
A Appendix: Data Availability 
 
Over the course of the 2017-8 influenza season, the suite of data made available for modelling use 
evolved slightly, becoming more granular as the season progressed and modelling requirements 
became more apparent. By the beginning of 2018, most of the routine data streams were providing 
weekly data updates, but as can be seen from Figure S1, the regional-specific ILI data and swabbing 
data were identified later (from 2018w2). 
 

 
Figure S1 Timeline showing the timing of the availability of the various data items over the course of the 2018 seasonal 
influenza modelling period. 

During the course of the influenza season, the analysis of some pre-season serological samples was 
conducted and finalised during week 8 of 2018, giving more precise information on the levels of 
immunity existing within the population prior to the influenza season. Furthermore, from week 7 
onwards, it was possible to identify which of the ICU admissions in the USISS mandatory dataset 
came from sentinel hospital trusts. This improved the ability to estimate the ratio of ICU admissions 
to hospitalisations at all levels of care. The results presented in the main manuscript focus on the 
analyses that were carried out in “real time” during the epidemic season and, in many cases, these 
new information sources have been used to generate alternative analyses investigating sensitivity to 
the initial assumptions. For example, all models had assumed initially that the proportion of people 
immune to infection was equal to or around 10%. The serological data subsequently suggested that 
the true proportion was somewhat higher at about 40%. Consequently, and except where stated, 
the analyses in the main manuscript have continued to work with the initial assumption, and a 
discussion of additional results obtained using higher levels of immunity are presented in Appendix 
D. 
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RCGP ILI, national level data

RCGP virological, national level data

RCGP virological, regional level data

PHE ILI surveillance, regional data

USISS mandatory ICU surveillance data

USISS sentinel hospital admission surveillance data

Wk 7: Partitioning of mandatory
ICU data into sentinel and
non-sentinel trusts available.

Wk 8: Analysis of pre-season
serological data available.



B Appendix: Model Details 
In what follows, all references to weeks will be to the ISO standard definition for week numbers, and 
a shorthand will be employed, where 2018w4 refers to ISO week 4 of 2018. 

B.1 Stratified	Primary	Care	(SPC)	model	
The stratified primary care model has been presented elsewhere as the parallel-region model of 
Birrell et al (2016). In summary, a deterministic model is used to approximate influenza transmission 
resulting in a time series of daily numbers of new infections. These infections then link into a disease 
reporting model which accounts for the proportion of the infections that are observed through 
consultation with a general practitioner (GP) for influenza-like illness (ILI) as well as the time period 
from infection to the reporting of the GP consultation. Data on GP ILI consultations are not disease 
specific and therefore are ‘contaminated’ with consultations for other infections. These non-
influenza related consultations are referred to as background ILI cases. Virological (swab) positivity 
data is therefore required to understand the fraction of the daily ILI consultations that are 
attributable to influenza. 

B.1.1 Transmission	Dynamics	
The dynamics are as detailed in Birrell et al (2016) with the exception that we only work here with a 
single age-group (due to insufficient information on age-group prior immunity). The model is 
stratified into five regions: Greater London, North (combining NHS regions North West, North East 
and Yorkshire and Humberside), Midlands and the East (combining the NHS regions Midlands and 
East of England), South East and South West. For a map of the regions see 
https://www.hee.nhs.uk/about/how-we-work/your-area. 
 
In each region, a deterministic SEEIIR transmission model is implemented to track the seasonal 
influenza activity over ! time intervals [#$%&, #$) = [(+ − 1).#, +.#), + = 1,… , !. Within region 0, 
the influenza dynamics are governed by a system of difference equations: 
 

12(#$) = 12(#$%&)(1 − 32(#$%&).#),	

5&,2(#$) = 5&,2(#$%&)(1 − 6.#) + 12(#$%&)38(#$%&).#,	

59,2(#$) = 59,2(#$%&)(1 − 6.#) + 5&,2(#$%&)6.#,	

:&,2(#$) = :&,2(#$%&)(1 − ;.#) + 59,2(#$%&)6.#,	

:9,2(#$) = :9,2(#$%&)(1 − ;.#) + :&,2(#$%&);.#,	

(1) 

 
where 6	and	;	are	related	to	the	mean	durations	of	latent	and	infectious	infection,	KL	and	KM,	via	
	

6 = 2 KP⁄ ,	; = 2 KR⁄ .	 (2) 

The infection hazards, 32(#$%&), are found through the Reed-Frost formulation: 
 



32(#$) = 1 − T1 −
UVWXY,2;

2Z2
[
M\,](VW)^M_,](VW)

. 

 
Here UVW  is a school-holiday effect equal to 1 when #$ is a time outside of a school holiday period 
and U during school holidays, X`,2  is the basic reproductive number, and Z2  is the population size, 
both in the region 0. The initial conditions for the system of equations (1) are detailed in Birrell et al 
(2016), but it bears pointing out that the initial pool of susceptible individuals is given by 12(#Y) =
aZ2, where parameter a gives the initial fraction of the population that are susceptible to infection. 
Throughout, a value of a = 0.9 will be used to represent a belief that at most people will be 
susceptible to at least one of the circulating influenza viruses. 
 
In each time interval [#$%&, #$), a number of new infections is calculated as 
 

∆2(#$) = 12(#$%&)32(#$%&).#, 
 
forming the input to the disease reporting model. 

B.1.2 Disease	Reporting	Model	
The disease reporting component of the SPC model accounts for 

• the fraction of infections that lead to a GP consultation; 
• the delay time from infection to the reporting of the GP consultation. 
• the level of GP consultations for ILI not directly attributable to influenza infection. 

It is assumed that a fraction of the infections, e, will develop ILI symptoms. Of those who develop 
symptoms, it is assumed that a further fraction, fgh, will consult with their GP. Where a consultation 
occurs, the time between infection and the reporting of the consultation is governed by a discretised 
gamma distribution, with parameters i and j, such that k(l; i, j) gives the probability that the	time	
from	infection	to	the	reporting	of	the	healthcare	event	is	l.# (assuming	that	infections	and	
disease	reporting	occur	at	the	same	point	in	each	time	interval).	The	number	of	GP	
consultations	attributable	to	influenza	infection	is	therefore	given	by	
	

 v2RPR^(#$) = efgh(#$)wk(l; i, j)Δ2(#$%y).

$

yzY

 (3) 

	
In	2018w1,	when	we	only	have	a	single	region	and	do	not	directly	incorporate	the	virological	
data	into	the	analysis,	the	ILI+	data	are	assumed	to	be	imperfect	observations	of	the	v2RPR^(#$),	
and	therefore	are	assumed	to	be	distributed	with	(3)	as	their	mean.	
	
