

# Supporting Information

## A Stable Calcium Alumanyl

Ryan J. Schwamm, Martyn P. Coles, Michael S. Hill,\* Mary F. Mahon, Claire L. McMullin,\* Nasir A. Rajabi, and Andrew S. S. Wilson

ange\_201914986\_sm\_miscellaneous\_information.pdf

## **Supporting Information**

## General

All manipulations were carried out using standard Schlenk line and glovebox techniques under an inert atmosphere of argon. NMR spectra were recorded on an Agilent ProPulse spectrometer at 298 K operating at 500 MHz (<sup>1</sup>H), 126 MHz (<sup>13</sup>C) and 160 MHz (<sup>11</sup>B). The spectra were referenced relative to residual protio solvent resonances. Elemental analyses were performed at Elemental Microanalysis Ltd., Okehampton, Devon, UK. Solvents (toluene, hexane) were dried by passage through a commercially available solvent purification system, under nitrogen and stored in ampoules over 4 Å molecular sieves. C<sub>6</sub>D<sub>6</sub> was purchased from Sigma-Aldrich, dried over a potassium mirror before vacuum distillation and storage under argon over molecular sieves. DippNH<sub>2</sub> and {CH<sub>2</sub>SiMe<sub>2</sub>Cl}<sub>2</sub> were purchased from Sigma-Aldrich and (COT),<sup>[1]</sup>  $[(^{\text{Dipp}}\text{BDI})Mg(nBu)],^{[2]}$ distilled prior to use. Cyclooctatetraene [(<sup>Dipp</sup>BDI)Ca(N{SiMe<sub>3</sub>}<sub>2</sub>)]<sup>[3]</sup> and [HNEt<sub>3</sub>][BPh<sub>4</sub>]<sup>[4]</sup> were synthesized by literature procedures. All other reagents were purchased from Sigma-Aldrich and used without further purification.

#### **Synthetic Procedures**

## Synthesis of $\{CH_2SiMe_2N(Dipp)H\}_2$ ( $\{SiN^{Dipp}\}H_2, 9$ ) and $\{CH_2SiMe_2\}_2NDipp$ (9)

A solution of *n*BuLi in hexane (23.4 mL of a 2.5M solution, 0.0584 mmol.) was added dropwise to a pre-cooled solution of DippNH<sub>2</sub> (9.4 g, 10 mL, 0.0531 mmol) in hexane (60 mL) at 0 °C. The resulting colorless suspension was stirred at room temperature for 1.5 hours followed by the dropwise addition of a solution of {CH<sub>2</sub>SiMe<sub>2</sub>Cl}<sub>2</sub> (5.7 g, 0.0266 mmol) in hexane (40 mL) at 0 °C. The resulting suspension was stirred for 12 hours at room temperature then allowed to settle for 3 hours and filtered to give a clear colorless solution. Removal of the volatiles in *vacuo* gave a colorless oil, which was 85 % **9** by <sup>1</sup>H NMR spectroscopy. Distillation of the oil at 100 °C at 2 x  $10^{-2}$  mbar results in the isolation of the cyclic co-product 9' as the distillate and clean 9 as the distilland. Yield 9: 7.40 g, 56 %. NMR data for 9: <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>): δ 7.11 (m, 6H, C<sub>6</sub>H<sub>3</sub>), 3.49 (sept, J = 8.0 Hz, 4H, CHMe<sub>2</sub>), 2.15 (s, 2H, NH), 1.23 (d, J  $= 8.0, 24H, CHMe_2$ , 0.62 (s, 4H, SiCH<sub>2</sub>), 0.14 (s, 12H, SiMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>): δ 144.4, 139.9, 124.2, 123.4 (C<sub>6</sub>H<sub>3</sub>), 28.5, 23.9 (CHMe<sub>2</sub> and CHMe<sub>2</sub>), 9.8 (SiCH<sub>2</sub>), -1.5  $(SiMe_2)$ . NMR data for 9': <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.11 (m, 3H, C<sub>6</sub>H<sub>3</sub>), 3.41 (sept, J = 7.5 Hz, 2H, CHMe<sub>2</sub>), 1.22 (d, J = 7.5, 12H, CHMe<sub>2</sub>), 0.93 (s, 4H, SiCH<sub>2</sub>), 0.11 (s, 12H, SiMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>): δ 147.7, 138.8, 124.9, 124.4 (C<sub>6</sub>H<sub>3</sub>), 27.4, 26.2 (CHMe<sub>2</sub> and CHMe<sub>2</sub>), 9.1 (SiCH<sub>2</sub>), 1.0 (SiMe<sub>2</sub>).



