Cell Metabolism, Volume 31

Supplemental Information

Microbiota-Derived Metabolites Suppress

Arthritis by Amplifying Aryl-Hydrocarbon

Receptor Activation in Regulatory B Cells

Elizabeth C. Rosser, Christopher J.M. Piper, Diana E. Matei, Paul A. Blair, André F. Rendeiro, Michael Orford, Dagmar G. Alber, Thomas Krausgruber, Diego Catalan, Nigel Klein, Jessica J. Manson, Ignat Drozdov, Christoph Bock, Lucy R. Wedderburn, Simon Eaton, and Claudia Mauri

Cell Metabolism, Volume 31

Supplemental Information

Microbiota-Derived Metabolites Suppress

Arthritis by Amplifying Aryl-Hydrocarbon

Receptor Activation in Regulatory B Cells

Elizabeth C. Rosser, Christopher J.M. Piper, Diana E. Matei, Paul A. Blair, André F. Rendeiro, Michael Orford, Dagmar G. Alber, Thomas Krausgruber, Diego Catalan, Nigel Klein, Jessica J. Manson, Ignat Drozdov, Christoph Bock, Lucy R. Wedderburn, Simon Eaton, and Claudia Mauri

Supplementary Figure 1. There is no association between SCFA levels and mature B cells or memory B cells (Related to Figure 1). (A) Representative histograms show level of acetate, propionate and butyrate in sera of healthy individ-uals (n=13) and individuals with rheumatoid arthritis (RA) (n=14). (B) Scatter plots show correlation between the levels of acetate, propionate and butyrate in faeces and age at time of sample (HC, n=20; RA, n=19). (C) Scatter plots show correlation between the levels of acetate, propionate and butyrate in the faeces and the frequency of CD19⁺CD24^{int}CD38^{int} (mature naive B cells) in the peripheral blood of patients with RA (n=19). (D) Scatter plots show correlation between the levels of acetate, propionate and butyrate in the faeces and the frequency of CD19⁺CD24^{hi}CD38^{neg} (memory B cells) in the peripheral blood of patients with RA (n=19). A, Data represent mean \pm SE; (A, Student's t test; B-D, Pearson's correlation).

Supplementary Figure 2. Supplementation with Acetate or Propionate does not suppress the development of antigen induced arthritis (Relative to Figure 2). (A) Concentration of acetate and propionate in faeces from WT mice pre-arthritis (n=23), with acute arthritis (n=8) and in remission from arthritis (n=18) as measured by high-performance liquid chromatography (cumulative data are shown). (B) Volcano plot shows fold change between bacterial families in the faeces of naïve mice compared to arthritic mice at day 3 post-disease onset (n=4 per group). (C) Mean clinical score of control (cumulative n=25) and butyrate-supplemented WT mice (cumulative n=24) (one representative experiment of six experiments is shown) or μ MT mice (control, cumulative n=7; butyrate, cumulative n=9). (D) Mean clinical score of control and propionate-supplemented WT mice (left) or μ MT mice (right) (WT: n =8, μ MT: n=6 per group); y axis shows percent-age swelling in antigen-injected knee compared to control knee (one of two experiments is shown). (E) Mean clinical score of control and acetate-supplemented WT mice (left) or μ MT mice (right) (cumulative n=10 per group); y axis shows percentage swelling in antigen-injected knee compared to control knee (one representative experiment of two experiments is shown. (F) Mean clinical score following induction of collagen-induced arthritis in control of butyrate-supplemented WT mice (cumulative n=8 per group). (G) Butyrate levels in the sera butyrate-supplemented and control mice (n=8 per group, cumulative data are shown). Data represent mean \pm SE. (A, Student's t test; B, multiple unpaired t tests; C-F, two-way ANOVA; G, Student's t test).

