L	TCGAGTTGAAGGAATTAAGG	TGAAACCAAGTCTGCATAG	121
IFIT3	CATGAGTGAGGTCACCAAGA	GTAGGCCAACAAGTTGTACATT	178
IFITM1	GTCCACCGTGATCAACATC	CTTCCTGTCCCTAGACTTCA	139
IFITM3	CTACTCCGTGAAGTCTAGG	GATGACGATGAGCAGAATG	136
PARP12	GGGAAGAACTGTAGGAATAG	TAATGTTGGCAAATTTCTGG	152
PARP14	GAAATCCAAAGTTGACATCC	ATCCTCTCAATCTTCTCTATTC	156
KRTAP19-1	CTTTGGAAGCTACGGATATG	CTCCTCTGCTTCCAATTTC	156

Table S3: The deep coverage of the sequencing experiments per sample

Sample	Number of input reads	Number of uniquely mapped reads (%)	Number of multi- mapped reads (%)
Ctr -replicate1	28,011,217	26,129,902 (93.3%)	1,195,359 (4.3%)
Ctr – replicate2	30,405,493	28,307,585 (93.1%)	1,347,399 (4.4%)
PsO1-replicate1	19,836,988	18,412,476 (92.8%)	954,769 (4.8%)
PsO1-replicate2	19,500,016	17,976,811 (92.2%)	1,047,795 (5.4%)
PsO2-replicate1	45,138,646	41,293,365 (91.5%)	2,112,214 (4.7%)
PsO2-replicate2	32,665,903	30,029,437 (91.9%)	1,434,537 (4.4%)

Table S4. Chromosomal location of some of type I interferon (IFN)-inducible genes significantly upregulated in KCs generated from PsO-iPSCs in comparison to those generated from Ctr-iPSCs.

Cananama	Chromosome location	log2(FC) in KCs-	log2 (FC) in KCs-
Gene name		PsO1	PsO2
IFIT1	chr10:89392545-	6.81603	2 02651
	89406487		2.02031
IFIT2	chr10:89301948- 89309276	5.92189	2.32401
IFIT3	chr10:89327818- 89340968	6.73403	3.38887
IFIT5	chr10:89414567- 89421002	2.69751	1.4171
IFITM1	chr11:313990-315272	6.81603	3.94693
IFITM2	chr11:308106-309410	4.45095	2.66693
IFITM3	chr11:319672-320914	4.41602	3.46056
IFI6	chr1:27666060-27672213	4.72468	1.73349
IFI16	chr1:159009891- 159055155	2.19279	1.08832
IFI44	chr1:78649788-78664078	5.85548	2.66848
IFI44L	chr1:78620381-78646145	5.6387	2.92383

Supplementary References

- 1. Itoh M, M Kiuru, MS Cairo and AM Christiano. (2011). Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 108:8797-802.
- Balendran N, RL Clough, JR Arguello, R Barber, C Veal, AB Jones, JL Rosbotham, AM Little, A Madrigal, JN Barker, SH Powis and RC Trembath. (1999). Characterization of the major susceptibility region for psoriasis at chromosome 6p21.3. J Invest Dermatol 113:322-8.
- 3. Nair RP, PE Stuart, I Nistor, R Hiremagalore, NVC Chia, S Jenisch, M Weichenthal, GR Abecasis, HW Lim, E Christophers, JJ Voorhees and JT Elder. (2006). Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet 78:827-851.
- 4. Mallon E, R Newson and CB Bunker. (1999). HLA-Cw6 and the genetic predisposition to psoriasis: a meta-analysis of published serologic studies. J Invest Dermatol 113:693-5.
- Knight J, SL Spain, F Capon, A Hayday, FO Nestle, A Clop, C Wellcome Trust Case Control, C Genetic Analysis of Psoriasis, IcfP Consortium, JN Barker, ME Weale and RC Trembath. (2012). Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis. Hum Mol Genet 21:5185-92.
- 6. Okada Y, B Han, LC Tsoi, PE Stuart, E Ellinghaus, T Tejasvi, V Chandran, F Pellett, R Pollock, AM Bowcock, GG Krueger, M Weichenthal, JJ Voorhees, P Rahman, PK Gregersen, A Franke, RP Nair, GR Abecasis, DD Gladman, JT Elder, PI de Bakker and S Raychaudhuri. (2014). Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet 95:162-72.
- 7. Perera GK, P Di Meglio and FO Nestle. (2012). Psoriasis. Annu Rev Pathol 7:385-422.
- 8. Lowes MA, AM Bowcock and JG Krueger. (2007). Pathogenesis and therapy of psoriasis. Nature 445:866-73.
- 9. Homey B, MC Dieu-Nosjean, A Wiesenborn, C Massacrier, JJ Pin, E Oldham, D Catron, ME Buchanan, A Muller, R deWaal Malefyt, G Deng, R Orozco, T Ruzicka, P Lehmann, S Lebecque, C Caux and A Zlotnik. (2000). Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol 164:6621-32.
- Laggner U, P Di Meglio, GK Perera, C Hundhausen, KE Lacy, N Ali, CH Smith, AC Hayday, BJ Nickoloff and FO Nestle. (2011). Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J Immunol 187:2783-93.