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MINIMAL MODEL CALIBRATION USING OMICS DATA. 

The minimal CIC model presented in this work can be parameterised for a particular human 

disease and therapy of interest. As our example application, we chose Non-Small Cell Lung Carcinoma 

(NSCLC) treatment with Pembrolizumab, an anti-PD1 monoclonal antibody. The aim was to calibrate 

the minimal CIC model to describe four individual NSCLC patients from the KEYNOTE-001 clinical trial 

for which tumour growth was measured during treatment with 10 mg/kg Pembrolizumab adminis-

tered every 3 weeks (10 mg/kg Q3W)1. The calibrated QSP model could be used to predict variability 

of patient responses in full clinical trial of 489 patients, effects of other dosing regimens and to identify 

biological processes which can be pharmacologically targeted to enhance the effect of anti-PD1 treat-

ment. We note that the purpose of our study is to demonstrate how omics data can be used to cali-

brate a QSP model, rather than to qualify a model for application in drug development. 

Figure 3 in main manuscript summarises the experimental data used for model calibration. 

First, we used data from the “Immune Landscape of Cancer” (Figure 1 A,B in main manuscript) to 

constrain the relative amounts of antigen-presenting cells (APCs) and cytotoxic T-cells present in the 



TME compartment (model variables APC_tme and Tc_tme). Since it is not possible to query the data-

base for NSCLC, we averaged cell fractions available for two types of lung cancers: Lung Adenocarci-

noma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). For these cancers, the fraction of leukocytes 

in the TME is 0.14 (Leuk_frac parameter in our model); this quantity is further fractionated into 22 

leukocyte types, for which the fraction of cytotoxic CD8 T-cells (Tc_frac parameter) was directly avail-

able (0.11), and to obtain the fraction of antigen-presenting cells (APC_frac parameter) we summed 

the fractions of M1 macrophages (0.055) and dendritic cells (0.042). Since we do not consider the 

remaining 20 cell types reported, we recalculate the ratio of cytotoxic cells to APCs assuming that the 

whole leukocyte fraction of the TME is composed only of these cell types. Therefore, the fractional 

compositions of cells relative to the TME were identified as 0.074 for cytotoxic T-cells (Tc_max param-

eter) and 0.066 for APCs (APC_max parameter). The proportion of the TME compartment composed 

of tumour cells (model variable Tumor) was therefore calculated as the remainder fraction of 0.86. 

These fractions were used in the model as maximal capacities in logistic rate law terms limiting both 

the migration of APCs and cytotoxic T-cells to the TME compartment (parameters Tc_max and 

APC_max, reactions v4 and v12, FigureS1), as well as the recruitment of TME capacity (parameter 

tumor_max, reaction v1, Figure S1). To set the numbers at the start of simulations, we multiplied the 

maximal TME fractions by the total number of cells corresponding to the specified initial tumour vol-

ume, where the total number of cells was calculated assuming all cell species have the same volume. 

Our method for defining initial states for given tumour volumes assumes that the tumours at the start 

of therapy are already infiltrated by the leukocytes up to maximal fractional TME capacity. Given that 

we do not simulate tumour development from a single cell and that solid tumours at the start of ther-

apy would already be well developed, we believe that our assumption of maximal infiltration is bio-

logically plausible. 

Another key parameter of any QSP model of CIC is the number of pre-existing cancer neoan-

tigen-specific naïve cytotoxic T-cells in the lymph node compartment (Tc_ln variable in our model).  

This can now be estimated using two recent datasets resulting from application of high-throughput 



flow cytometry and high-throughput ex-vivo screening of cancer antigen-specific T-cells. In a series of 

studies from the Farber lab, high-throughput flow cytometry has been applied to organ donor tissues 

to quantitatively describe the state of the immune system in healthy individuals 2,3,4. As flow cytometry 

studies are typically confined to peripheral blood whilst most of the key immune processes occur in 

tissues, these recent studies constitute an invaluable resource for many areas of basic and applied 

science, including mechanistic modelling of the immune system. From Thome et al. 5 we have deter-

mined the fraction of all cytotoxic T-cells in the lymph node which are naïve (0.44). Finding clinical 

data on the proportion of naïve cytotoxic T-cells which would also be specific to NSCLC neoantigens 

proved more difficult. We ultimately used a recent clinical study where high-throughput ex-vivo T-cell 

proliferation assays were used to estimate the frequency of naïve tumour neoantigen-specific CD4 T-

cells in melanoma patients6. In doing so, we have assumed that the fundamental biological processes 

for creating the diversity of pre-existing naïve antigen specific T-cells are similar in CD4 and CD8 types, 

and similar across tumours. This assumption is corroborated by the fact that these frequencies were 

found to be similar across the antigens included in the study6. Moreover, our minimal model does not 

explicitly include CD4 cells as a state variable so their availability and function is implicitly accounted 

for in the cytotoxic T-cell parameters. This further justifies the use of CD4 data to constrain parameters 

representing combined CD4/CD8 activities. Bearing in mind these assumptions, we estimated the fre-

quency of tumour neoantigen-specific naïve T-cells in the lymph node compartment as 1.85 x 10-5 

(18.5 per million).  

