

Supplementary Materials for

The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and A β amyloidosis

Jinkuk Choi, Jie Gao, Jaekwang Kim, Cynthia Hong, Jungsu Kim,* Peter Tontonoz*

*Corresponding author. E-mail: ptontonoz@mednet.ucla.edu (P.T.); kim.jungsu@mayo.edu (J.K.)

Published 18 November 2015, *Sci. Transl. Med.* **7**, 314ra184 (2015) DOI: 10.1126/scitranslmed.aad1904

The PDF file includes:

Fig. S1. Idol decreases LDLR protein and promotes LDLR ubiquitination in mouse brain cells.

Fig. S2. Loss of Idol does not directly affect inflammatory responses.

Fig. S3. Idol inhibition promotes the clearance of $A\beta$ by microglia.

Table S1. Data for A β 40 shown in Fig. 2A.

Table S2. Data for A β 42 shown in Fig. 2A.

Table S3. Quantification of A β plaque load in Fig. 2E.

Table S4. Quantification of thioflavin S plaque load in Fig. 3B.

Table S5. Quantification of CD45 load in Fig. 4B.

Table S6. Quantification of Iba⁺ cells in Fig. 4D.

Fig. S1. Idol decreases LDLR protein and promotes LDLR ubiquitination in mouse brain cells. (A) Real-time PCR analysis of Idol expression in different compartments of the central nervous system, isolated from 3.5 month-old C57BL6J mice. Data are normalized to olfactory bulb. Error bars represent SEM. N = 3. (B) Real-time PCR analysis of Idol expression levels and immunoblot analysis of LDLR protein levels after Idol knockdown. Idol expression plasmid (Idol) or control plasmid (Ctl) was transfected to Neuro2a cells with or without LDLR expression plasmid (LDLR). Error bars represent SEM. *, p < 0.05 by Student's t-test. (C) Immunoblot analysis of LDLR protein level and ubiquitination in the presence of Idol. Flag-tagged ubiquitin (Ub) and HA-tagged LDLR were expressed in Neuro2a cells with or without Idol co-expression. 24 h post-transfection, cell were incubated with 400 nM bafilomycin A1 for 24 h. Cell lysates were immunoprecipitated with Flag antibody and immunoblotted with HA antibody. (D) Representative micrographs showing immunofluorescence staining of Neuro2a cells co-transfected with LDLR-HA expression plasmid and either control or Idol expression plasmid. Green color indicates LDLR-HA stained by anti-HA antibody.

Fig. S2. Loss of Idol does not directly affect inflammatory responses. (A) Real-time PCR analysis of Idol and microglial marker gene expression in primary microglia isolated from $Idol^{+/+}$ or $Idol^{-/-}$ mice. Cells were cultured in DMEM containing 10% FBS prior to harvest. Data are normalized to wild-type control. Error bars represent SEM. (B) Real-time PCR analysis of neuroinflammatory gene expression in response to LPS in primary microglia isolated from $Idol^{+/+}$ or $Idol^{-/-}$ mice. Cells were treated with serum-free DMEM containing 100 ng/ml LPS for 4 h prior to harvest. mRNA levels are presented as fold induction by LPS vs. vehicle control. Error bars represent SEM.

DAPI Lentiviral mCherry HiLyte488-Aβ42

Fig. S3. Idol inhibition promotes the clearance of A β **by microglia.** (**A**) Real-time PCR analysis of Idol in Neuro2a cells transfected with Idol siRNA (siIdol) or scrambled negative control (Ctl), related to Figure 6. Data are from RNA harvested at 48 h post-transfection and are normalized to negative control. Error bars represent SEM. *, p < 0.05 by Student's t-test. (**B**) Representative micrographs showing uptake of HiLyte488 fluorescently labeled aggregated A β_{42} in primary microglia from *Idol*^{flox/flox} mice treated *in vitro* with control mCherry-expressing or Cre/mCherry-expressing lentiviral vector. DAPI (blue); Lentiviral mCherry (red); A β_{42} (green). Arrowheads denote A β_{42} -positive cells. Arrows denote representative cells shown in the magnified field. Scale bar, 20 µm. (**C**) Quantification of results shown in (B). Error bars represent SEM. *, p < 0.05; **, p < 0.01 by Student's t-test.

