Table S1. Summary of post-transcriptional mechanisms and their effects on pluripotent, somatic and malignant stem cells.

EFFECTS ON PLURIPOTENT	EFFECTS ON SOMATIC STEM	EFFECTS ON CANCER STEM
STEM CELLS	CELLS	CELLS
RNA SPLICING		
Can produce distinct protein	isoforms, introduce premature	e stop codons and cause UTR
variation. Can also affect	protein structure, function,	mRNA stability, subcellular
localization and translation e	fficiency.	-
Splicing factor SRSF2	Sustains self-renewal in	Cancer stem cells adopt
promotes hESC self-renewal	HSCs by generating distinct	splicing patterns similar to
directly by promoting the	HMGA2 mRNA isoforms that	those of undifferentiated stem
expression of OCT4 and	escape miRNA-mediated	cells (Crews et al., 2016;
NANOG (Lu et al., 2014)	repression (Cesana et al., 2018)	Sebestyen et al., 2016)
MBNL splicing factors disrupt	,	Breast cancer stem cells
hESC self-renewal by		undergo CD44 isoform
repressing hESC-specific		switching (Zhang et al., 2019)
expression of OCT4 SOX2		Chronic myeloid leukemia
and NANOG (Gabut et al		blast crisis stem cells express
2011)		high levels of hESC-
,		associated CD44 isoforms
		(Holm et al., 2015)
		GSK3 β mis-splicing and
		BCL2 splice variants promote
		leukemia stem cell self-
		renewal and survival
		(Abrahamsson et al., 2009;
		Goff et al., 2013)
		Splicing factors can be
		mutated or epigenetically
		modified in pre-leukemic and
		leukemic disorders (Ogawa,
		2014; Yoshida and Ogawa,
		2014)
RNA METHYLATION		
m6A Modifications: Can pro modified mRNA. Can also su	pmote the stability and cap d ppress translation by promoti	ependent translation of m°A ng mRNA decav.
Enhances ESC self-renewal	Maintains HSC number and	High expression of METTL3
and somatic cell	reconstituting activity in adult	supports leukemia stem cell
reprogramming by stabilizing	mice by mediating c-Myc	survival (Barbieri et al., 2017;
transcripts of core	translation (Lee et al., 2019)	Vu et al., 2017; Weng et al.,
pluripotency factors (Chen et		2018)
al., 2015; Geula et al., 2015)	Promotes hematopoietic	
	specification in zebrafish	High expression of FTO
Supports differentiation by	embryos through YTHDF2-	promotes cell survival in
promoting the degradation of	mediated repression of	cervical cancer and acute

pluripotency transcripts (Wang et al., 2014b)	transcripts (Zhang et al., 2017)	myeloid leukemia (King et al., 2016; Li et al., 2017b)
	Supports osteogenic differentiation of skeletal stem	
	cells by enhancing the translational efficiency of <i>Pthr1</i> (Wu et al. 2018)	
m5C Modifications: Can supp translation fidelity, and stabi	port ribosome biogenesis and plize tRNA.	oolysome assembly, increase
	Promotes translation and differentiation of epidermal stem cells by preventing the accumulation of tRNA-derived	
	small noncoding RNA (Blanco et al., 2016)	
m1A Modifications: Can in efficiency of mRNA.	crease tRNA and rRNA sta	bility and the translational
PSEUDOURIDYLATION Can enhance tRNA stability a	and codon base-pairing, and a	Iter translation termination.
PUS7 supports germ layer specification of hESCs (Guzzi et al., 2018)	PUS7 supports the translational program required for commitment of	
PUS7 supports activation of tRNA-derived fragments required for translational control in hESCs (Guzzi et al., 2018)	and stem progenitor cells (Guzzi et al., 2018)	
RNA EDITING	IR sequence and can support	miRNA hiogenesis
Influences the efficiency of reprogramming (Germanguz et al., 2014)	ADAR1 regulates quiescence and cell cycle entry of human hematopoietic stem and progenitor cells (Jiang et al., 2019)	Editing of mRNAs encoding <i>GLI1</i> , <i>GSK3</i> β , <i>AZIN1</i> and <i>APOBEC3D</i> are required for survival of leukemia stem and progenitor cells (Crews et al., 2015)
	Adar1 supports multilineage reconstituting activity of mouse HSCs (Orkin and Zon, 2008; XuFeng et al., 2009) Adar1 regulates apoptosis	ADAR-1mediated editing stabilizes <i>MDM2</i> , which increases MDM2 and enhances p53 degradation within leukemia stem cells
	and growth of Lgr5 ⁺ intestinal stem cells (Qiu et al., 2013)	(Jiang et al., 2019)
		splicing and supports leukemogenesis in acute myeloid leukemia (Beghini et al., 2000)

