
Supplementary appendix
This appendix formed part of the original submission and has been peer reviewed. 
We post it as supplied by the authors. 

Supplement to: Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle 
East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet 2013; 
published online July 5. http://dx.doi.org/10.1016/S0140-6736(13)61492-0.



Inter-human transmissibility of MERS-CoV:

estimation of pandemic risk

WebAppendix

Romulus Breban1, Julien Riou1, Arnaud Fontanet1,2

1Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
2Conservatoire National des Arts et Métiers, Paris, France

Contents

1 The choice of distribution for the number of secondary cases 1

2 Bayesian methodology for estimating R0 2

3 Sensitivity analyses 3

4 Estimation of the MERS-CoV introduction rates 3

1 The choice of distribution for the number of secondary cases

Recent applications of homogeneous branching process theory to the epidemiology of emerging diseases have
used a negative binomial distribution to model the number of secondary cases of an infected individual [1].
This modeling choice has several important benefits such as:

1. The two parameters of the distribution allow for an independent description of the intensity and
heterogeneity of transmission through the distribution average, represented by the basic reproduction
number R0, and variance determined by R0 and the dispersion parameter k. This provides an elegant
modeling framework for transmission with superspreading events;

2. The negative binomial distribution reduces to the Poisson and geometric distributions for various
particular values of the dispersion parameter k.

However, applying the likelihood model based on the negative binomial distribution [1] to MERS-CoV tree
size data, we found that the dispersion parameter k was not resolved by the data and could be very large
(even as large as 1000). Thus, applying Ocam’s razor, we considered k to be essentially infinite, which
parsimoniously reduced the negative binomial distribution to the Poisson distribution. Furthermore, we
note that, in analogy to the case of pre-pandemic SARS, superspreading events may not be common in the
transmission of MERS-CoV. Hence, we believe that our choice of a Poisson distribution for the number of
secondary cases is appropriate for the MERS-CoV dataset that we used.

It should further be noted that R0 results obtained from tree sizes are quite robust to the choice of the
distribution of secondary cases. The average tree size can be written in terms of R0 as

1 + R0 + R2

0
+ R3

0
+ . . . , (1)

independently of the choice of the distribution. In turn, this result has major consequences for estimating R0

from tree sizes. Reference [1] shows that a geometric, Poisson or negative binomial distribution of secondary
cases yields the same (i.e., independent of the dispersion parameter k) maximum likelihood estimation of R0

based on tree sizes.
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2 Bayesian methodology for estimating R0

We analysed MERS-CoV transmission using the theory of homogeneous branching processes. The key
element of this theory is the distribution of cases caused by an infected individual. Its average is the basic
reproduction number of the pathogen R0 and plays a fundamental role for the transmission dynamics. If
R0 < 1, then all transmission trees terminate, otherwise transmission trees may be infinite and the disease
becomes an epidemic. Assuming that the distribution of secondary cases is Poisson (see Sec. 1), we inferred
the R0 of MERS-CoV using Bayesian analysis. We used a flat, non-informative prior from 0 to an arbitrary
large constant M

π(R0) = 1/M, (2)

where later, in the formula of the posterior distribution, we take the limit M → ∞. The likelihood was
constructed as follows. We first calculated the probability that a branching tree has size n, given that the
distribution of secondary cases is Poisson with average R0 [1]

p(n, R0) =
(R0n)n−1 exp(−R0n)

n!
. (3)

Then, the likelihood of observing a set of trees T can be written as [1]

L(T|R0) =

∞∏
n=1

[p(n, R0)]
sn (4)

where sn is the number of observations of trees of size n in the dataset T . Finally, we obtained the posterior
distribution for R0, combining the prior distribution π(R0) and the likelihood L(T|R0) according to Bayes
rule

π̂(R0|T) =
L(T|R0)π(R0)∫

∞

0
L(T|R0)π(R0)dR0

M→∞

−−−−→
L(T|R0)∫

∞

0
L(T|R0)dR0

. (5)

It is important to note that, according to the above equation, the maximum likelihood and most probable
Bayesian estimates of R0 are identical.

The posterior distribution π̂(R0|T) allows for the calculation of the expected R0 value and its correspond-
ing confidence interval, according to the dataset T. Of note, analysis of the MERS-CoV dataset yields that
the maximum likelihood estimate of R0 and expectation of the posterior R0-distribution in the Bayesian
analysis are very close (within 0.02), owing to the fact that the posterior distribution π̂(R0|T) is unimodal
and highly symmetric.

We further used Bayesian analysis to understand the impact of future MERS-CoV outbreaks and compute
the probability that R0 exceeds 1 as a function of the tree size which would be observed next. In particular,
we performed the Bayesian analysis adding a hypothetical tree to the dataset T and then using the resulting
posterior distribution to compute

∫
∞

1

π̂(R0|T
′)dR0, (6)

for each hypothetical tree size, where T
′ denotes the extended dataset. This methodology can be adapted

straightforwardly to the case where the hypothetical data represents a number of secondary cases by simply
rewriting the likelihood as

L′(T′|R0) = L(T|R0)f (7)

where f is the probability mass function of the Poisson distribution evaluated at the hypothetical number
of secondary cases.
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3 Sensitivity analyses

We ran two sets of sensitivity analysis. First, we analyzed the variation of R0 with changing the size of the
Jordanian cluster between 2 (the number of confirmed cases) and 13 (the total number of confirmed and
probable cases). The change in the expected R0 in both scenarios was less than 0.07, not significant when
compared to the amplitudes of the corresponding 95% confidence intervals.

Second, we ran a sensitivity analysis based on the outstanding event of six secondary cases caused by
patient C of the Al Hasa cluster in the dialysis ward [2]. Hence, removing this event, we re-evaluated R0

under both scenarios. The main rational for these computations is that the outstanding transmission event
might be unlikely to repeat. We found that the expected R0 changed by very little (by less than 0.1 for
scenario 1 and 0.01 for scenario 2), confirming the robustness of our results.

4 Estimation of the MERS-CoV introduction rates

The rate of MERS-CoV introductions into the human population was calculated from the estimated number
of index patients over the period of data collection (see Table 1 in the main text). Corresponding confidence
intervals were assigned assuming that introduction events are rare events and follow the Poisson statistics.
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