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Webappendix: Supplementary methods 
Supervised machine learning: 

  A dataset D is represented by a sample of input vectors, X, (i.e. individual spectra) 

with their corresponding sample of output labels, Y, such that D = [X,Y]. A sample input 

vector is represented by x . The mass spectrum of the i-th sample is represented as an n-

dimensional vector 
i
x  with an associated class label iy  (+1 for TB, -1 for control) where n is 

the number of mass clusters or peaks,  m, .. 1,  i =  and m is the number of samples. The 

spectrum vector elements are denoted by ki,x  where m, .. 1,  i =  and n., 1,. k = . The classifier 

prediction of a sample class label iy  is denoted by iŷ . 

 A supervised learning algorithm is tasked to find a decision function capable of 

assigning the correct label for a set of input/output pairs of examples, called the training data. 

The ability of the decision function to predict correct labels for unseen samples (test data) is 

know as its generalization. Current machine learning methods such as support vector 

machines (SVM) aim to optimize this property.1 The generalisation of a classifier is 

dependent on a set of parameters (model) that must be chosen to optimise performance. For 

this purpose we adopted a grid search strategy in which a range of parameter values are 

discretized and tested using cross-validation. 



 The SVM2,3 maps its inputs to a high or even infinite, dimensional feature 

space. The output of the SVM is then a linear thresholded function of the mapped inputs in 

the feature space, which may be nonlinear in the original input space. The mapping is 

accomplished by a user-selected reproducing kernel function ),(K xx !  where x and x! are 

input vectors. The kernel function must satisfy Mercer’s conditions.4 Well-known examples of 

kernels include the Gaussian 2
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and the polynomial d)(),(K xxxx !"=!  where d determines the degree. When d = 1 it is called 

the linear kernel and corresponds to the identity map of the input data. A trained SVM 

classifier has the form 
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svm_classifier(x) =  sign " iK(xi,x) + b
i=1
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values of 
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"  and b. Typically, many of the αs will be zero. Those that are non-zero are called 

support vectors and are used to define a separation hyperplane in the transformed feature 

space. Training a SVM is a convex (quadratic) optimisation problem not subject to local 

minima, unlike a multi-layer perceptron. We trained soft-margin SVMs which are practicable 

when data are noisy. In this case the algorithm also minimises the distance of incorrectly 

classified examples to the margin by adjusting a penalty value, C, called the soft-margin 

parameter. 

 

The single layer perceptron5 (SLP) is an artificial neural network with one output 

neuron that computes a linear combination of the values given by the input layer.  The 

discrimination function is given by !
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n

1i

iisign=  where weights w are obtained by 



an iterative learning algorithm designed to reduce the total classification error!
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our study the SLP did not provide an optimal discriminative function, giving an accuracy of 

86.5% in the independent test set (table 3 and fig 1A, blue square). 

 

The multi-layer perceptron6 (MLP) is a generalisation of the SLP with intermediate 

layers of hidden neurons. It tackles the problem of non-linearly separable classes by allowing 

the neurons to process their inputs with a sigmoid function on the activation 

level ( )
a
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=f . In this network the weights are learned by a back-propagation algorithm 

which is a gradient descent rule to minimise the error given by!
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the MLP showed similar generalisation performance to SLP, classifying with an accuracy of 

86.5% (table 3 and figure 1A, orange diamond). 

 

A decision tree learns to classify a dataset of samples D=[X,Y] by aggregating their 

features within a set of nodes organised in a binary tree structure. To find the tree structure, 

sample features are tested according to their discriminative power using a splitting criterion: 

for a given mass peak ki,x  the test Tx ki, <  where T is any test that produces a binary partition 

of dataset D. In the C4.5 (ref. 7) classifier the test thresholds are evaluated by an information-

gain splitting criterion ( ) ( ) | |
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measure of the class to which the sample belongs and z is the number of outcomes of the test 

T.  An iterative algorithm places nodes with increasing information gain from the root to the 



leaves of the tree.  The final tree might be pruned in order to get a more compact 

representation of the classifier.  A testing set sample can be classified by testing its mass peak 

values against those in the nodes of the tree following a path from the root to a leaf with a 

classification output.  The C5.0 algorithm is an extended version of C4.5 that winnows 

irrelevant features and incorporates variable misclassification costs 

(http://www.rulequest.com/). The Alternating Decision Tree8 (ADTree) is a tree with 

additional nodes for predicting values that are summed over a classification path and the final 

output is the sign of this sum. In the TB vs. control dataset (Table 2) the ADTree and the C4.5 

classifiers achieved accuracies of 92.3% and 91.0%, respectively (Table 3 and Fig 1A), but 

relied on AdaBoost9 boosting to achieve such levels of generalisation9 (Table 3). We used 

AdaBoost with 100 iterations for the ADTree and C4.5 classifiers, and boosting with a 

maximum of 10 iterations for the non-commercial version of the C5.0 classifier. 

 

Mass peak cluster selection  

 The Pearson correlation coefficient is defined as 
)(variance)(variance
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where 
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X  is the random variable corresponding to the th

k  component of sample input vectors 

x and Y  is the random variable of output labels. 

The estimate of )k(R  is given by 
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ki,x correspond to value m/z of the mass cluster k of sample i, iy is the class label for sample i 

and m is the number of samples. 
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