State variables describing cell populations in most of QSP models in IO, including the minimal 

model presented here, are expressed as absolute cell numbers rather than relative amounts. Given 

the sophistication of experimental methods used to obtain relative data, it is surprising that data on 

reference absolute leukocyte counts in human tissues are still sparse. Here, we used the estimates of 

absolute numbers of leukocytes in human tissues presented by Trepel in 19747, which have also been 

accepted as a reference in other work in quantitative immunology8. Trepel estimated the absolute 

number of cells in lymph nodes as 1.9 x 1011. The fraction of CD8 events in T-cells isolated from excised 



healthy human lymph nodes was found by Scott et al.9 to be 0.13. By multiplication of the total number 

of lymphocytes in lymph nodes by all frequencies above, we estimate the number of pre-existing ne-

oantigen-specific cytotoxic T-cells in the lymph node compartment to be 195,624. 

Finally, we used clinical data for the individual growth trajectories of NSCLC tumours of pa-

tients treated with 10 mg/kg Pembrolizumab Q3W (shown in Figure 3) to calibrate parameters in the 

model that could not be defined using omics data1. These parameters correspond to the processes of 

tumour growth, its killing by cytotoxic T-cells, and drug action via the PD1 checkpoint. Therefore, our 

model describes—rather than predicts—the behaviour of the system for these four tumours subjected 

to this dosing regimen, and could be used to predict the behaviour of other tumours in full clinical 

trial, the effects of other dose regimens applied in the clinical trial (10 mg/kg Q2W, 2mg/kg Q3W), as 

well as sensitivity of dose response to perturbation of individual steps of the CIC, thus informing the 

discovery of combination targets. However, we emphasise that the model presented here has been 

built for the purpose of demonstrating data sources that can inform mechanistic modelling of im-

mune-oncology therapies. 

 

PARAMETERS VARIED IN VIRTUAL TRIAL SIMULATION 

Figure 4 in main manuscript shows a virtual trial simulation for a cohort of 489 subjects treated with 

19 doses of 10 mg/kg anti-PD1 Pembrolizumab administered every 3 weeks (simulation duration of 

t=399[days] with the first dose given at t=0; all patients are assigned a weight of 70 kg). We varied 9 

model parameters representing the biological variability of tumours: tumour growth rate (mu), the 

rate of TME remodelling (kv1), basal death rate of tumour cells (beta_tumor), maximal rate of T-cell 

exhaustion by PD1 checkpoint (kPD1), the rate of tumour killing by cytotoxic T-cells (kkill), T-cell pro-

liferation rate in the lymph node (Pro_Tc_ln), initial tumour size (Initial_tumour_volume), and the 

fractional composition of the TME compartment with respect to cytotoxic T-cells (Tc_max) and anti-

gen-presenting cells (APC_max). These model inputs are presented in a high-resolution map (Figure 



S1) and described in more detail in the model documentation. They reflect variability of individual 

tumours arising from a variety of biological factors such as growth rates, PD1 and MHCI expression 

levels, molecular nature of antigens, and expression of factors affecting vascularisation and immune 

infiltration of the TME.  The first 6 parameters listed above are those that were adjusted during model 

calibration; for the purpose of demonstration, we set the lower and upper bounds of these parame-

ters as 0.5× and 1× the nominal value and assume that the values of these parameters in a virtual 

patient population would be uniformly distributed.  We use the inclusion criteria from the clinical trial 

to define the lower bound for the initial tumour size as 0.01 mL, and choose an upper bound of 10 mL, 

again assuming that the initial size of tumour in a cohort of virtual patients would be uniformly dis-

tributed. The 2 latter parameters listed above are those which we are able to derive with the input of 

omics data informing parameters Tc_frac and APC_frac. Therefore, we account for variability in 

Tc_max and APC_max via the distributions of Tc_frac and APC_frac which emerge from the data avail-

able for 1156 individual NSCLC (LUAD and LUSC) patients: Tc_frac has a lognormal distribution with 

mean=-2.43600 and SD=0.62335; and APC_frac has a lognormal distribution with mean=-2.58098 and 

SD=0.69689. For each of the 9 model parameters which we use to define biological variability, we used 

computer-generated random numbers following the corresponding distributions within these ranges 

to generate VPs.  

MODEL DOCUMENTATION AND EXECUTABLE CODE 

The model has been built in Certara in-house QSP Platform software with modular Biological Process 

Map interface. Figure S1 shows the map exported with all modules expanded. The user can zoom the 

map in PDF and examine model structure in detail. The map with modules collapsed was used as on 

overview on Figures 2 and 3. Executable code and model documentation, exported from the platform 

is available in the CIC_v2.2.5.zip file. The ZIP file contains three directories: 

CIC_v2.2.5_CSV – Model variables, rate laws, algebraic assignments parameters and documentation 

in CSV files. 



CIC_v2.2.5_Matlab – Matlab code of the model used for simulation shown on Figure 4. Run Figure4.m 

to reproduce Virtual Clinical Trial shown in Figure 4. 

CIC_v2.2.5_R – R code of the model. The RUN.R contains example execution of the model. We recom-

mend this code for users who wish to access, read or modify model equations and doses. In this ver-

sion of the code variable and parameter arrays are indexed with names corresponding to model doc-

umentation in CSV files. 
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