Supporting Information

The influence of peptide context on signalling and trafficking of glucagon-like peptide-1 receptor biased agonists

Zijian Fang^{1,2,#}, Shiqian Chen^{1,#}, Philip Pickford¹, Johannes Broichhagen³, David J Hodson^{4,5}, Ivan R Corrêa Jr⁶, Sunil Kumar⁷, Frederik Görlitz⁷, Chris Dunsby⁷, Paul MW French⁷, Guy A Rutter⁸, Tricia Tan¹, Stephen R Bloom¹, Alejandra Tomas^{8,*}, and Ben Jones^{1,*}.

- 1. Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
- 2. Present address: Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW
- 3. Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department Chemical Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
- 4. Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom.
- 5. Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.
- 6. New England Biolabs, Ipswich, USA.
- 7. Department of Physics, Imperial College London, London, United Kingdom.
- 8. Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
- * Corresponding authors: Ben Jones (ben.jones@imperial.ac.uk) and Alejandra Tomas (a.tomas-catala@imperial.ac.uk)
- # These authors contributed equally.

Table of contents

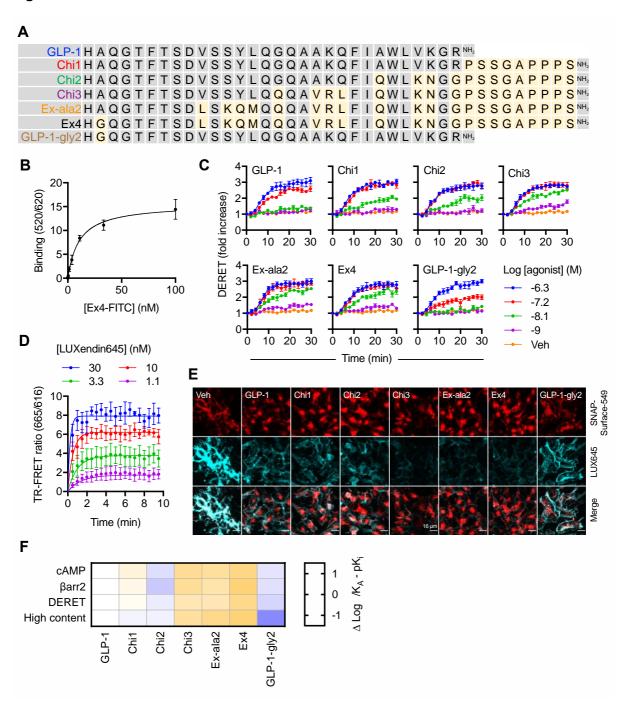

Table S-1	Page S-3
Figure S-1	Page S-4
Figure S-2	Page S-6
Figure S-3	Page S-8

Table S-1.

Ligand	T _{1/2} (HEK293)	T _{1/2} (INS-1 832/3)	Ratio
GLP-1	9.9	4.8	2.1
GLP-1-phe1	16.9	10.3	1.6
Chi1	10.4	5.6	1.9
Chi1-phe1	n.c.	16.8	n.c.
Chi2	10.0	5.6	1.8
Chi2-phe1	17.2	9.0	1.9
Chi3	10.2	5.0	2.0
Chi3-phe1	17.4	13.4	1.3
Ex-ala2	8.9	4.6	1.9
Ex-ala2-phe1	16.4	10.1	1.6
Ex4	8.9	4.6	1.9
Ex4-phe1	n.c.	n.c.	n.c.
GLP-1-gly2	10.9	5.0	2.2
GLP-1-gly2-phe1	n.c.	n.c.	n.c.

Table S-1: SNAP-GLP-1R internalisation rates for each ligand in HEK293 and INS-1 832/3 cells. Internalisation half-times were calculated by fitting a 4-parameter logistic curve to pooled DERET data expressed as fold-increase from baseline, with "basal response" constrained to a fixed value of 1. Ratio indicates the ratio of internalisation $t_{1/2}$ for HEK293 *versus* INS-1 832/3. "n.c." indicates not calculable.