MICRO RNA (MIRNA)			
Repress gene expression by	promoting degradation of mR	NA	
DGCR8 and Dicer1 support differentiation of mouse ESCs (Kanellopoulou et al., 2005; Wang et al., 2007)	miR-128 and miR-181 inhibit HSC differentiation into hematopoietic lineages (Georgantas et al., 2007)	Germline and somatic mutations in <i>DICER1</i> predispose individuals to cancer (Foulkes et al., 2014)	
Supports human and mouse ESC differentiation by suppressing expression of pluripotency genes <i>Oct4</i> , <i>Sox2, Klf4</i> , and <i>Nanog</i> (Tay et al., 2008; Wang et al., 2017c; Xu et al., 2009b) Increases reprogramming efficiency of iPSCs (Li et al., 2011; Lin et al., 2008)	miR206 represses Pax3, which promotes muscle stem cell activation (de Morree et al., 2019) miR124 and miR128 are specifically expressed in neuronal lineages (Smirnova et al., 2005) Astrocytes specifically express miR-26, miR-23, and miR-29 (Smirnova et al.,	Impaired Dicer1 function promotes colon cancer and endometrial cancer stemness (Iliou et al., 2014; Wang et al., 2017b) Several cancer types have a defect in miRNA biogenesis and exhibit a global downregulation of miRNA production (Calin and Croce, 2006; Gaur et al., 2007; Lu et al., 2005)	
	2005)	Breast cancer, colon cancer, pancreatic cancer, neuroblastoma, hepatocellular carcinoma, and non-small-cell lung cancer downregulate miR- 34a (Asadzadeh et al., 2019)	
		miR-34a inhibits prostate cancer stem cell expansion by suppressing CD44 expression (Liu et al., 2011)	
		miR-34a inhibits self-renewal of breast cancer stem cells (Ma et al., 2015)	
PROTEIN SYNTHESIS mTOR Activation: Promotes cap-dependent translation through phosphorylation of S6K			
and 4E-BP1.			
Helps maintain a chromatin landscape that allows for transcription of developmental genes in mouse ESCs (Bulut-	Depletes HSCs and impairs HSC serial reconstituting capacity by increasing the rate of protein synthesis (Signer et al., 2014; Yilmaz et	Deletion of <i>Pten</i> promotes the generation of leukemia- initiating cells (Yilmaz et al., 2006)	
Karslioglu et al., 2018)	al., 2006; Zhang et al., 2006)	Loss of function mutations in <i>PTEN</i> have been identified in prostate cancer, glioblastomas, carcinomas, and hematopoietic	

		maling anging (Milalla at al
		malignancies (Milelia et al.,
		2015)
		0.01/(4) 1 1 1
		S6K1 is overexpressed in
		breast, lung, and ovarian
		cancers, and is correlated
		with poor prognosis in
		hepatocellular carcinomas
		and prostate cancer (Pópulo
		et al., 2012)
		elF4E is overexpressed in
		colon, head and neck, and
		breast cancers, as well as
		thyroid carcinoma and non-
		Hodgkin's lymphomas
		(Pópulo et al., 2012)
Translational Apparatus: Car	enhance protein synthesis by	promoting ribosome loading
onto mRNA, polysome form	ation, and through the use o	f different translational start
sites.		
Can control global	HSCs, muscle satellite cells,	
translational output in ESCs	germline stem cells and	
through ribosome pausing	quiescent neural stem cells	
and the use of translation start	exhibit low protein synthesis	
sites from upstream open	(Llorens-Bobadilla et al.,	
reading frames or non-	2015; Sanchez et al., 2016;	
conventional start sites	Signer et al., 2014; Zismanov	
(Ingolia et al., 2011; Sampath	et al., 2016)	
et al., 2008)		
	Modest increases or	
Can increase translational	decreases in protein	
output during ESC	synthesis impair HSC self-	
differentiation by increasing	renewal and reconstituting	
polysome abundance and the	activity (Goncalves et al.,	
efficiency of ribosome loading	2016; Signer et al., 2014)	
(Ingolia et al., 2011; Sampath		
et al., 2008)		
MECHANISMS OF TRANSLATION	AL CONTROL	
Poly(A)-Binding Proteins: Ini	tiate translation by binding pol	y(A) tails and interacting with
translation initiation factors		
Can increase global	Supports the proliferation of	
translation rates in ESCs	germline stem cells during C.	
through interactions with	elegans development (Ko et	
DAZL transcripts (Sampath et	al., 2010)	
al., 2008)		
Eif4e Binding Proteins: Supp	oress cap-dependent translation	on
Supports mouse ESC	Deletion of 4E-BPs modestly	
pluripotency by suppressing	increases protein synthesis	