However,	from	2018w2	onwards,	the	full	GP	ILI	consultation	data	are	used	with	virological	
swabbing	data.	As	the	data	arrive	daily,	there	is	also	a	strong	within-week	pattern	to	the	
consultations:	there	is	little	to	zero	reporting	of	consultations	at	weekends,	whilst	many	will	
delay	their	consultation	until	the	following	Monday,	the	busiest	day	of	the	week.	



B.1.2.1 Background Consultations 

The background consultations give a level of GP consultation for ILI that would exist in the absence 
of influenza activity. These consultations are assumed to be highly seasonal, with a peak in mid-
winter. To account for this pattern, we assume a model for Ö2(Ü), the weekly rate of non-influenza 
ILI consultations in region 0 during week Ü, that can be expressed as: 
 

log{Ö2(Ü)} = â2 + ä2 sin T
2aÜ
52

[ + å2 cos T
2aÜ
52

[ ; 

 
the	type	of	seasonal	model	used	for	the	endemic	component	in	the	HHH	model	of	Held,	Höhle	
and	Hofmann,	2005.	All	three	parameters,	â2,		ä2	and		å2,	will	be	estimated,	but	will	be	done	so	
with	informative	priors	placed	on	them.	These	informative	priors	were	found	by	taking	the	
posteriors	obtained	when	fitting	the	epidemic/endemic	HHH	model	to	GP	In-Hours	ILI	
consultation	data	over	the	period	12/1/2015	to	1/10/2017.	If	ê2,ë	is	the	GP	ILI	consultation	
data	in	week	Ü,	then:	

íê2,ë = 	 ìî]ê2,ë%& +	
Z2,ë
Z2

Ö2(Ü),	

where	Z2,ë	is	the	catchment	(observable)	population	in	region	0	in	week	Ü,	an	average	of	the	
daily	catchment	populations,	and	ï2	is	the	region-specific	parameter	of	the	epidemic	component	
of	the	HHH	model.	
	

B.1.2.2 Day-of-the-week reporting 

If	we	denote	K(#$) = 1,… ,7	to	be	the	day	of	the	week	on	which	the	+ñó	interval	falls,	and,	
similarly,	Ü(#$)	to	be	the	week	in	which	the	+ñó	interval	falls,	then	the	day	of	the	week	effects	
upon	reporting	can	be	accounted	for	by	introducing	scalars	òô	such	that	
	

v2(#$) = òô(VW) öv2
MLM^(#$) +	

Ö2(Ü(#$))

7
.#õ 		and		úòô = 1

ù

ôz&

, 

 
where the product constraint ensures identifiability. 
 

B.1.3 Likelihood	
Denote 

• û2,VW  to be the random variable representing the observed number of ILI consultations in 
region 0 at time #$, with observed value ü2,VW. 

• †2,VW  to be the random variable representing the observed number of swabs testing positive 
for the presence of influenza out of a sample of size °2,VW  in region 0 at time #$, with 
observed value ¢2,VW. 
 

It is assumed that the ILI consultation data are distributed according to the negative binomial 
distribution: 



 

û2,VW~	NegBin T
Z2,VW
Z2

v2(#$), ¶2[,	 (4)	

 
where the Z2,VW  is the size of the catchment population on day #$, and ¶2  is a dispersion parameter 
such that  varßû2,VW® = (1 + ¶2)íû2,VW. 
 
Similarly, the swab positivity data are distributed 
 

†2,VW~	Bin ö°2,VW,
v2MLM^(#$)

v2
MLM^(#$) +	Ö2ßÜ(#$)® .# 7⁄

õ.	 (5)	

 
These distributional assumptions help us to compile a likelihood. If we denote Φ to be a vector of all 
the model parameters, then the likelihood is 

™(ü2, ¢2;Φ) =ú™ßü2,VW;Φ®™ß¢2,VW; Φ®

´

$z&

.	 (6)	

 
For ease of presentation, equations (4)-(6) assume that the data arrive at intervals of .#. In practice, 
data are daily, whereas .# = 1 2⁄  days. In which case, in (4) and (5) the v2MLM^(#$), Ö2(#$) and v2(#$) 
are summed to give daily totals, and the product in (6) is over days, not intervals. 
 

B.1.4 Model	Evolution	
Throughout the influenza season, there were changes in the available information (see Appendix A: 
Data). Therefore, as with the other models, some increase in the model complexity and detail was 
possible over time. The table below indicates how this changed for the SPC model. 
 

Week Description Date 
1 ILI+ data used as the primary care data stream. Single region 

model combining all data. 
2018-01-07 

2 ILI+ replaced by PHE influenza surveillance data and RCGP 
swabbing data. Model is regionally stratified. 

2018-01-14 

8 Immunity derived from serological data. Used here for the 
purposes of sensitivity analysis only, using a = 0.625. 

2018-02-25 

 

B.2 Strain	Specific	SIR	model	
The model used here has an SIR structure, fitted to both the weekly ILI and virological data from 
RCGP. It is assumed that there are three circulating strains each acting independently. 

The SIR model is specified in continuous time by the system: 

 



K1≠
K#

	= −Æ≠
:≠(#)

Z
1≠(#) 

	
K:≠
K#
	= Æ≠

:≠(#)

Z
1(#) − ;:≠(#) 

KX≠
K#

	= ;:≠(#),	

(7)	

where 1≠(#) represents the number of individuals susceptible to strain j at time #. Similarly, :≠(#) 
and X≠(#) represent the numbers of infected and recovered individuals respectively at time # and for 
strain j. Z is the total population size (Z = 1≠ + :≠ + X≠), Æ≠ is the strain specific rate of 
transmission and ; is the daily rate of recovery. In practice, this system of equations is solved using a 
first-order Euler approximation with time-steps of .# = 1 day. 

We denote the number of ILI attributable to influenza strain	j in week Ü as :™:^,≠(Ü), and the 
corresponding level of non-influenza ILI as :™:%(Ü). The total number of ILI cases in week Ü is then 
the sum of the two components i.e. :™:(Ü) = :™:%(Ü) + ∑ :™:^,≠(Ü)≠ , where these components 
result from  

:™:^,≠(Ü) = w e≠^;:≠(#$)
ùë

$zù(ë%&)^&

 

	:™:%(Ü) = w e%(#$)

ùë

$zù(ë%&)^&

∞Z −w:≠(#$)

±

≠z&

≤ 

(8) 

with e≠^ the daily rate of becoming symptomatic due to influenza and e% the corresponding rate of 
developing ILI symptoms when not infected with influenza. 