Supplementary Figure 3. Suppression of arthritis by butyrate-supplementation is associated with a reduction in proarthritogenic stimuli (Related to Figure 2). (A) Production of $TNF\alpha$, IL-6, MCP-1 by total lymphocytes as measured by cytokine bead array (cumulative n=5 per group, one representative experiment of two experiments is shown). (B) Representative plots (left) and bar chart (right) showing the percentage of IL-1 β ⁺CD11b⁻ and IL-1 β ⁺CD11b⁺ in the spleen at day 7 post-disease onset. (C) Representative plots (left) and bar chart (right) showing the percentage of IL-6⁺CD11b⁻ and IL-6⁺CD11b⁺ and in the spleen at day 7 post-disease onset (cumulative n=8 per group, one representative experiment of two experiments is shown). (D) Representative plots (left) and bar chart (right) showing the percentage and absolute number of CD4⁺IL-17⁺ cells and CD4⁺IFN γ^+ cells in the draining LN at day 7 post-disease onset (cumulative n=10 per group, one representative experiment of three experiments is shown). (E) Production of IL-17 and IFNy by total lymphocytes as measured by cytokine bead array (cumulative n=5 per group, one of two repre-sentative experiments is shown). (F) Representative plots (left) and bar chart (right) showing the percentage and absolute number of CD4⁺Foxp3⁺ cells in the draining LN at day 7 post-disease onset (cumulative n=10 per group, one representative experiment of three experiments is shown). (G) Frequency of CD4+CD25+Foxp3+ in the spleen of control and butyrate-supplemented mice treated with anti-CD25 depleting mAb compared to isotype control (control mice treated with anti-CD25 depleting mAb compared to isotype control: n=5 per group; butyrate-supplemented mice treated with anti-CD25 depleting mAb compared to isotype control: n=4 per group (cumulative data are shown). (H) Mean clinical score of control and butyratesupplemented anti-CD25 depleting mAb-treated mice or isotype control mice; y axis shows percentage swelling in antigen-injected knee compared to control knee (cumulative data is shown). Data represent mean ± SE. (A-F, Student's t test; G, one-way ANOVA; H, two-way ANOVA).

Supplementary Figure 4. Suppression of arthritis by butyrate-supplementation does not alter the frequency or number of Breg subsets or naive splenic B cell subsets (Related to Figure 2). (A) Representative plots (left) and bar chart (right) showing the percentage and number of CD5⁺B cells in the spleen at day 7 post-disease onset. (B) Representative plots (left) and bar chart (right) showing the percentage and number of IL-10eGFP⁺CD5⁺B cells in the spleen at day 7 post-disease onset. (C) Representative plots (left) and bar chart (right) showing the percentage and number of Tim-1⁺ B cells in the spleen at day 7 post-disease onset. (D) Representative plots (left) and bar chart (right) showing the percentage and number of IL-10eGFP⁺Tim-1⁺B cells in the spleen at day 7 post-disease onset. (E) Representative plots (left) and bar chart (right) showing the percentage and number of CD1d⁺CD5⁺B cells in the spleen at day 7 post-disease onset. (F) Representative plots (left) and bar chart (right) showing the percentage and number of IL-10eGFP⁺CD1d⁺CD5⁺B cells in the spleen at day 7 post-disease onset. (F) Representative plots (left) and bar chart (right) showing the percentage and number of IL-10eGFP⁺CD1d⁺CD5⁺B cells in the spleen at day 7 post-disease onset. (C) Representative plots (left) and bar chart (right) showing the percentage and number of IL-10eGFP⁺CD1d⁺CD5⁺B cells in the spleen at day 7 post-disease onset. (F) Representative plots (left) and bar chart (right) showing the percentage and number of IL-10eGFP⁺CD1d⁺CD5⁺B cells in the spleen at day 7 post-disease onset (cumulative n=8, one representative experiment of two experiments is shown). (G) Representative plots showing the percentage of CD19⁺CD21^{int}CD24^{int}B cells, CD19⁺CD21^{int}CD24^{int}B cells, and CD19⁺CD21^{int}CD24^{int}B cells in the spleen at day 7 post-disease onset. Bar chart showing the percentage and number of (H) CD19⁺CD21^{int}CD24^{int}B cells, (I) CD19⁺CD21^{int}CD24^{int}B cells. (Control, cumulat

Supplementary Figure 5. Expression of AhR in B cells is fundamental for modulation of T cell function after butyrate-supplementation (Related to Figure 3). (A) Bar chart showing the suppression of CD4⁺IL-17⁺T cells in $Mb1^{cre/+}$ or $Ahr^{fl/-}Mb1^{cre/+}$ mice that received butyrate-supplementation compared to control $Mb1^{cre/+}$ or $Ahr^{fl/-}Mb1^{cre/+}$ mice (cumulative n=6 per group, one representative experiment of two experiments is shown). Representative plots (B) and bar charts (C) showing the percentage and number of CD4⁺Foxp3⁺ T cells in $Mb1^{cre/+}$ or $Ahr^{fl/-}Mb1^{cre/+}$ mice that received butyrate-supplementation compared to control $Mb1^{cre/+}$ or $Ahr^{fl/-}Mb1^{cre/+}$ mice that received butyrate-supplementation compared to control $Mb1^{cre/+}$ or $Ahr^{fl/-}Mb1^{cre/+}$ mice (cumulative data are shown). (D) Mean clinical score following transfer of Tregs from control or butyrate supplemented $Mb1^{cre/+}$ and control or butyrate supplemented $Ahr^{fl/-}Mb1^{cre/+}$, a control group that did not receive transfer; y axis shows percentage swelling in antigen-injected knee compared to control knee (n=3 per group). Data represent mean \pm SE. (A, students *t* test; C, one-way ANOVA; D, two-way ANOVA).