Aβ40 (pg/mg tissue) ELISA data for Fig. 2A										
Male										
soluble insoluble										
WT	КО	WT	KO							
2.344073	1.796427	1989.072	846.0812							
2.638793	1.539898	1638.396	433.6560							
3.500615	1.691221	2020.978	346.9319							
4.366740	1.528893	2801.148	871.2848							
2.045750	1.593942	2526.885 797.964								
3.236280		2366.212								
	Fen	nale								
solı	ıble	inso	luble							
WT	КО	WT	КО							
4.502602	6.021950	2746.788	2550.714							
5.722557	2.156720	3202.000	2272.099							
6.390170	3.135278	2991.323	2082.000							
6.345493	3.352174	3232.591	2847.890							
8.836700	3.239042	3237.861	2707.436							
6.542100	3.542100	3805.518	2114.403							

Table S1. Data for $A\beta 40$ shown in Fig. 2A.

Aβ42 (pg/mg tissue) ELISA data for Fig. 2A										
Male										
	soluble		insoluble							
WT	het	КО	WT	het	КО					
12.63166	12.123290	6.201966	10294.18	10436.830	5749.680					
13.08260	8.336532	3.293293	13319.18	8983.113	3804.303					
14.87140	15.271710	3.511020	11783.94	6122.472	3383.310					
19.93512	9.101973	5.563617	12339.33	8270.967	6338.289					
28.30721	10.238130	5.123914	14421.38	12513.560	5902.533					
17.43271	11.348670		14061.08	8910.378						
			12768.13							
		Fem	ale							
	soluble			insoluble						
WT	het	KO	WT	het	KO					
25.32183	20.97352	8.803017	14818.67	14564.04	12854.29					
17.99380	21.83572	11.369410	15370.41	17460.52	11056.42					
23.98040	21.02117	13.860700	15877.29	13108.66	15528.55					
30.86358	17.60413	16.977340	17702.61	10668.22	14206.94					
49.99380	23.74065	16.977340	15867.00	11161.34	14217.97					
27.12650	22.56790	12.163700	18703.69	16881.73	11757.61					

Table S2. Data for $A\beta 42$ shown in Fig. 2A.

Data values for quantification of Aβ plaque load found in Fig. 2E									
	С	ortex	Hippocampus						
Sample	Particle area	Particle %area	Particle area	Particle %area					
Male WT 1	6.748	2.759	3.001	0.968					
Male WT 2	5.550	2.426	1.395	0.510					
Male WT 3	2.135	0.905	3.041	1.016					
Male WT 4	2.625	1.172	2.285	0.715					
Male WT 5	2.308	0.967	2.504	0.877					
Male WT 6	5.057	2.183	2.595	0.839					
Male het 1	2.818	1.239	2.978	1.040					
Male het 2	2.622	1.095	2.554	0.933					
Male het 3	2.118	0.907	2.769	0.968					
Male het 4	2.096	0.846	2.091	0.704					
Male het 5	2.007	0.925	1.409	0.526					
Male het 6	2.648	1.189	2.678	0.906					
Male KO 1	2.223	0.923	1.946	0.687					
Male KO 2	1.562	0.655	0.638	0.217					
Male KO 3	2.260	1.039	1.423	0.517					
Male KO 4	2.314	0.849	0.414	0.145					
Male KO 5	1.989	0.761	0.724	0.231					
Male KO 6	2.185	0.924	1.830	0.563					
Female WT 1	4.816	2.004	3.188	1.171					
Female WT 2	7.827	3.026	4.940	1.615					
Female WT 3	7.547	2.859	3.387	1.172					
Female WT 4	4.688	1.978	3.047	1.065					
Female WT 5	8.561	3.572	2.428	0.928					
Female WT 6	6.674	2.829	4.506	1.648					
Female het 1	9.708	4.024	3.737	1.371					
Female het 2	3.919	1.764	4.562	1.436					
Female het 3	6.020	2.371	2.197	1.026					
Female het 4	5.148	2.242	3.661	1.258					
Female het 5	2.961	1.091	2.875	1.029					
Female het 6	5.187	2.143	3.388	1.140					
Female KO 1	1.651	0.741	0.606	0.203					
Female KO 2	2.282	1.076	1.086	0.381					
Female KO 3	1.654	0.789	1.650	0.566					
Female KO 4	2.687	1.173	0.939	0.323					
Female KO 5	2.257	0.966	2.704	0.974					
Female KO 6	3.157	1.457	3.674	1.283					