As in the SPC model, the background influenza-negative ILI rates increase during the winter (Fleming 
& Elliot, 2008). To account for this, e% was assumed to change over time as follows: 

log(e%(#)) = e≥ − ¥ ö1 − exp ∂−
(V%∑)_

9∏_ πõ, (9) 

where e≥ is the maximum value of the (log) influenza negative ILI rate, ¥ is the amplitude of 
oscillation, τ gives the timing of the peak and ª governs the period of fluctuation. Note that the rate 
of influenza positive ILI is assumed to be proportional to the rate at which individuals recover from 
infection (see first line of Equation (8)). This introduces a delay between becoming infected and 
developing symptoms, visiting the GP and being diagnosed. For simplicity, we assumed that this 
delay is on average the same as the delay between becoming infected and recovery. 

B.2.1 Likelihood	

Again, assume that the observed number of ILI consultations, üëMLM, is the realisation of a random 
variable ûëMLM, with the following distribution: 

ûëMLM~	Bin T
Zë
Z
:™:(Ü), º[, 



where the weekly catchment population is Zë, and º is the probability with which someone with ILI 
is diagnosed, i.e. this is a combination of the probability that the infected cases consult the GP and 
the GP correctly diagnoses ILI. 

The virological data identify the presence of the three competing influenza strains in the ILI 
consultation data. In week Ü, these data are denoted as  ¢ë = ß¢ë

^,Ω&, ¢ë
^,Ω±, ¢ë

^,æ, ¢ë%® and they are 
assumed to be the realisation of a multinomial distribution: 

†ë~Multi ö°ë,
1
:™:

∂:™:^,Ω&(Ü), :™:^,Ω±(Ü), :™:^,æ(Ü), :™:%(Ü)πõ, 

where °ë	represents the virological sample size in week Ü. The likelihood is then formed in a similar 
fashion to Equation (6). 

B.2.2 Model	evolution		
Two different models have been fitted over time as new data became available. The table below 
describes the scenarios considered and the dates from which the analyses were carried out. Scenario 
2 involves a time-dependent influenza negative ILI rate, while in Scenario 1 the influenza negative ILI 
rate was kept constant.  

Week Scenario Description Date 
1 1 e% kept constant 2018-01-07 

 
4 2 e% time dependent, according to 

Equation (9). 
2018-01-28 

 

  



 

Figure S2 Estimated number of infected over time for the different strains by analysis date and type of model (see Table 
above). 

  

 

Figure S3 Model fit and data. Blue points represent the data used in the fitting, and yellow points are the data points yet to 
be observed at the time of analysis. The red line highlights the timing of the last data point used in the model fitting. 



 

Figure S4 ILI data and model predictions. Blue points represent the data used in model fitting; yellow points are the data 
points yet to be observed at the time of analysis. The yellow ribbon corresponds to the total ILI rate, while the blue and 
green refer to the negative and positive influenza ILI, respectively. Note that for the first scenario we assume the influenza 
negative rate to be constant over time and the blue ribbon reflects this assumption. 

	

  



B.3 ICU	model	
The ICU model was initially formulated to analyse data collected by USISS during the 2012/13, 
2013/14 and 2014/15 influenza seasons. For a detailed description of the model we refer to Corbella 
et al. (2018) and we report below only the key elements and assumptions.   

B.3.1 Transmission	model	
We assume that the transmission dynamics can be approximated by a continuous-time deterministic 
SEEIIR model: 
 

 

K1
K#

= −Æ(#)
:& + :9
Z

1	 

K5&
K#

= Æ(#)
:& + :9
Z

1 − σ5&		 

K59
K#

= σ5& − σ59	 

K:&
K#

= 659 − γ:&	 

K:9
K#

= ;:& − γ:9,	 

(10) 

 
where 6 and ; relate to the mean latent and infectious periods respectively as in Equation (2).  
 
The transmission rate Æ(#) is assumed to change over time as follows:  
 

 Æ(#) = ¡
UÆY, # ∈ school	holidays
ÆY,																									otherwise.

		 (11) 

 
The factor U ∈ (0,2) allows for the possibility that rates of infectious contact might change as a 
result of school holidays. Beyond this, it is assumed that contact and transmission are homogeneous 
over age, geographical region and influenza sub-type. At 2018w8 a number of alternative models 
were considered, models assuming: 
 

• a constant transmission rate: Æ(#) = ÆY 
• only a Christmas holiday effect: 	

Æ(#) = ¡
UÆY, # ∈ Christmas	holiday,
ÆY,																													otherwise.

		 

• transmission dependent on climate variables: Æ(#) assumed to be a linear function of either 
the daily absolute humidity or of the daily temperature, denoted below by ò(#) 

Æ(#) = ÆY + Æ&ò(#)		 
 
The competing models were used to analyse all the data up to 2018w8 inclusive. The Deviance 
Information Criterion (DIC) (Spiegelhalter et al, 2002) was then used to compare the possible 
models. The best-fitting model according to the DIC was the school-holiday model (Equation (11)). 
The other models were not considered further. 
 



B.3.2 Reporting	model	
Denote by:  

• ∆(Ü) the number of new infections during week Ü;  
• fMƒ≈ the probability of Intensive Care Unit (ICU) admission given infection; 
• kMƒ≈|M«»(…) the probability of … weeks elapsing between infection and ICU admission;  
• K(Ü) the probability of detection given ICU admission at week Ü. 
 

The number of people detected during week Ü, v(Ü), is, similarly to Equation (3): 

 v(Ü) = K(Ü)fMƒ≈w∆( )kMƒ≈|M«»(Ü −  )

ë

Àz0

	  

 
Lastly, we assume that ¢ëMƒ≈ , the number of ICU admissions in week	Ü is the realisation of a random 
variable †ëMƒ≈ which has a Negative Binomial distribution centred on v(Ü)	with over-dispersion 
parameter ¶Mƒ≈: 
 

 †ëMƒ≈~	NegBin(v(Ü), ¶Mƒ≈).  
 
 

B.3.3 Inference	
We assume the latent and infectious periods have fixed means KL = 2	and KM = 3, respectively. 
Moreover, we assume that the weekly probability of detection K(Ü) is known and equal to the 
known fraction of the total population within the catchment of reporting hospitals that reported 
data over the total monitored population, i.e., 
 

Kë =
Zë
Z

  

 
where Zë is the total population within the catchment of reporting hospitals in week w and N is the 
full population of England. 
 