Figure S1. <sup>1</sup>H NMR spectrum of  ${SiN^{Dipp}}H_2(9)$  in C<sub>6</sub>D<sub>6</sub> (500 MHz).



Figure S2.  ${}^{13}C{}^{1}H$  NMR spectrum of  ${SiN^{Dipp}}H_2(9)$  in C<sub>6</sub>D<sub>6</sub> (125 MHz).



Figure S3. <sup>1</sup>H NMR spectrum of  $\{CH_2SiMe_2\}_2NDipp$  (9') in  $C_6D_6$  (500 MHz).



Figure S4. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $\{CH_2SiMe_2\}_2NDipp$  (9') in C<sub>6</sub>D<sub>6</sub> (125 MHz).



**Figure S5.** ORTEP representation of the N2-containing molecule of compound **9**<sup>'</sup> (30% probability ellipsoids). Hydrogen atoms removed for clarity.

A solution of AlMe<sub>3</sub> in hexane (1.51 mL of a 2 M solution, 3.02 mmol) was added dropwise to a stirring solution of **9** (1.50 g, 3.02 mmol) in toluene (30 mL) at room temperature. Upon addition, the solution bubbled and was stirred for 48 hours at room temperature under a weak flow of argon, followed by warming to 60 °C and stirring for 12 hours. The resulting colorless suspension was cooled to room temperature and the volatile components were removed *in vacuo* to give **10** as a colorless waxy solid. Yield: 1.52 g, 94 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ 7.04 (m, 6H, C<sub>6</sub>H<sub>3</sub>), 3.75 (sept, J = 8.0 Hz, 4H, CHMe<sub>2</sub>), 1.29, 1.20 (d, J = 8.0, 12H, CHMe<sub>2</sub>), 1.05 (s, 4H, SiCH<sub>2</sub>), 0.18 (s, 12H, SiMe<sub>2</sub>), -1.08 (s, 3H, AlMe). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  145.7, 143.3, 124.5, 123.9 (C<sub>6</sub>H<sub>3</sub>), 28.4, 24.9, 24.4 (CHMe<sub>2</sub> and CHMe<sub>2</sub>), 13.4 (SiCH<sub>2</sub>), 0.0 (SiMe<sub>2</sub>). <sup>13</sup>C NMR resonance for AlMe not observed.



Figure S6. <sup>1</sup>H NMR spectrum of Al{SiN<sup>Dipp</sup>}Me (10) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



Figure S7. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of Al{SiN<sup>Dipp</sup>}Me (10) in C<sub>6</sub>D<sub>6</sub> (125 MHz).

#### Synthesis of Al{SiN<sup>Dipp</sup>}I (11)

In a 250 mL Schlenk tube, iodine (2.08 g, 8.20 mmol) was added to a stirring solution of **10** (4.38 g, 8.20 mmol) in toluene (40 mL) resulting in the immediate formation of a red solution. The Schlenk tube was fitted with a cold-finger and the solution was refluxed for 4 days under a weak flow of argon. The resulting pale orange solution was allowed to cool to room temperature and the volatile components were removed *in vacuo* to give a waxy solid. Extraction into hexane and filtration gave a clear orange solution. Concentration of the orange solution followed by storage at -30 °C gave **11** as colorless crystals. Yield 4.45 g, 84 %. Anal. Calcd. for  $C_{30}H_{50}AIIN_2Si_2$  (*648.79*): C, 55.54; H, 7.77; N, 4.32 %. Found: C, 54.98; H, 7.79, N, 4.38 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.07 (m, 6H, C<sub>6</sub>H<sub>3</sub>), 3.64 (sept, J = 8.0 Hz, 4H, CHMe<sub>2</sub>), 1.38, 1.27 (d, J = 8.0, 12H, CHMe<sub>2</sub>), 1.00 (s, 4H, SiCH<sub>2</sub>), 0.17 (s, 12H, SiMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  145.5, 142.0, 125.2, 124.2 (*C*<sub>6</sub>H<sub>3</sub>), 28.9, 25.2, 24.6 (*C*HMe<sub>2</sub> and CHMe<sub>2</sub>), 13.2 (SiCH<sub>2</sub>), 0.15 (SiMe<sub>2</sub>).