Figure S-1

Figure S-1. Additional binding, signalling, and trafficking data for chimeric GLP-1R **ligands.** (**A**) Peptide agonist sequences in single letter amino acid code, with exendin-4-specific residues highlighted in gold. (**B**) Saturation binding of exendin-4-FITC in HEK293-SNAP-GLP-1R cells, n=5, see also Figure 1B. (**C**) Kinetic traces for GLP-1R internalisation in HEK293-SNAP-GLP-1R cells stimulated with indicated concentration of agonist, measured by DERET, n=4, relates to Figure 1E. (**D**) TR-FRET measurements of LUXendin645 binding to

Lumi4-Tb-labelled SNAP-GLP-1R in HEK293 cells, n=3, kinetic binding curve fitting of pooled data shown. (**E**) Widefield microscopy images of HEK293-SNAP-GLP-1R cells labelled with SNAP-Surface-549 prior to stimulation with 1 μ M agonist for 30 minutes, followed by 60 minute recycling and labelling of surface GLP-1Rs with LUXendin645 (100 nM); representative images of n=5 independent experiments shown, with identical brightness and contrast settings across all single-channel images; scale bar = 16 μ m. (**F**) Heatmap representation of coupling between occupancy and cAMP, β -arrestin-2 recruitment and endocytosis (measured by DERET and high content microscopy) signalling, determined by subtraction of pK_i from log τ /K_A values for each pathway (see Tables 2 and 3) and subsequently normalised to GLP-1. Data represented as mean \pm SEM.

Figure S-2

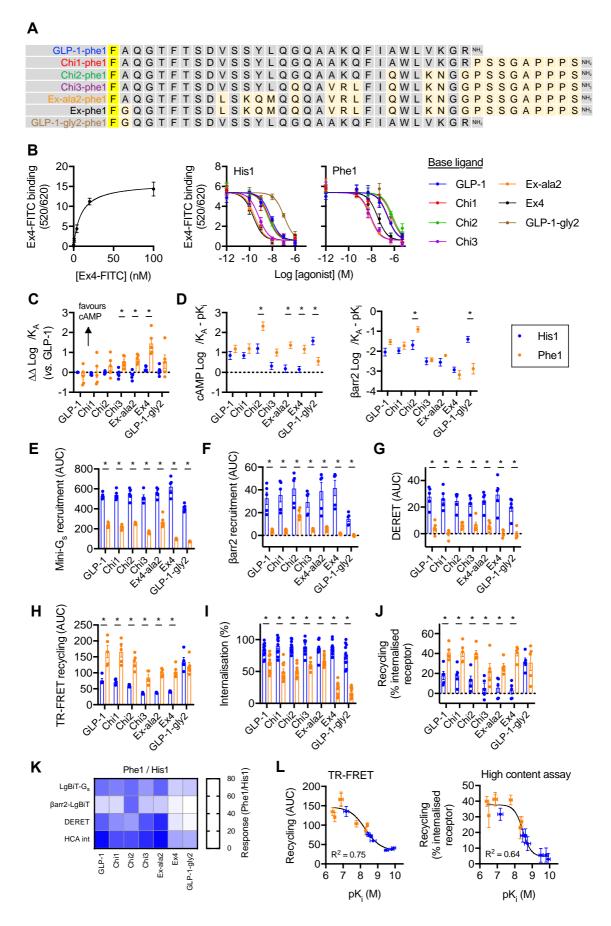


Figure S-2. Phe1-substituted ligand evaluation. (A) Phe1 peptide sequences in single letter amino acid code, with exendin-4-specific residues highlighted in gold. (B) Equilibrium binding studies in HEK293-SNAP-GLP-1R cells, showing saturation binding of exendin-4-FITC measured by TR-FRET, with parallel measurements of 4 nM exendin-4-FITC binding in competition with indicated concentration of unlabelled agonist, n=5. (C) Alternative depiction of data shown by heatmap in Figure 2A, indicating bias ($\Delta\Delta \log \tau/K_A$) of each ligand relative to GLP-1. (**D**) Representation of coupling between occupancy and cAMP and β-arrestin-2 responses in PathHunter CHO-K1-βarr2-EA-GLP-1R cells, determined by subtraction of pK_i from log τ/K_A values for each pathway (see Table 3), with error propagation, with each ligand pair compared by one-way ANOVA with Sidak's test. (E) AUC analysis for LgBiT-mini-Gs recruitment (Figure 2B), with statistical comparison by one-way randomised block ANOVA with Sidak's test to compare bias for each His1 / Phe1 ligand pair. (F) As for (E) but for βarr2-LgBiT recruitment (Figure 2C). (G) As for (E) but for internalisation measured by DERET (Figure 2D). (H) As for (E) but for GLP-1R recycling measured by TR-FRET (Figure 2E). (I) Quantification of GLP-1R internalisation in HEK293-SNAP-GLP-1R cells after 1 µM ligand treatment for 30 minutes, measured by high content microscopy analysis, *n*=11, with statistical comparison by one-way randomised block ANOVA with Sidak's test to compare bias for each His1 / Phe1 ligand pair. (J) As for I, but for GLP-1R recycling after 1 µM ligand pre-treatment, n=5. (**K**) Alternative representation of data shown in Figures 2B, 2C, 2D and Figure S-2I, with Phe1 ligand responses expressed relative to the equivalent His1 ligand. (L) Relationship between agonist binding affinity (see Table 4) and GLP-1R recycling measuremed by TR-FRET (see Figure 2E) and high content microscopy (see Figure S-2J), with 4-parameter logistic fits and goodness-of-fit shown. *p<0.05 by statistical test indicated in the text. Data represented as mean ± SEM, with individual replicates shown in some cases.