Like the other modelling approaches, inference is carried out within the Bayesian paradigm: prior 
distributions for model parameters are assumed to be uniform within some plausible limits, as 
described in Corbella et al. (2018), with the exception of the initial susceptibility, a, and fMƒ≈ which 
are distributed: 
 

 a~Beta(5, 45) 
fMƒ≈~LogNormal(log(µ) = log(0.00012), 6 = 0.51). 

 

 
Approximate posterior distributions are found using the Metropolis Hastings algorithm described in 
the appendix of Corbella et al. (2018). 
 
 



 

B.4 Synthesis	model		
The synthesis model was proposed as a parsimonious attempt to utilise ILI, virological (combined as 
ILI consultations × swab positivity, to give a dataset labelled ILI+), hospitalisation and ICU data to 
jointly infer and to predict the transmission dynamics of 2017/18 seasonal influenza outbreak. The 
schematic representation of the model is shown in the following figure: 

 

Figure S5 Diagram of synthesis model in which a SEEIIR transmission model dynamics are informed by observations of ILI+, 
Hospital and ICU admission data (the shaded circle boxes). 

B.4.1 Transmission	Dynamics	
Again, SEEIIR transmission dynamics are assumed: 
 

 

	
K1
K#

= −Æ
:&(#) + :9(#)

Z
1(#) 

K5&
K#

= 	Æ
:&(#) + :9(#)

Z
1(#) − 	65&(#) 

K59
K#

= 6ß5&(#) − 59(#)® 

K:&
K#

= 659(#) − ;:&(#) 

K:9
K#

= 6ß:&(#) − :9(#)®. 

(12) 

 
As with the SPC model, the reproductive number is linked to an initial rate of exponential growth, 
with rate –, 
  



XY =
2Æ

;— =
2–
;

∂– 6— + 1π
9

1 −
1

∂– ;— + 1π
9

. 

 

Here, the mean infectious period ß2 ;— ® and the mean latent period ß2 6— ® are both held fixed at 
3.47 and 2.0 days respectively (Birrell et al 2011). 

 

B.4.2 Disease	and	reporting	processes	
The disease and reporting component of the model is the component coloured blue in Figure S5. The 
following three parameters describe the proportion of infections that appear in the respective 
datasets: 

• fghh: the proportion of infections that will lead to an influenza positive GP consultation for 
ILI, the product of the proportion of symptomatic infections (e) and the proportion that 
consult with a GP consultation given ILI (fgh) (cf. Equation 3). 

• fΩ: the proportion of infections that will lead to a hospital admission for ILI. 

• fM|Ω: the proportion of hospitalisations for ILI that lead to an ICU admission. 

The proportion infections leading to an ICU admission, fM is given by  

fM = fM|Ω × fΩ, 

so that there is an implicit assumption that all ICU admissions are initially recorded as a 
hospitalisation.  

In week Ü, the value of the ILI+ data (an estimate of the number of influenza-positive GP ILI 
consultations) had expected value 

vRPR(Ü) = fghh wkMLM(Ü − …; iMLM, jMLM)∆M(…)
ë

“zY

. 

In a slight variation from the ICU and SPC models,  ∆M(…)	represents the weekly number of newly 
infectious (not infected) cases in week …. Correspondingly, kMLM gives the appropriate quantiles of a 
gamma delay distribution, with kMLM(Ü − …;∙,∙)	describing the probability that the reporting of an ILI 
consultation occurs Ü − … weeks after an individual becomes infectious. The parameters governing 
this gamma distribution are those governing the distribution of the delay from symptom onset to GP 
consultations and are taken from Birrell et al (2011) to be iMLM = 3.06 and jMLM = 10.22 (when 
multiplied to a weekly, rather than daily, scale). In this study we simple assume that the incubation is 
equal to the latent period.  

The weekly number of new hospital admissions at week w was similarly generated as 

v‘(Ü) = fΩw kΩ(Ü − …; iΩ, jΩ)∆M(…)
ë

“zY

. 



Here kΩ is parameterised by iΩ = 0.708, jΩ = 1.813 from the assumed distribution of delay times 
from infectiousness onset to hospital admission.  
 
The weekly number of new ICUs at week w was generated as 

vR’÷(Ü) = fM|Ω wkM|Ω(Ü − …; iMƒ≈, jMƒ≈)vΩ(…)
ë

“zY

. 

 
Here kM|Ω is parameterised by iMƒ≈ = 0.425, jMƒ≈ = 2.163 from the assumed distribution of delay 
times from hospital admission to ICU admission. The parameters used for the above two delay 
distributions have been estimated on the basis of a simple analysis of USISS data from the 2012/13 
and 2013/14 influenza seasons (not shown). 

B.4.3 Inference	
To reflect the over-dispersion in the weekly ILI+ numbers, the negative binomial likelihood is still 
assumed even though there is no guarantee that the ILI+ data, †ëMLM^, will be integer-valued. The 
observed number, ¢ëMLM^, within a catchment population in week Ü of Zë has probability density  
 

◊(¢ëMLM^|Φ) = 	
Γß¢ëMLM^ + 0(Ü)®

Γß0(Ü)®Γ(1 + ¢ëMLM^)
T
1

¶MLM^
[
2(ë)

T1 −
1

¶MLM^
[
Ÿ⁄
¤‹¤›

 

 
where 

0(Ü) =
Zë
Z
vRPR^(Ü)
¶MLM^ − 1

. 

 

Here ¶MLM is the dispersion parameter. Similarly, and more straightforwardly, the hospitalisation and 
ICU data, ¢ëΩ and ¢ëMƒ≈, also follow negative binomial distributions with dispersion parameters: ¶Ω, 
¶Mƒ≈ respectively.  
 
Assuming independence across the datasets and independent observation errors over time 
(conditional upon model parameters), the total likelihood given model parameter Φ is 
 

™ß¢&:fi
MLM^, ¢&:fi

Ω , ¢&:fi
Mƒ≈;Φ® =ú™(¢ëMLM^;Φ)™(¢ëΩ;Φ)™(¢ëMƒ≈;Φ).

fi

ëz&

 

 
Uninformative prior distributions are chosen for all model parameters (see Table S1). Again, 
posterior distributions are obtained via Markov Chain Monte Carlo simulations (MCMC). From these 
samples, we can obtain means and 95% credible intervals for model parameters. 
 
In the followings we show the model predictions using the model calibrated at four different weeks: 
2018w1, 2018w4, 2018w8 and 2018w12. These results were obtained from 5000 MCMC samples. 