	within HSCs and impairs their	
(Tahmasebi et al., 2016)	serial reconstituting activity	
	(Signer et al., 2016)	
Compound deletion of 4E-		
BPs and p53 enhances iPSC	Impairs neural stem cell self-	
generation (Tahmasebi et al.,	renewal (Hartman et al.,	
2014)	2013)	
tiRNA Biogenesis: Suppres	ses translation by RNA inter	ference or displacement of
translation initiation factor e	F4G.	
	Angiogenin in the bone	
	marrow microenvironment	
	restricts protein synthesis	
	within HSCs, which increases	
	HSC cycling and diminishes	
	reconstituting activity	
	(Goncalves et al., 2016;	
	Signer et al., 2014)	
Cap-Independent Translatior	n: Translation of mRNA that do	pes not require interaction of
mRNA with initiation factors	eIF4E and/or eIF4G	
Promotes differentiation of		
human and mouse ESCs		
(Sugiyama et al., 2017;		
Yamanaka et al., 2000; Yoffe		
et al., 2016)		
RIBOSOME BIOGENESIS & ASSE	MBLY	
Ribosomal Gene Mutations:	Can impair ribosome biogenes	sis and reduce translation.
	Impairs human hematopoietic	Mutations in <i>Rpl24</i> slow the
	stem and progenitor cell	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B
	Impairs human hematopoietic stem and progenitor cell lineage commitment by	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i>
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008)
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008)
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström,
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016)
	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016)
Ribosome Biogenesis Facto	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins.	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins. Htatsf1 supports mouse ESC	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins. Htatsf1 supports mouse ESC self-renewal and	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins. Htatsf1 supports mouse ESC self-renewal and differentiation by regulating	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le Bouteiller et al., 2013)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins. Htatsf1 supports mouse ESC self-renewal and differentiation by regulating the levels of pluripotency factors (Carrie et al. 2010)	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le Bouteiller et al., 2013)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins. Htatsf1 supports mouse ESC self-renewal and differentiation by regulating the levels of pluripotency factors (Corsini et al., 2018)	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le Bouteiller et al., 2013)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins. Htatsf1 supports mouse ESC self-renewal and differentiation by regulating the levels of pluripotency factors (Corsini et al., 2018)	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le Bouteiller et al., 2013)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factor proteins.Htatsf1 supports mouse ESC self-renewaldifferentiation by regulating the levels of pluripotency factors (Corsini et al., 2018)Small Subunit Processome:	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le Bouteiller et al., 2013)	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal
Ribosome Biogenesis Factorproteins.Htatsf1 supports mouse ESCself-renewalanddifferentiationby regulatingthe levels of pluripotencyfactors (Corsini et al., 2018)Small Subunit Processome:MaintainsmouseESC	Impairs human hematopoietic stem and progenitor cell lineage commitment by altering the translation of <i>GATA1</i> (Khajuria et al., 2018) rs: Support translation by pro Nle reduces HSC regenerative capacity (Le Bouteiller et al., 2013) Supports translation by proce	Mutations in <i>Rpl24</i> slow the progression of <i>Myc</i> -driven B cell malignancies and T cell neoplasms driven by <i>Pten</i> deletion (Barna et al., 2008) Ribosomal mutations can predispose patients to myelodysplastic syndrome and acute myeloid leukemia (Goudarzi and Lindström, 2016) cessing rRNA and ribosomal