Figure S8. <sup>1</sup>H NMR spectrum of Al{ $SiN^{Dipp}$ }I (11) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



Figure S9.  ${}^{13}C{}^{1}H$  NMR spectrum of Al{SiN<sup>Dipp</sup>}I (11) in C<sub>6</sub>D<sub>6</sub> (125 MHz).



Figure S10. ORTEP representation of compound 11 (30% probability ellipsoids). Hydrogen atoms removed for clarity.

#### Synthesis of $[Al{SiN^{Dipp}}K]_2$ (12)

A solution of **11** (4.68 g, 7.24 mmol) in hexane (30 mL) was stirred on mirrored K (0.85 g, 0.0217 mmol) for 3 days at room temperature resulting in the gradual color change from colorless to yellow and the formation of a grey precipitate. The resulting clear dark yellow solution was filtered through a cannula filter, concentrated to *ca*. 15 mL and stored at -30 °C for 24 hours to give **12** as yellow blocks. A second crop of small yellow crystals was obtained by further concentration of the mother liquor and storage at -30 °C. Yield (combined): 3.2 g, 79 %. X-ray quality crystals were grown from a concentrated Et<sub>2</sub>O solution at -30 °C. Anal. Calcd. for C<sub>60</sub>H<sub>100</sub>Al<sub>2</sub>K<sub>2</sub>N<sub>4</sub>Si<sub>4</sub> (*1121.96*): C, 64.23; H, 8.98; N, 4.99 %. Found: C, 63.67; H, 9.02, N, 5.03 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  6.89 (d, J = 8.0 Hz, 4H, *m*-C<sub>6</sub>H<sub>3</sub>), 6.78 (t, J = 8.0 Hz, 2H, *p*-C<sub>6</sub>H<sub>3</sub>), 3.97 (sept, J = 8.0 Hz, 4H, CHMe<sub>2</sub>), 1.29 (d, J = 8.0, 12H, CHMe<sub>2</sub>), 1.12 (s, 4H, SiCH<sub>2</sub>), 1.06 (d, J = 8.0, 12H, CHMe<sub>2</sub>), 0.22 (s, 12H, SiMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  151.2, 149.0, 122.7, 122.6 (*C*<sub>6</sub>H<sub>3</sub>), 27.9, 25.1, 24.1 (*C*HMe<sub>2</sub> and CHMe<sub>2</sub>), 14.4 (SiCH<sub>2</sub>), \* 1.7 (SiMe<sub>2</sub>). \*overlaps with hexane solvent impurity



Figure S11. <sup>1</sup>H NMR spectrum of [Al{SiN<sup>Dipp</sup>}K]<sub>2</sub> (12) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



Figure S12.  ${}^{13}C{}^{1}H$  NMR spectrum of  $[Al{SiN^{Dipp}}K]_2$  (12) in  $C_6D_6$  (125 MHz).