 

Figure S6 Synthesis model predictions of weekly number of infections from 2018w1, 2018w4, 2018w8, and 2018w12. The 
thick blue line joining the circles represent posterior medians with the thinner lines giving the 95% credible interval. The red 

vertical line labels the latest week included in the data used to calibrate the model. 

 

 

 

Figure S7 Synthesis model predictions of weekly number of ILI+ from 2018w1, 2018w4, 2018w8 and 2018w12. The thick 
green line and circles indicate the posterior medians. The thin green dotted lines give the 95% credible intervals. The red 

vertical line labels the latest week included in the data used to calibrate the model. 

 



 

Figure S8 Synthesis model estimates of the weekly number of hospitalisation admissions from 2018w1, 2018w4, 2018w8 
and 2018w12. The thick green lines and circles represent the posterior means and the dashed lines the 95% credible 

intervals. 

 

 

 

Figure S9 Synthesis model estimates of weekly number of ICU admissions from 2018w1, 2018w4, 2018w8, and 2018w12. 
The thick green lines and circles represent posterior medians and the thin dashed lines give 95% credible intervals. 

 

B.5 Prior	Distributions	and	Model	Assumptions	
Table S1 gives a comparison of the assumed parameter values and, where the parameter is to be 
estimated, prior distributions for each of the four modelling approaches.



 

 

Table S1 Assumptions and structure of four models. Some model parameters were assumed the values from previous studies and others were estimated via the collected data until the date of 
exercise. aDelay distribution for GP ILI data in SPC and synthesis models from Birrell et al (2011);  bDelay distribution for USISS data from seasons 2011/12, 2012/13; cPrior for SS model, taken 
from Biggerstaff et al 2014; dPrior for SS model, taken from Carrat et al 2008;  eThe initial susceptibility rate is derived from serological data;  fPrior for SS model, taken from van Noort et al 

2015. 

Name SPC model Strain-Specific model ICU model SYNTHESIS model 

Compartmental 

structure 

SEEIIR SIR SEEIIR SEEIIR 

Continuous/discrete Discrete (dt=0.5day) Discrete (dt=1 day) Continuous  Discrete (dt=0.25 day) 

Heterogeneity in 

contact/transmission 

Region/calendar time strain Calendar time – 

Observational noise Negative Binomial for ILI, binomial for 

virological data. 

Binomial for ILI data 

Multinomial for virological 

data 

Negative Binomial  Negative Binomial for ILI+, 

Hospitalizations, and ICU data 

Data Daily GP in hours ILI consultations 

Daily RCGP virological swabbing data  

Weekly RCGP GP ILI 

consultations 

Weekly RCGP virological data  

Weekly USISS ICU 

admissions 

Weekly GP ILI, RCGP Positivity, 

Hospitalizations, and ICU admissions 

Background ILI  Yes  Yes n/a n/a 

Fixed parameters and 

quantities 

Initial proportion susceptible (π= 0.9) 

Mean latent period 2days,  

n/a Mean latent period 2 days,  

Infectious period 3.5 days.  

Initial proportion susceptible (π= 0.9) 

Infectious period 3.5 days 



Proportion of symptomatic infections 

0.15 

Delay from infection to the reporting of 

a GP ILI consultation (in days) 

~Γ(1.37,0.336) 

Time to symptom onset 

~Γ(0.678,0.417) (from 

Tom et al. 2014). 

Time to ICU admission 

from symptom onset 	
~log2(log(0.607), 1.022) 

Mean latent period 2 days 

Delay from symptom onset to GP 

~G(3.06,1.46)
a 

Delay from symptom onset to HOS 

~G(0.708,0.259)
b
 

Delay from Hospitalization to ICU 

~G(0.425,0.309)
b
 

Priors for parameters 

to be estimated 

Exponential growth rate ~U(0,0.25) 

Average infectious period ~U[2,4] days. 

Contact matrix parameters mi ~U(0,1) 

Propensity to consult with a GP pGP ~ 

U(0, 0.4) 

ν=log(pλ) ~ U(-20,-10) 

Day of week of effects in GP 

consultation and background GP 

consultation rates are 6 and 3 

dimensional parameters with 

multivariate normal priors. 

Region-specific dispersion parameters, 

45~Γ(0.01, 0.01). 

Reff ~ N(1.28,0.133)
c
  

Infectious period ~ 

N(4.8,0.245)
d
  

Symptomatic rates (678): 
69:8 ~;(18.21,30.61),
69<8 ~;(36.42,52.98),
6?8~;(4.55,50.90)@ 

Susceptibility (π) ~ N(0.8,0.3)
e 

Visitation rate(e)~ 

Beta(35.644,69.314)
f
  

Initial susceptibility π 

~Beta(45,5)  

 pICU|INF ~LogN( 

log(0.00012),.51) 

All the other priors are 

assumed uniform in the 

range used in Corbella et al 

2018. 

Exponential growth rate ~U(0.1,1.4) 

Initial seed U(1,5000) 

P_GPP ~ U(.0001,1.0) 

pHOS|INF ~U(0.0001,0.75) 

pICU|HOS ~U(0.0001,0.1) 

hILI+, hHOS hICU ~ U(1.01,500) 



C Appendix: Results tables 

Table S2 Posterior median (95% credible interval) for R0, Re, and ILI+, HOS and ICU rates among 100,000 infections. Abbreviations: GL = Greater London; Nth = North; SE = South East; SW = 
South West; Mids = Midlands and East. Across all models, the initial proportion susceptible is fixed at 0.9 unless explicitly stated in the text. Note that the SPC model has a day-specific 

proportion of cases that report a GP consultation, as this quantity absorbs the day-of-the-week effect in reporting rates. 