translation of pluripotency			
PROTEIN QUALITY CONTROL			
ER Unfolded Protein Respon	se: Alleviates the accumulation	on of unfolded proteins in the	
ER by attenuating protein syr	nthesis, inducing expression c	of folding chaperones, and, in	
some cases, inducing apopto	DSIS. Maintaine musele stom coll	Enhanced LIDPER activation	
promotes endodermal and	identity by suppressing the	can sensitize colon cancer	
mesodermal specification in	translation of myogenesis-	stem cells to chemotherapy	
ESCs (Kroeger et al., 2018;	related transcripts (PERK)	(Wielenga et al., 2015)	
Wang et al., 2015a; Xu et al.,	(Alter and Bengal, 2011;		
2014)	Zismanov et al., 2016)	Nras with the G12D mutation	
Dhamaa a la sia a a divetia s		hyperactivates IRE1 in pre-	
Pharmacologic activation	supports mouse intestinal	enhances HSC reconstitution	
efficiency of somatic cells	(PERK) (Heijmans et al	(Liu et al. 2019: van Galen et	
(Simic et al., 2019)	2013)	al., 2014)	
		. ,	
	Induces apoptosis in HSCs		
	during conditions of extreme		
	Stress (PERK) (Liu et al., 2019; van Galon et al. 2018)		
	2019, Vall Galeff et al., 2010)		
	Reduces growth of		
	Drosophila intestinal stem		
	cells (IRE1) (Niederreiter et		
	al., 2013; Wang et al., 2014a)		
	Promotes mouse HSC		
	survival and recovery after		
	irradiation (IRE1) (Chapple et		
	al., 2018; Liu et al., 2019)		
	Enhances engraftment of		
	HSCs and survival of primitive		
	cord blood stem and		
	progenitor cells (ATF4) (van		
	Galen et al., 2018)		
Mitochondrial Unfolded Protein Response: Unregulates mitochondrial chaperones and			
proteases in response to accumulation of unfolded proteins in the mitochondria.			
	Supports HSC quiescence		
	and regenerative capacity		
	(Nonrin et al., 2015)		
	Helps maintain stemness of		
	intestinal stem cells (Berger et		
	al., 2016)		

Heat Shock Response: Maintains cytosolic proteostasis through the coordination of			
heat shock proteins that facilitate protein folding, trafficking, and degradation.			
Promotes hESC differentiation by repressing OCT4 expression (Byun et al.,	Hsp70 helps control hematopoietic progenitor numbers in zebrafish and	HSF1 is overexpressed or amplified in prostate adenocarcinomas, squamous	
2013)	prevent apoptosis in human erythroid precursors (Craven	cell carcinomas, hepatocellular carcinoma,	
Mouse ESCs downregulate expression of Hsp70 during differentiation into embryoid	et al., 2005; Ribeil et al., 2007)	and pancreatic cancer (Dai et al., 2012)	
bodies and neural precursors (Battersby et al., 2007; Saretzki et al., 2004)	have elevated expression during myoblast differentiation (Sugiyama et al., 2000)	HSF1 can support malignant phenotypes in breast tumors and T cell leukemia (Dai et al., 2012)	
		HSP90 supports the folding of proteins involved in signaling pathways dysregulated in cancer (Ak2, Her2, HIF-1 α) and mutant proteins (v-Src, Bcr-Abl, and p53) and is associated with poor prognosis in lung cancer, melanoma, and leukemia (Chatterjee and Burns, 2017)	
		Overexpression of HSP70 and HSP27 can inhibit programmed cell death and is associated with poor prognosis in myelodysplastic syndrome, melanoma, colon, breast, endometrial, oral, skin, liver, and lung cancers (Chatterjee and Burns, 2017)	
UBIQUITIN PROTEASOME SYSTE Controls the content and gu	M ality of the proteome through	the turnover of proteins and	
degradation of misfolded pro	oteins.	• • • • • • • • • • • • • • • • • • • •	
Wwp2 supports ESC function by ubiquitinating and targeting Oct4 for degradation (Xu et al., 2009a; Xu et al., 2004)	Fbxw7 promotes HSC self- renewal by ubiquitinating and targeting c-Myc for degradation (Reavie et al., 2010: Thompson et al. 2008:	Low proteasome activity is a feature of cancer stem cells (Munakata et al., 2016; Pan et al., 2010; Vlashi et al., 2009)	
Fbxw7promotesESCdifferentiationby	Wilson et al., 2004)	Glioma, breast cancer, lung carcinoma, and colorectal	
ubiquitinating and targeting c-	Huwe1 prevents HSC	cancer cell lines that exhibit	
(Szutorisz et al., 2006)	abundance of N-Myc (King et al., 2016)	stem-like phenotypes and are more tumorigenic (Munakata	
High levels of proteasome activity promote ESC function	. ,	et al., 2016; Pan et al., 2010; Vlashi et al., 2009)	

by regulating the abundance of Oct4 and Nanog (Buckley et al., 2012)	The proteasome controls the abundance of regulators of HSC self-renewal including p53, Hif1 α , Notch, Stat5 (Moran-Crusio et al., 2012)	
	Rpt3 supports muscle stem cell quiescence, differentiation, and regeneration in response to injury (Kitajima et al., 2018)	