#### Synthesis of $(^{Dipp}BDI)Mg(\mu-Ph)_2BPh_2$ (13)

A suspension of [HNEt<sub>3</sub>][BPh<sub>4</sub>] (1.05 g, 2.1 mmol) in toluene (40 mL) was added dropwise to a stirring solution of [(<sup>Dipp</sup>BDI)Mg(*n*Bu)] (0.92 g, 2.2 mmol) in toluene (40 mL). The resulting colorless suspension was stirred at room temperature for 12 hours followed by the removal of the volatile components *in vacuo*. Extraction into hot toluene (approx. 60 °C) and filtration gave a colorless solution. Removal of the volatiles *in vacuo* gave **13** as a colorless solid. Colorless crystals suitable for characterization by X-ray diffraction were obtained by recrystallization from a concentrated toluene solution at -30 °C. Yield: 0.86 g, 53 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.70 (br, 8H, C<sub>6</sub>H<sub>5</sub>), 7.34 – 6.90 (m, 18H, C<sub>6</sub>H<sub>5</sub> and C<sub>6</sub>H<sub>3</sub>), 4.54 (s, 1H, γ-CH), 2.71, 1.92 (br, 2H, CHMe<sub>2</sub>), 1.30 (s, 6H, CMe), 1.25 – 0.92 (br, 12H, CHMe<sub>2</sub>),\* 0.90 (d, J = 8.0, 12 H, CHMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  170.5 (CMe), 163.0, 144.4, 144.2, 139.0, 126.6, 124.0 (C<sub>6</sub>H<sub>5</sub> and C<sub>6</sub>H<sub>3</sub>), 95.8 (γ-CH), 30.9, 28.8, 25.3 (CHMe<sub>2</sub>). <sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  -6.64. \*overlapping with hexane solvent impurity



Figure S13. <sup>1</sup>H NMR spectrum of  $(^{Dipp}BDI)Mg(\mu-Ph)_2BPh_2$  (13) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



**Figure S14.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $(^{Dipp}BDI)Mg(\mu-Ph)_2BPh_2$  (13) in C<sub>6</sub>D<sub>6</sub> (125 MHz).



**Figure S15.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum of  $(^{Dipp}BDI)Mg(\mu-Ph)_2BPh_2$  (13) in C<sub>6</sub>D<sub>6</sub> (160 MHz).



Figure S16. ORTEP representation of compound 13 (30% probability ellipsoids). Hydrogen atoms removed for clarity.

#### Synthesis of $(BDI^{Dipp})Ca(\mu-Ph)_2BPh_2)$ (14)

A suspension of [HNEt<sub>3</sub>][BPh<sub>4</sub>] (1.29 g, 3.06 mmol) in toluene (60 mL) was added dropwise to a stirring solution of [(<sup>Dipp</sup>BDI)CaN{SiMe<sub>3</sub>}<sub>2</sub>] (1.90 g, 3.06 mmol) in toluene (60 mL). The resulting colorless suspension was stirred at room temperature for 12 hours followed by the removal of the volatile components *in vacuo*. Extraction into hot toluene (approx. 80 °C) and filtration gave a colorless solution. Upon cooling to room temperature, colorless crystals of **14** began to form which were isolated by filtration. A second crop of **14** was obtained by concentrating the mother liquor and cooling to -18 °C for 24 hours. Yield (combined): 1.95 g, 82 %. Anal. Calcd. for  $C_{53}H_{61}BCaN_2$  (*776.95*): C, 81.93; H, 7.91; N, 3.61 %. Found: C, 81.87; H, 7.41, N, 3.71 %. <sup>1</sup>H NMR (500 MHz,  $C_6D_6$ ):  $\delta$  8.02 (br, 8H,  $C_6H_5$ ), 7.13 – 7.00 (m, 18H,  $C_6H_5$  and  $C_6H_3$ ), 4.25 (s, 1H,  $\gamma$ -CH), 2.78, 2.35 (br, 2H, CHMe<sub>2</sub>), 1.33 (s, 6H, CMe), 1.25 – 1.10 (br, 12H, CHMe<sub>2</sub>), 1.00 (d, J = 8.0, 12 H, CHMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H}</sup> NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ 166.6 (CMe), 146.6, 135.1 (br), 125.3, 124.2 (*C*<sub>6</sub>H<sub>5</sub> and *C*<sub>6</sub>H<sub>3</sub>),\* 88.4 ( $\gamma$ -CH), 25.7, 25.1, 25.0 (CHMe<sub>2</sub>, br). <sup>11</sup>B NMR (160 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  -4.90. \*several resonances not observed due to the poor solubility of (<sup>Dipp</sup>BDI)Ca(µ-Ph)<sub>2</sub>BPh<sub>2</sub>) in C<sub>6</sub>D<sub>6</sub> and splitting of the <sup>13</sup>C resonances adjacent to the <sup>11</sup>B centre.