Week of 
Analysis 

Model R0 Re ILI+ rate HOS rate ICU rate 

2018w1 SPC 1.54 [1.45, 1.64]  3826 [1032, 5873] – - 

 SS 
1.74 [1.28, 2.52] (AH1) 
5.02 [4.66, 5.47] (AH3) 

3.97 [3.72, 4.25] (B) 

1.19 [1.16, 1.21] (AH1) 
1.56 [1.54, 1.59] (AH3) 

1.72 [1.69, 1.75] (B) 
1001 [835, 1183] –  

 ICU 1.44 [1.33,1.63] 1.30 [1.24,1.36] - – 12.55 [5.9,30.9] 

 Synthesis 1.49 [1.44,1.52] 1.34[1.30,1.37] 52562 [4166,97850] 23660 [1868,48635] 1614(128,33646] 

2018w4 SPC 

1.62[1.53,1.73] (GL) 

1.83[1.71,1.99] (North) 

1.78[1.66,1.95] (SE) 

1.79[1.67,1.95] (SW) 

1.69[1.58,1.82] (Mids) 

 

630 [558,715] (Mon) 

471 [415,535] (Tue) 

468 [413,531] (Wed) 

419 [370,476] (Thu) 

462 [408,523] (Fri) 

16 [13,21] (Sat) 

4 [3,6] (Sun) 

–  

 SS 
2.69 [1.86, 3.64] (AH1) 
2.65 [1.92, 3.36] (AH3) 

1.80 [1.68, 2.04] (B) 

1.55 [1.53, 1.58] (AH1) 
1.55 [1.53, 1.58] (AH3) 

1.68 [1.65, 1.71] (B) 
401 [315, 466] –  

 ICU 1.46 [1.36,1.63] 1.32 [1.27,1.37) - – 12.1 [8.9,18.2] 

 Synthesis 1.53[1.41,1.59] 1.38 [1.27,1.43] 445 [334,952] 163 [129,335] 10.5 [8.2,22.6] 

2018w8 SPC 
1.61[1.49,1.67] (GL) 

1.85[1.66,1.95] (Nth) 
 

605 [549,712] (Mon) 

441 [399,519] (Tue) 
–  



1.78[1.61,1.87] (SE) 

1.74[1.58,1.84] (SW) 

1.65[1.52,1.73] (Mids) 

433 [392,508] (Wed) 

396 [358,464] (Thu) 

433 [392,509] (Fri) 

17 [13,21] (Sat) 

6 [4,8] (Sun) 

 SS 
2.93 [2.13, 3.61] (AH1) 
4.81 [4.44, 5.23] (AH3) 

4.19 [3.32, 4.56] (B) 

1.55 [1.45, 1.59] (AH1) 
1.54 [1.46, 1.59] (AH3) 

1.84 [1.72, 1.87] (B) 
478 [395, 546] –  

 ICU 1.46 [1.36,1.63] 1.32 [1.29,1.35] - – 13.0 [11.4,15.5] 

 Synthesis 1.46 [1.41,1.49] 1.31[1.27,1.34] 580 [477,736] 221 [188,267] 13.7 [11.6,16.8] 

2018w12 SPC 

1.53[1.43,1.57] (GL) 

1.66[1.52,1.73] (Nth) 

1.65[1.52,1.72] (SE) 

1.61[1.49,1.69] (SW) 

1.57[1.46,1.62] (Mids) 

 

763 [701,912] (Mon) 

558 [512,668] (Tue) 

539 [494,644] (Wed) 

493 [452,590] (Thu) 

533 [491,638] (Fri) 

22 [18,28] (Sat) 

8 [6,11] (Sun) 

–  

 SS 
2.77 [2.08, 3.82] (AH1) 
4.76 [2.87, 5.30] (AH3) 

4.01 [2.96, 4.36] (B) 

1.48 [1.38, 1.59] (AH1) 
1.51 [1.28, 1.57] (AH3) 

1.79 [1.69, 1.85] (B) 
505 [415, 660] –  

 ICU 1.38 [1.28,1.55] 1.25 [1.21,1.28] - – 19.1 [16.0,24.0] 

 Synthesis 1.40 [1.37,1.42] 1.26[1.23,1.28] 723 [600,902) 282 [244,333) 18.0 [15.3,21.3] 

 

 



Table S3 Estimated epidemic attack rates (cumulative incidence) as a proportion of the total population size over the period 
2017w40-2018w20. 

Week of Analysis 
Total Attack rate 

SPC model SS model ICU model Synthesis model 

2018w1 0.438 [0.374, 0.495] (Eng) 
0.0023 [0.0014, 0.0047] (AH1) 

0.13 [0.12, 0.14] (AH3) 
0.23 [0.22, 0.25] (B) 

0.370 [0.299, 0.432] 0.375 [0.115, 0.736] 

2018w2 

0.526 [0.464, 0.578] (GL) 
0.618 [0.555, 0.664] (North) 

0.611 [0.544, 0.663] (SE) 
0.605 [0.539, 0.654] (SW) 

0.572 [0.506, 0.624] (Mids) 
0.587 [0.524, 0.635] (Overall) 

0.0034 [0.002, 0.0056] (AH1) 
0.14 [0.12, 0.16] (AH3) 

0.24 [0.22, 0.26] (B) 
0.370 [0.305, 0.428] 0.333 [0.111, 0.647] 

2018w3 

0.505 [0.454, 0.564] (GL) 
0.600 [0.549, 0.659] (North) 

0.604 [0.548, 0.664] (SE) 
0.589 [0.535, 0.650] (SW) 

0.543 [0.489, 0.605] (Overall) 

0.21 [0.0075, 0.31] (AH1) 
0.15 [0.13, 0.16] (AH3) 

0.24 [0.22, 0.26] (B) 
0.371 [0.310, 0.427] 0.213 [0.022,0.814] 

2018w4 

0.494 [0.440, 0.552] (GL) 
0.595 [0.540, 0.651] (North) 

0.575 [0.517, 0.637] (SE) 
0.579 [0.521, 0.639] (SW) 

0.531 [0.474, 0.590] (Mids) 
0.555 [0.501, 0.611] (Overall) 

0.22 [0.16, 0.35] (AH1) 
0.23 [0.19, 0.32] (AH3) 

0.47 [0.40, 0.51] (B) 
0.376 [0.318, 0.436] 0.440 [0.249, 0.596] 

2018w5 

0.503 [0.446, 0.559] (GL) 
0.591 [0.533, 0.646] (North) 

0.571 [0.508, 0.631] (SE) 
0.568 [0.504, 0.631] (SW) 

0.533 [0.472, 0.591] (Mids) 
0.554 [0.497, 0.608] (Overall) 

0.23 [0.18, 0.32] (AH1) 
0.23 [0.17, 0.32] (AH3) 

0.48 [0.42, 0.53] (B) 
0.374 [0.315, 0.428] 0.455 [0.368, 0.536] 

2018w6 

0.502 [0.437, 0.548] (GL) 
0.594 [0.525, 0.642] (North) 

0.568 [0.497, 0.618] (SE) 
0.557 [0.486, 0.609] (SW) 

0.531 [0.462, 0.580] (Mids) 
0.553 [0.486, 0.597] (Overall) 

0.24 [0.17, 0.32] (AH1) 
0.25 [0.18, 0.35] (AH3) 