Table S3. Quantification of A β plaque load in Fig. 2E.

Data values f	or quantification (of ThioS plaqu	ue load found i	n Fig. 3B
	Corte	X	Hippo	campus
Sample	Particle area	Particle	Particle area	Particle
		%area	I article area	%area
Male WT 1-1	0.594	0.300	0.895	0.261
Male WT 1-2	1.322	0.544	0.803	0.215
Male WT 2-1	1.169	0.577	0.939	0.332
Male WT 2-2	0.986	0.473	1.036	0.320
Male WT 3-1	1.746	0.831	1.330	0.455
Male WT 3-2	1.469	0.654	0.789	0.272
Male WT 4-1	1.072	0.463	1.247	0.432
Male WT 4-2	1.033	0.521	0.843	0.318
Male WT 5-1	0.867	0.426	0.449	0.177
Male WT 5-2	1.359	0.647	0.926	0.311
Male WT 6-1	0.999	0.438	0.900	0.264
Male WT 6-2	2.197	1.045	0.941	0.276
Male het 1-1	0.940	0.477	0.410	0.136
Male het 2-1	1.470	0.708	0.624	0.220
Male het 2-1	1.788	1.136	0.789	0.246
Male het 2-2	0.295	0.123	0.956	0.315
Male het 3-1	1.783	0.687	0.880	0.303
Male het 3-2	0.646	0.314	0.210	0.070
Male het 4-1	0.883	0.490	0.497	0.187
Male het 4-2	0.663	0.302	0.547	0.212
Male het 5-1	0.937	0.419	1.332	0.461
Male het 5-2	0.753	0.419	0.749	0.279
Male het 6-1	0.764	0.384	1.036	0.347
Male het 6-2	0.849	0.557	0.284	0.090
Male KO 1	0.846	0.442	0.550	0.190
Male KO 2	0.504	0.224	0.662	0.219
Male KO 3-1	0.383	0.274	0.641	0.212
Male KO 3-2	0.739	0.336	1.342	0.387
Male KO 4-1	0.446	0.219	0.671	0.218
Male KO 4-2	0.635	0.277	0.539	0.168
Male KO 5-1	0.556	0.249	0.435	0.131
Male KO 5-2	0.211	0.078	0.229	0.076
Male KO 6-1	0.590	0.284	1.130	0.377
Male KO 6-2	0.376	0.206	0.525	0.182
Female WT 1	1.788	0.711	0.937	0.282
Female WT 2	1.473	0.712	1.746	0.546

Table S4. Quantification of thioflavin S plaque load in Fig. 3B.