Figure S17. <sup>1</sup>H NMR spectrum of  $(^{Dipp}BDI)Ca(\mu-Ph)_2BPh_2$  (14) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



Figure S18. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $(^{Dipp}BDI)Ca(\mu-Ph)_2BPh_2$  (14) in C<sub>6</sub>D<sub>6</sub> (125 MHz).



Figure S19. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum of  $(^{Dipp}BDI)Ca(\mu-Ph)_2BPh_2$  (14) in C<sub>6</sub>D<sub>6</sub> (160 MHz).



Figure S20. ORTEP representation of compound 14 (30% probability ellipsoids). Hydrogen atoms removed for clarity.

#### Synthesis of {SiN<sup>Dipp</sup>}Al-Mg(BDI<sup>Dipp</sup>) (15)

A solution of **13** (0.341 g, 0.45 mmol) in toluene (30 mL) was added dropwise to a stirring solution of **12** (0.250 g, 0.45 mmol) in toluene (10 mL). The resulting suspension was stirred at room temperature for 12 hours after which time a colorless precipitate had formed and the solution had become colorless. The suspension was filtered to give a clear colorless solution. Concentration of the solution to 20 mL and storage at room temperature resulted in the formation of colorless crystals of **15**. Yield 0.175 g, 40 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.13 – 7.01 (m, 12H, C<sub>6</sub>H<sub>3</sub>), 4.73 (s, 1H,  $\gamma$ -CH), 3.84 (br, 4H, CHMe<sub>2</sub>), 3.05 (br, 2H, CHMe<sub>2</sub>), 2.67 (br, 2H, CHMe<sub>2</sub>), 1.38 (s, 6H, CMe), 1.35 – 0.71 (br m, 52H, CHMe<sub>2</sub> and SiCH<sub>2</sub>), 0.46, -0.24 (br s, 6H, SiMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ \* 169.8 (CMe), 126.2, 124.1, 124.0, 123.6 (C<sub>6</sub>H<sub>3</sub>),\* 96.8 ( $\gamma$ -CH), 28.9, 28.6, 27.9 (br), 25.9, 25.3, 25.2, 24.6 (CMe, CHMe<sub>2</sub> and CHMe<sub>2</sub>), 13.7 (SiCH<sub>2</sub>), 3.3 (SiMe<sub>2</sub>).\*due to the poor solubility of **15** in C<sub>6</sub>D<sub>6</sub> and fluxional processes in solution, several C<sub>6</sub>H<sub>3</sub> resonances and one SiMe<sub>2</sub> resonance are not observed.



Figure S21. <sup>1</sup>H NMR spectrum of  $\{SiN^{Dipp}\}Al-Mg(^{Dipp}BDI)$  (15) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



**Figure S23.** Stacked variable temperature <sup>1</sup>H NMR spectra of {SiN<sup>Dipp</sup>}Al-Mg(<sup>Dipp</sup>BDI) (15) in C<sub>7</sub>D<sub>8</sub> (400 MHz).