0.49 [0.41, 0.53] (B) 
0.370 [0.321, 0.422] 0.444 [0.375, 0.511] 

2018w8 

0.488 [0.413, 0.523] (GL) 
0.601 [0.518, 0.638] (North) 

0.573 [0.489, 0.612] (SE) 
0.555 [0.473, 0.599] (SW) 

0.515 [0.436, 0.552] (Mids) 
0.549 [0.469, 0.580] (Overall) 

0.19 [0.16, 0.28] (AH1) 
0.12 [0.10, 0.14] (AH3) 

0.26 [0.24, 0.31] (B) 
0.387 [0.337, 0.425] 0.387 [0.319, 0.456] 

2018w12 

0.440 [0.366, 0.467] (GL) 
0.518 [0.435,0.554] (North) 

0.513 [0.430,0.546] (SE) 
0.492 [0.410, 0.531] (SW) 

0.468 [0.390, 0.498] (Mids) 
0.489 [0.409, 0.512] (Overall) 

0.16 [0.10, 0.25] (AH1) 
0.11 [0.041, 0.13] (AH3) 

0.25 [0.23, 0.3] (B) 
0.322 [0.274, 0.365] 0.342 [0.291, 0.394] 



Table S4 Estimated peak week and magnitude in the number of weekly infections, by week of estimation. Peak magnitude is measured as the weekly number of infections per 100 people. 

Week of 
analysis SPC model SS model ICU model Synthesis model 

 Peak week Peak size Peak week Peak size Peak week Peak size Peak week Peak size 

2018w1 21 [18, 22] 5.8 [4.7, 7.1] 

1 [1, 21] (AH1) 
22 [21, 22] (AH3) 

17 [16, 17] (B) 
17 [16, 18] (Overall) 

7.9e-03 [5.5e-03, 1.6e-02] (AH1) 
1.1 [0.94, 1.2] (AH3) 

2.6 [2.4, 2.9] (B) 
3.2 [3.0, 3.5] (Overall) 

15 [14, 20] 4.3 [3.1, 7.7] 28 [22, 30] 4.8 [4.0, 5.6] 

2018w2 15 [15, 15] 11.7 [9.1, 12.9] 

1 [1, 22] (AH1) 
22 [20, 22] (AH3) 

17 [17, 18] (B) 
18 [18, 19] (Overall) 

1.1e-02 [6.8e-03, 1.8e-02] (AH1) 
1.2 [1.0, 1.4] (AH3) 

2.5 [2.3, 2.8] (B) 
3.4 [3.1, 3.8] (Overall) 

14 [14, 20] 4.6 [3.1, 7.6] 29 [23, 31] 4.2 [3.5, 4.8] 

2018w3 15 [15, 15] 11.4 [10.3, 12.5] 

22 [14, 22] (AH1) 
21 [20, 22] (AH3) 

18 [17, 18] (B) 
19 [18, 20] (Overall) 

1.7 [2.3e-02, 2.6] (AH1) 
1.3 [1.1, 1.5] (AH3) 

2.5 [2.3, 2.8] (B) 
4.8 [3.3, 5.8] (Overall) 

14 [14, 20] 4.3 [3.2, 6.3] 30 [17, 33] 3.0 [2.3, 5.5] 

2018w4 15 [15, 15] 10.3 [8.7, 12.1] 

22 [21, 22] (AH1) 
22 [21, 22] (AH3) 

17 [17, 18] (B) 
19 [18, 19] (Overall) 

1.8 [1.3, 2.9] (AH1) 
1.9 [1.5, 2.6] (AH3) 

5.0 [4.1, 5.5] (B) 
7.5 [6.6, 8.8] (Overall) 

14 [14, 20] 4.6 [3.3, 6.3] 16 [16, 19] 5.6 [3.4, 7.0] 

2018w5 15 [15, 15] 10.0 [8.7, 11.8] 

22 [21, 22] (AH1) 
22 [21, 22] (AH3) 

17 [17, 18] (B) 
18 [18, 19] (Overall) 

1.8 [1.4, 2.6] (AH1) 
1.9 [1.3, 2.6] (AH3) 

5.1 [4.4, 5.8] (B) 
7.7 [6.3, 8.4] (Overall) 

14 [14, 20] 4.4 [3.3, 5.8] 16 [16, 17] 6.1 [4.8, 7.1] 

2018w6 15 [15, 15] 9.6 [8.5, 10.5] 

22 [21, 22] (AH1) 
22 [20, 22] (AH3) 

17 [16, 17] (B) 
17 [17, 18] (Overall) 

2.0 [1.4, 2.8] (AH1) 
2.1 [1.5, 3.0] (AH3) 

5.7 [4.8, 6.4] (B) 
8.0 [6.9, 9.4] (Overall) 

15 [14, 20] 4.0 [3.3, 5.2] 16 [16, 17] 5.7 [4.7, 6.5] 

2018w8 15 [15,16] 9.1 [7.8, 9.8] 

22 [21, 22] (AH1) 
22 [18, 22] (AH3) 

16 [16, 17] (B) 
17 [17, 17] (Overall) 

1.6 [1.1, 2.4] (AH1) 
0.93 [0.70, 1.2] (AH3) 

3.6 [3.0, 3.9] (B) 
5.0 [4.5, 5.5] (Overall) 

15 [14, 16] 4.4 [3.6, 5.1] 17 [17, 18] 4.2 [3.4, 4.9] 

2018w12 16 [16, 16] 6.8 [5.7, 7.6] 

22 [20, 22] (AH1) 
21 [20, 22] (AH3) 

17 [16, 17] (B) 
17 [17, 18] (Overall) 

1.1 [0.59, 2.2] (AH1) 
0.82 [0.18, 1.1] (AH3) 

3.3 [2.9, 3.8] (B) 
4.7 [3.9, 5.7] (Overall) 

20 [14, 20] 3.0 [2.4, 3.6] 18 [18, 18] 3.1 [2.6, 3.6] 

 



D Appendix: Serological Information and Sensitivity to 

the Initial Susceptibility, π 
The main manuscript discusses the availability of pre-season (i.e. based on samples taken prior to 

week 40, 2017) serological data. These data are informative as they are indicative of the levels of 

pre-existing immunity in the population prior to the seasonal epidemic. In practice, this tells us the 

number of people in the susceptible states at time-0 (!(#$) in equations 1, 7, 10 and 12). The 

analyses of the pre-season serological data were complete by week 8 of 2018, towards the end of 

the modelling period under scrutiny in this manuscript. The modelling efforts included in the main 

manuscript were as completed in real-time, using the best available data at analysis time. The 

information that came from the analysis of the serological samples was therefore not quite timely 

enough to be properly understood within the required timeframe and therefore we study its impact 

here as a sensitivity analysis. 