Supplementary Figure 6. Butyrate-supplementation suppresses B cell maturation through activation of AhR (Related to Figure 3). (A) Schematic showing experimental design for competitive congenic bone marrow chimeric experiment. (B) Representative flow cytometry plots (left) and bar charts (right) showing the frequency and number of CD45.1⁺IL-10 $^{+}CD21^{hi}CD24^{+}B$ cells or CD45.1⁻IL-10⁺CD21⁺CD24⁺B cells in butyrate-supplemented or control chimeric mice (cumulative n=5 per group). (C) Representative flow cytometry plots (left) and bar charts showing the frequency and number of plasmablasts within CD45.1⁺WT or CD45.2⁺ AhR^{-/-} derived cells in butyrate-supplemented or control chimeric mice (cumulative n=5 per group). (D) Representative flow cytometry plots (left) and bar charts (right) showing the frequency and number of GC B cells within CD45.1⁺ WT or CD45.2⁺ AhR^{-/-} derived cells in butyrate-supplemented or control chimeric mice (cumulative n=5 per group). (D) Representative flow cytometry plots (left) and bar charts (right) showing the frequency and number of GC B cells within CD45.1⁺ WT or CD45.2⁺ AhR^{-/-} derived cells in butyrate-supplemented or control chimeric mice (cumulative n=5 per group). Data represent mean \pm SE. (B-D, one-way ANOVA).

Supplementary Figure 7. Butyrate does not directly activate AhR (Related to Figure 5 and Figure 6). (A) Venn diagram indicating the number of significant (p < 0.05) DEG across all 4 comparisons and the number of overlapping genes between each comparison. (B) Heatmap shows differentially regulated regions of chromatin in CD19⁺CD21^{hi}CD24^{hi}B cells isolated from control $Mb1^{cre/+}$ mice, butyrate-supplemented $Mb1^{cre/+}$ mice, control $Ahr^{fl/-}Mb1^{cre/+}$ mice, and butyrate-supplemented $Ahr^{fl/-}Mb1^{cre/+}$ mice as measured by ATAC-seq. (C) Total splenic B cells were isolated from WT mice and treated either with a vehicle control or 500µM butyrate for 18h and analysed for H3K27ac by Western blot. Total H3 was used as a control. The numbers indicate the size of the protein bands in kDA. (D) Bar chart shows relative expression of *Cyp1a1* following 6 hours culture with butyrate (cumulative n=5).

	Healthy	Rheumatoid
	control	arthritis
	(n=20)	(n=19)
No. male/female	4/16	4/15
Mean age at sampling (years)	52.6	58.5
Treatment received within preceding 6 months of sample: None	n/a	10.5%
Treatment received within preceding 6 months of sample: DMARD only (%)	n/a	26.3%
Treatment received within preceding 6 months of sample: MTX (%)	n/a	36.8%
Treatment received within preceding 6 months of sample: Biological therapy (%)	n/a	31.6%
DAS (IQR)	n/a	2.13
		(1.61-3.06)
CRP (µg/mL)	n/a	1.7
		(1.2-3.675)
ESR mm/hr at time of sampling, median (IQR)	n/a	9
		(5-13)
RF + (%)	n/a	78.9%

Table S1: Patient demographics (Related to Figure 1).