#### Synthesis of {SiN<sup>Dipp</sup>}Al-Ca(<sup>Dipp</sup>BDI) (16)

A solution of **14** (0.69 g, 0.89 mmol) in toluene (30 mL) was added dropwise to a stirring solution of **12** (0.50 g, 0.89 mmol) in toluene (10 mL). The resulting suspension was stirred at room temperature for 12 hours after which a fine colorless precipitate had formed. The suspension was filtered to give a clear yellow solution. Removal of the volatiles gave **16** as a yellow powder which was washed with a small amount of cold hexane and dried under vacuum. Crystals (yellow blocks) suitable for single crystal X-ray diffraction were grown from a saturated hexane solution stored at -30 °C. Yield 0.61 g, 70 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.13 – 7.04 (m, 12H, C<sub>6</sub>H<sub>3</sub>), 4.59 (s, 1H,  $\gamma$ -CH), 3.86 (br, 4H, CHMe<sub>2</sub>), 3.09 (br, 2H, CHMe<sub>2</sub>), 2.90 (br, 2H, CHMe<sub>2</sub>), 1.49 (s, 6H, CMe), 1.60 – 1.10 (br m, 52H, CHMe<sub>2</sub> and SiCH<sub>2</sub>),\* 0.51, -0.04 (br s, 6H, SiMe<sub>2</sub>). \*overlaps with hexane solvent impurity. <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ \* 166.5 (CMe), 125.5, 123.9, 123.2 (C<sub>6</sub>H<sub>3</sub>),\* 95.0 ( $\gamma$ -CH), 32.0, 28.3, 28.1, 25.2, 24.8 (br), 24.7, 24.4, 23.8, 23.1 (CMe, CHMe<sub>2</sub> and CHMe<sub>2</sub>), 14.1 (SiCH<sub>2</sub>), 2.3 (SiMe<sub>2</sub>).\*due to the poor solubility of **16** in C<sub>6</sub>D<sub>6</sub> and fluxional processes in solution, several C<sub>6</sub>H<sub>3</sub> resonances and one SiMe<sub>2</sub> resonance are not observed.



Figure S24. <sup>1</sup>H NMR spectrum of  ${SiN^{Dipp}}Al-Ca(^{Dipp}BDI)$  (16) in C<sub>6</sub>D<sub>6</sub> (298K, 500 MHz).



Figure S25. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $\{SiN^{Dipp}\}Al-Ca(^{Dipp}BDI)$  (16) in C<sub>6</sub>D<sub>6</sub> (298K, 125 MHz).



**Figure S26.** Stacked variable temperature <sup>1</sup>H NMR spectra of  $\{SiN^{Dipp}\}Al-Ca(^{Dipp}BDI)$  (16) in C<sub>7</sub>D<sub>8</sub> (400 MHz).