 

An initial assumption had been made that 0.9 was a suitable figure to describe the proportion of the 

population who were susceptible to infection with any of the circulating influenza strains. As can be 

seen from Table S1 this was the value for the model parameter π that has been used largely 

throughout. However, the analysis of the serological data revealed that 37.5% of samples returned 

titer values indicative of the presence of antibodies to all three circulating strains. This suggests that, 

for the single-strain models, a value of π=0.625 for the proportion of individuals susceptible to 

infection. This may still be an over-estimation of the proportion susceptible to infection, as the 

serology samples were taken in the summer of 2017, prior to the vaccination of ~14 million people 

in autumn 2018. If the vaccine is effective, this is likely to have a profound impact on population 

immunity if the vaccine is effective. 

 

Different models handled initial susceptibility differently. Again, from Table S1 it can be seen that 

the SPC and Synthesis models use a fixed value, whereas the ICU models place a prior probability 

distribution on this value. This parameter cannot be directly identified from data, and therefore 

strong prior information is required, and this is reflected in the prior choice of the ICU model. For 

example, the ICU model uses a prior &~Beta(45,5), which has a mean of 0.9 and a small standard 

deviation of 0.04. In the sensitivity analysis, this is replaced by &~Beta(30,20) which has a mean of 

0.6 and a standard deviation of 0.07, comfortably covering the 0.625 value used in the SPC and 

Synthesis model’s sensitivity analysis. 

 

The lowering of the initial susceptibility has the following impacts: 

1. Leads to higher estimates of 2$ (but not necessarily 23), and higher estimates of severity. In 

the models using GP ILI data, this manifests itself in a higher propensity to consult with a GP 

and in the models that use data on severe illness, it results in higher estimates of the ratio of 

ICU or hospital admissions per infection. 

2. Induces lower estimates of attack rates, the cumulative number of infections caused by the 

epidemic (despite higher 2$). 



3. Affects the timing of the estimated peak in the number of underlying number of infections. 

Specifically, prior to any observed peak in the relevant data, lowering the initial susceptibility 

produces an estimated peak in incidence that occurs earlier. 

4. Makes little difference to the estimated pattern of GP consultations/ICU admissions etc. 

These are directly identified by the data and therefore are strongly anchored. 

 

These findings are most clearly illustrated when looking at the Severity/ICU model. The SPC model, 

relying on direct data on GP consultations, has these sensitivities dampened by the presence of the 

background ILI consultations which can adapt to absorb some of the effects of changing the 

susceptibility parameter. Similarly, the multiplicity of data in the synthesis model and the competing 

strains in the SS model make these effects more difficult to clearly depict, though they are present. 

 

Figure S10 shows some parameter correlations obtained under the SS model using data up to the 

end of Week 1, 2018. Each plot shows the correlation of strain-specific parameters with the initial 

susceptibility. For susceptibilities >0.1, there is a clear negative correlation between 2$ and π while 

there is no such obvious relationship for the effective reproductive number, 23. Moving to an 

analysis that covers the full epidemic period, up to Week 12, based on the Severity/ICU model, 

Figure S11 shows a similar relationship. Here, this plot shows the posterior distributions of (top row) 

the susceptibility parameter π and the data dispersion parameter, 4 (middle row) the severity 

parameter, 5ICU, and the school holiday effect on transmission, 9 (bottom row) reproductive 

numbers 2$ and 23, for each of the two priors placed on the susceptibility. The top left panel in each 

half shows that little is learned about the susceptibility parameter, whilst there are significant shifts 

in the parameters 5ICU and 2$ between the two halves.  

 

 
Figure S10 Posterior parameter correlations obtained from the SS analysing data up to Week 1, 2018. 
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Figure S11 (On the left) Posterior distributions for parameters of interest obtained using a prior centred on π=0.9; (On the 

right) The same distributions obtained using a prior centered on π=0.6. 

It stands to reason that, if the number of healthcare events (ICU admissions, GP consultations etc.) 

are anchored by data, yet there is a higher severity ratio, then it must mean there are consequently 

fewer infections. This also makes sense on the basis of similar values for the initial effective 

reproduction number 23, but with a smaller susceptible population. The difference in the numbers 

infected are illustrated in the right-hand column of Figure S12 which shows the estimated 

cumulative numbers of infections over time. In the left-hand column of Figure S12 the plots show 

the estimated/forecast incidence per day. The error bars at the bottom of the plot indicate the 

estimated range for the timing of the peak in infection incidence. In 2018w1 (top-left panel) the 

estimated peak in incidence is slightly earlier when there is a lower susceptibility. The same 

phenomenon occurs for the analysis at 2018w2, the timing of the peak, after which the peak 

estimates largely coincide. In all models, prior to the peak in incidence, there is a tendency to 

forecast an earlier peak in incidence at the lower level of susceptibility. However, once the peak has 

occurred and is being retrospectively estimated, the estimated timing is independent of the initial 

susceptibility. 

 



 
Figure S12 Left-hand column: plots of the estimated number of daily infections from the SPC model at two levels of 
susceptibility. The grey-shaded area corresponds to the incidence of infections forecast beyond the time of analysis 

(2018w1, top; 2018w12, bottom). Right-hand column: plots for cumulative incidence (and thus forecast attack rates for the 
influenza season). 

 

The SPC model can provide age- and region-stratified results. The sample sizes in the serological data 

were too small to be able to adequately estimate age-specific susceptibilities. Whilst this didn’t 

prove a significant barrier to regional modelling, it prevented adequate age-specific inference. If the 

same susceptibility is assumed across age-groups, typical contact matrices that describe the pattern 

of infection across the age groups such as POLYMOD (Mossong et al, 2008) drive infection towards 

school-age children, a phenomenon not borne out in the data. To adequately account for this, the 

serological data could usefully be augmented by information on vaccine uptake amongst children to 

build a better picture of the population’s immunity profile prior to any influenza season. 

 

This study therefore identifies the importance of having pre-season serological data analysed in a 

timely fashion in readiness for any coming influenza season. It enables more accurate estimation of 
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model parameters, can help to determine infection rates underlying the burden being placed on 

healthcare services and, if serological samples are representative of different geographical regions 

and across age groups, it can facilitate more detailed modelling at a finer granularity across the 

population. 
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