Female WT 3- 1	0.995	0.608	1.025	0.386				
Female WT 3- 2	2.560	1.052	0.709	0.258				
Female WT 4- 1	0.699	0.432	1.008	0.386				
Female WT 4- 2	1.388	0.704	0.867	0.323				
Female WT 5- 1	1.011	0.419	0.860	0.296				
Female WT 5- 2	1.298	0.561	0.921	0.301				
Female WT 6- 1	2.151	1.050	0.479	0.177				
Female WT 6- 2	2.511	1.257	1.497	0.480				
Female het 1	1.904	0.973	1.138	0.364				
Female het 2	1.394	0.757	2.116	0.655				
Female het 3	1.748	0.798	1.085	0.383				
Female het 4	1.472	0.613	1.252	0.421				
Female het 5-1	1.005	0.439	0.563	0.197				
Female het 5-2	0.774	0.308	0.589	0.211				
Female het 6-1	1.361	0.699	0.943	0.314				
Female het 6-2	1.300	0.609	0.877	0.290				
Female KO 1	1.566	0.704	0.979	0.337				
Female KO 2	1.037	0.451	0.612	0.209				
Female KO 3- 1	0.978	0.521	0.714	0.239				
Female KO 3- 2	1.213	0.665	0.659	0.239				
Female KO 4- 1	0.123	0.069	0.635	0.224				
Female KO 4- 2	0.635	0.319	0.692	0.236				
Female KO 5- 1	0.541	0.294	0.566	0.196				
Female KO 5- 2	0.921	0.514	0.741	0.249				
Female KO 6- 1	0.833	0.358	0.535	0.181				
Female KO 6- 2	0.505	0.244	0.398	0.131				
Replicates were included when samples from different hemispheres were available.								

Data values for quantification of CD45 load found in Fig. 4B										
04 aroa	Male	Male	Male	Female	Female	Female				
70 alea	WT	het	KO	WT	het	KO				
cortex 1	0.728	0.995	0.332	1.199	1.244	0.367				
cortex 2	1.430	0.544	0.236	2.286	0.817	0.418				
cortex 3	1.233	0.510	0.694	1.630	0.969	0.410				
cortex 4	0.889	0.542	0.535	0.785	0.761	0.254				
cortex 5	0.706	0.909	0.229	0.753	0.936	0.221				
cortex 6	0.883	0.807	0.285	0.567	0.967	0.399				
04 aroa	Male	Male	Male	Female	Female	Female				
70 alea	WT	het	KO	WT	het	KO				
hippocampus 1	1.213	0.455	0.436	0.859	1.300	0.294				
hippocampus 2	1.170	1.124	0.175	1.018	1.120	0.246				
hippocampus 3	0.551	0.547	0.400	1.016	0.941	0.523				
hippocampus 4	0.785	0.762	0.596	1.264	0.705	0.427				
hippocampus 5	0.719	0.690	0.601	1.104	1.092	0.765				
hippocampus 6	0.581	0.734	0.283	0.915	0.751	0.641				

Table S5. Quantification of CD45 load in Fig. 4B.

Data values for quantification of Iba1 ⁺ cells/mm ² found in Fig. 4D												
# per .3125 mm ²												
hippocampal CA1 Cortex												
		Male		F	Femal	e	Male			Female		
Pic #	WT	het	KO	WT	het	KO	WT	het	KO	WT	het	KO
1	65	49	46	70	60	54	31	30	24	43	34	33
2	64	70	49	74	71	44	34	33	38	41	34	21
3	60	52	40	62	52	45	38	31	33	37	28	38
4	56	52	55	52	51	39	29	28	31	42	35	30
5	69	30	40	76	58	39	37	17	36	44	43	26
6	78	43	40	65	67	53	30	26	24	37	35	25
7	54	50	46	90	64	83	32	28	27	47	43	40
8	65	62	41	81	72	50	44	37	23	50	31	28
9	52	51	37	70	70	39	45	46	17	52	58	25
10	63	56	33	73	72	66	49	38	25	36	33	36
11	58		41	92	70	31	33		22	70	34	30
12				84		56				56		36
	Each picture was taken from a unique hemisphere.											
Two	Two pictures were taken from one mouse when samples were available.											
	Number of mice analyzed for each group was 6.											

Table S6. Quantification of Iba⁺ cells in Fig. 4D.