## Synthesis of $[{SiN^{Dipp}}Al - {\kappa^2 - O(CH_2)_4}][(THF)_3Ca(^{Dipp}BDI)]$ (17)

THF (0.05 mL, 0.62 mmol) was added dropwise to a solution of 16 (0.062 g, 0.063 mmol) in methylcyclohexane (3 mL) resulting in an immediate color change from yellow to colorless. The solution was allowed to sit at room temperature for 2 days after which colorless crystals of **17** had formed. Yield 0.049 g, 61 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>): δ 7.32 – 7.06 (m, 9H,  $C_6H_3$ ), 6.88, 6.78 (dd, 1H, *m*- $C_6H_3$ ), 4.57 (s, 1H,  $\gamma$ -CH), 4.38 (t, J = 13.3 Hz, 1H, Al-OCH<sub>2</sub>), 4.26,\* 4.22,\* 3.96, 3.82 (sept, J = 8.0 Hz, 1H, CHMe<sub>2</sub>), 3.77 (m, 1H, Al-OCH<sub>2</sub>), 3.57 (m, 8H,  $CH_2$ -THF), 3.32 (m, 2H,  $CHMe_2$ ), 2.97, 2.89 (sept, J = 8.0 Hz, 1H,  $CHMe_2$ ), 1.77 (br d, J = 13.3 Hz, 1H, OCH<sub>2</sub>CH<sub>2</sub>), 1.64 (s, 3H, CMe), 1.61 (d, J = 8.0 Hz, 3H, CHMe<sub>2</sub>), 1.58 (s, 3H, *CMe*), 1.55 (d, J = 8.0 Hz, 3H, CHMe<sub>2</sub>), 1.54 (d, J = 8.0 Hz, 6H, CHMe<sub>2</sub>), 1.47, 1.45 (d, J = 8.0Hz, 3H, CHMe<sub>2</sub>), 1.42 (m, 8H, CH<sub>2</sub>-THF), 1.38 (d, J = 8.0 Hz, 3H, CHMe<sub>2</sub>), 1.26 (d, J = 8.0 Hz, 6H, CHMe<sub>2</sub>), 1.17 (m, 2H, Al-CH<sub>2</sub>CH<sub>2</sub>), 1.11 (d, J = 8.0 Hz, 3H, CHMe<sub>2</sub>), 1.01 (d, J = 8.0 Hz, 3H, CHMe<sub>2</sub>), 0.98 (d, J = 8.0 Hz, 6H, CHMe<sub>2</sub>), 0.86 (m, 6H, CHMe<sub>2</sub>), 0.78 (m, 1H, Al-CH<sub>2</sub>CH<sub>2</sub>), 0.59, 0.54 (s, 3H, SiMe<sub>2</sub>), 0.42 (dd, 6H, Si-CH<sub>2</sub>), 0.36 (m, 1H, Al-CH<sub>2</sub>CH<sub>2</sub>), -0.04, -0.19 (s, 3H, SiMe<sub>2</sub>), -0.43 (td, J = 13.3 Hz, 1H, Al-CH<sub>2</sub>CH<sub>2</sub>). \*overlapping resonances <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>): δ 168.3 166.5 (*C*Me), 155.8, 154.0, 152.5, 149.4, 148.6, 147.6, 146.8, 146.1, 143.9, 141.0, 126.1, 125.9, 125.7, 125.5, 124.8, 124.4, 124.2, 123.1, 122.8, 122.6, 120.5 (C<sub>6</sub>H<sub>3</sub>), 93.8 (γ-CH), 67.9 (CH<sub>2</sub>-THF), 63.6 (Al-OCH<sub>2</sub>), 35.7, 33.0, 30.7, 30.3, 28.1, 28.0, 27.9, 27.6, 27.0, 26.9, 26.8, 26.8, 26.7, 26.4, 26.2, 25.8, 25.8, 25.7, 25.6, 25.4, 25.3, 25.1, 25.0, 24.3, 23.1, 22.6 (Al-OCH<sub>2</sub>CH<sub>2</sub>, AlCH<sub>2</sub>CH<sub>2</sub>, CMe, CHMe<sub>2</sub> and CHMe<sub>2</sub>), 14.7, 13.6 (SiCH<sub>2</sub>), 5.1, 4.3, 2.3, 1.6 (SiMe<sub>2</sub>). \* <sup>13</sup>C NMR resonance not observed for AlCH<sub>2</sub>CH<sub>2</sub>.



Figure S27. <sup>1</sup>H NMR spectrum of  $[{SiN^{Dipp}}Al - {\kappa^2 - O(CH_2)_4}][(THF)_3Ca(^{Dipp}BDI)]$  (17) in  $C_6D_6$  (500 MHz).



**Figure S28.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [ $\{SiN^{Dipp}\}Al-\{\kappa^2-O(CH_2)_4\}$ ][(THF)<sub>3</sub>Ca(<sup>Dipp</sup>BDI)] (**17**) in C<sub>6</sub>D<sub>6</sub> (125 MHz).



 $O(CH_2)_4$ ][(THF)<sub>3</sub>Ca(<sup>Dipp</sup>BDI)] (**17**) in C<sub>6</sub>D<sub>6</sub>.



 $O(CH_2)_4$ ][(THF)<sub>3</sub>Ca(<sup>Dipp</sup>BDI)] (**17**) in C<sub>6</sub>D<sub>6</sub>.



**Figure S31.** <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of  $[{SiN^{Dipp}}Al - {\kappa^2 - O(CH_2)_4}][(THF)_3Ca(^{Dipp}BDI P)]$  (17) in C<sub>6</sub>D<sub>6</sub>.



**Figure S32.** ORTEP representation (30% probability ellipsoids) of the ion paired structure of compound **17** Hydrogen atoms omitted for clarity.