Gene set – AhR independent butyrate regulated genes								
Adamdec1	Casc4	Hip1	Mtfr11	Pomt1	Tbxa2r			
Ahdc1	Cbfa2t3	Hpse	Mtmr4	Ppcdc	Tecpr2			
Anks1	Ddx11	Hsp90b1	Nfya	R3hdm1	Tmc4			
Ano10	Ece1	Hyou1	Pafah2	Rpgrip1I	Tmcc3			
Ano8	Fahd2a	L3mbtl3	Patz1	Sdf2l1	Tmem129			
Asl	Fam173b	Lamc1	Pdia3	Slc16a6	Tnfrsf4			
Bcl2	Fbxl5	Lman2l	Pdia6	Slc2a9	Unc119b			
Bcl9	Fkbp2	Magt1	Piga	Slc37a2	Usp31			
Bicd2	FInb	Manf	Pik3r5	Smg7	Vti1a			
Calr	Fuca1	Med16	Plod1	Sorbs3	Xbp1			
Canx	Gprasp1	Mib2	Plxna1	St13	Znhit1			
Capn5	Guca1b	Mrpl1	Poln	Tbc1d19				

Table S2: AhR independent butyrate regulated genes (Related to Figure 4). 71 identified genes which are significantly differentially expressed after butyrate-supplementation in both $Mb1^{\alpha e^{t}}$ and $Mb1^{\alpha e^{t}}$ mice.

Gene Set – AhR-dependent butyrate regulated genes								
1110065P20Rik	Cchcr1	Gfod1	Nacc1	Rab26os	Тор3а			
1700048O20Rik	Cd180	Haghl	Nek1	Rala	Tpst1			
1810014B01Rik	Cep104	Haus2	Nfe2l2	Recql	Trmt10b			
1810024B03Rik	Cep162	Hdac11	Nfkbiz	Rnase12	Trmt2b			
2010111101Rik	Cep78	Hist1h4d	Noa1	Rpl12	Tsc22d1			
2500004C02Rik	Cers4	lft74	Nod1	Rpl37	Ttc13			
3110009E18Rik	Cgrrf1	Ints3	Nt5c2	Rpn1	Unc119			
4632415L05Rik	Chid1	Ints9	Oplah	Rps19-ps3	Urb1			
4833418N02Rik	Creld1	lpmk	Ovgp1	Rundc3b	Utp4			
4930402H24Rik	Creld2	lpp	Oxsm	Sel113	Vmac			
6030419C18Rik	Cwc27	ltga10	P2rx7	Selenoi	Vps37b			
A430033K04Rik	Cyp4v3	Kcnk13	Pacs2	Slamf1	Wdr62			
A530072M11Rik	Dbp	Kctd1	Pcgf3	Slc12a3	Xpnpep3			
Adam15	Dcxr	Kctd17	Pde6d	Slc12a5	Xrn2			
AI504432	Dedd2	Kifc5b	Pde8a	Slc17a9	Zc3h12b			
Aldh1l2	Dip2a	Ldhd	Pfkfb1	Slc25a1	Zdhhc20			
Arid3b	Dirc2	Lrp11	Pfkfb4	Slc2a8	Zdhhc7			
Arl6ip4	Dnajb11	Lrpap1	Pgp	Slc30a4	Zfp112			
Asphd1	Dqx1	Lta	Pi4k2a	Spast	Zfp128			
Atg10	Dscr3	Mapre3	Pik3ip1	Spata24	Zfp229			
Atp9a	Eif2b4	Marf1	Plk2	Ssbp2	Zfp236			
Atrn	Emsy	Mccc2	Ppard	St3gal1	Zfp280c			
Atxn2	Ergic1	Med26	Ppm1d	Stxbp4	Zfp292			
Baiap2	Evi5	Mettl22	Ppm1l	Susd2	Zfp39			
BC051142	Fam120c	Mettl23	Ppp1r35	Suv39h2	Zfp438			
Begain	Fam241a	Mfsd1	Ppp2r1b	Taf3	Zfp446			
Bloc1s4	Fbf1	Mfsd2a	Praf2	Tbl1x	Zfp568			
Bmt2	Fchsd1	Miki	Prelid3b	Tfcp2	Zfp729a			
Btbd18	Flot1	Mrpl33	Prkar2a	Timd2	Zfp943			
Camk2a	Fndc10	Mterf3	Prmt6	Tmem165	Zfyve21			
Cars	Gabbr1	Mturn	Psph	Tmem71	Znrf1			
Ccdc85b	Galnt7	Mzt2	Ptger1	Tomm6os	Zscan22			
	Gfm2		Pycr1		Zscan26			

Table S3: AhR-dependent butyrate regulated genes (Related to Figure 4). 195 identified genes which were significantly differentially expressed after butyrate-supplementation in *Mb1*^{cre/+} mice, once baseline transcriptional changes between control *Mb1*^{cre/+} mice versus *Mb1*^{cre/+} Ahr^{#/-} mice had been removed.