Figure S-3

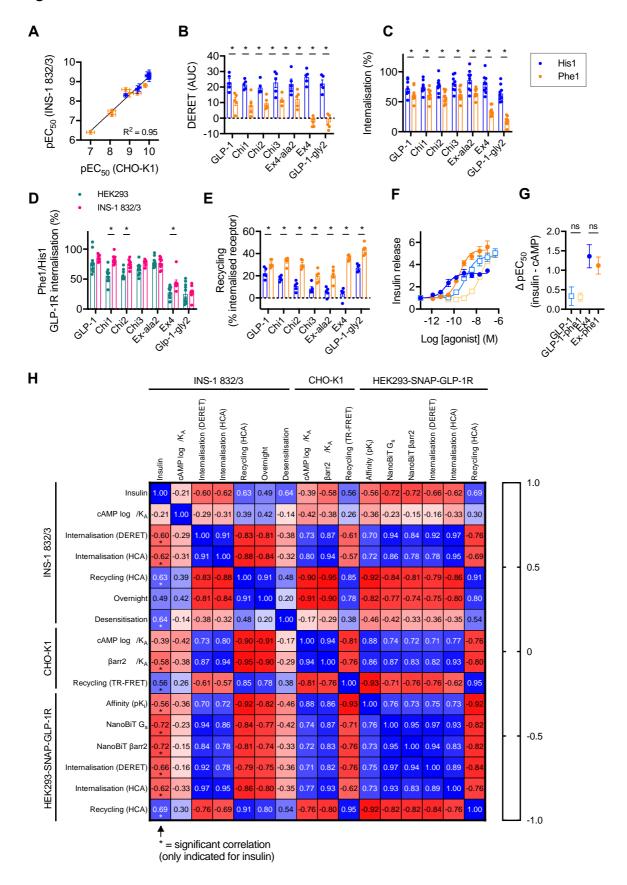


Figure S-3. Effects in beta cells. (A) Comparison of acute cAMP potencies in CHO-K1-βarr2-EA-GLP-1R and INS-1 832/3 cells by linear regression. (B) Alternative representation of heatmap data from Figure 3B, i.e. DERET-measured GLP-1R internalisation AUC in INS-1 832/3 GLP-1R^{-/-} cells stimulated with 1 μ M agonist, n=5, statistically compared by one-way randomised block ANOVA with Sidak's test for each His1 versus Phe1 ligand pair. (C) Quantification of SNAP-GLP-1R internalisation in INS-1 832/3 GLP-1R^{-/-} cells after 1 µM ligand treatment for 30 minutes, measured by high content microscopy analysis, n=9, with statistical comparison by one-way randomised block ANOVA with Sidak's test to compare bias for each His1 / Phe1 ligand pair. (D) Comparison of Phe1 ligand internalisation measurements in INS-1 832/3 cells in comparison to HEK293 cells (see Figure S-2I), with the response of each Phe1 ligand expressed relative to that of its His1 counterpart for each assay, with statistical comparisons performed by one-way ANOVA with Sidak's test. (E) As for (C), but for GLP-1R recycling after 1 µM ligand pre-treatment, n=5. (F) Insulin secretion from wild-type INS-1 832/3 cells treated with 11 mM glucose ± indicated agonist dose for 16 hours, expressed relative to vehicle, n=5. (G) Comparison of potency estimates for acute cAMP signalling (Figure 3A, Table 5) and sustained insulin secretion (Figure S-3F) performed by subtraction pEC₅₀ values, with error propagation, one-way ANOVA with Sidak's test for each His1 versus Phe1 ligand pair. (H) Correlation matrix summarising relationship between agonist responses included in this work; single-dose responses are normalised on a 0 – 100% scale, whereas logarithmically quantified indices (pK_i, log τ/K_A) have not been further normalised; Pearson r coefficient is shown for each comparison, with significance indicated by asterisks (only for relationships for insulin secretion). *p<0.05 by statistical test indicated in the text. Data represented as mean ± SEM, with individual replicates shown throughout.