### Synthesis of {SiN<sup>Dipp</sup>}Al-COT-Ca(<sup>Dipp</sup>BDI) (18)

1,3,5,7-cyclooctatetraene (2.9 μL, 0.025 mmol) was added to a J. Youngs NMR tube charged with **16** (0.025 g, 0.025 mmol) in C<sub>6</sub>D<sub>6</sub> (0.5 mL). The resulting solution was warmed to 40 °C was stirred at room temperature for 12 hours. Upon cooling to room temperature, colorless crystals of **18** began to form which were isolated by decanting the mother liquor and drying *in vacuo*. Yield 0.018 g, 67 %. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.13 – 7.04 (m, 12H, C<sub>6</sub>H<sub>3</sub>), 5.71 (s, 8H, C<sub>8</sub>H<sub>8</sub>), 4.42 (s, 1H, γ-CH), 3.55 (br, 4H, CHMe<sub>2</sub>), 2.58 (br, 4H, CHMe<sub>2</sub>), 1.46 (s, 6H, CMe), 1.33, 1.23 (d, J = 8.0 Hz, 12H, CHMe<sub>2</sub>), 1.10 (br m, 12H, CHMe<sub>2</sub>), 1.06 (d, J = 8.0 Hz, 12H, CHMe<sub>2</sub>), 0.09 (br s, 12H, SiMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  165.5 (*C*Me), 147.3, 144.9, 144.6, 141.5, 124.7, 124.4, 123.9, 123.4 (*C*<sub>6</sub>H<sub>3</sub>), 94.2 (γ-CH), 93.6 (*C*<sub>8</sub>H<sub>8</sub>) 29.1, 28.3, 25.7, 25.1, 24.8, 24.6, 24.4 (*CMe*, CHMe<sub>2</sub> and CHMe<sub>2</sub>), 13.9 (SiCH<sub>2</sub>), 1.1 (SiMe<sub>2</sub>).



Figure S33. <sup>1</sup>H NMR spectrum of  ${SiN^{Dipp}}Al-COT-Ca(^{Dipp}BDI)$  (18) in C<sub>6</sub>D<sub>6</sub> (500 MHz).



Figure S34. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  ${SiN^{Dipp}}Al-COT-Ca(^{Dipp}BDI)$  (18) in C<sub>6</sub>D<sub>6</sub> (125 MHz).

#### Single Crystal X-ray Diffraction analysis.

Single Crystal X-ray diffraction data for compounds **9**' and **11 - 18** were collected using Cu*K* $\alpha$  ( $\lambda = 1.54184$  Å) on a SuperNova, Dual Cu at zero, EosS2 diffractometer. The crystals were maintained at 150 K during data collections. All structures were solved using Olex2,<sup>[5]</sup> and refined with ShelXL<sup>[6]</sup> using Least Squares minimisation.

Two molecules of the complex are present in the asymmetric unit of 9'.. The entity based on N2 is entirely ordered. However, in the molecule based on N1, atoms Si1, Si2 and C13-C18 were treated for 50:50 disorder. Chemically comparable distances were restrained to being similar in the disordered components.

The asymmetric unit in **12** includes one molecule of the aluminum/potassium containing complex and one molecule of diethyl ether. The latter was disordered in an 85:15 ratio, but successfully modelled with the inclusion of some distance and ADP restraints. The hydrogens attached to C21, C35, C44 and C59 in the main feature were located and each refined at a distance of 0.98Å from the relevant parent atom.

In 13, the asymmetric unit contains one molecule of the organometallic complex and a molecule of toluene with half site occupancy. The latter is disordered with itself about a crystallographic inversion centre – and was ultimately modelled using the FragmentDB plugin for Olex2 (a GUI-specific implementation of the invaluable DSR refinement package by Kratzert *et al.*<sup>[7]</sup>). The hydrogen atoms attached to the coordinated phenyl ring were located and refined at a distance of 0.98 Å from the relevant parent atoms.

Compound 14 also contains one, guest, benzene molecule in the asymmetric unit.

In addition to one molecule of the target compound, the asymmetric unit in the structure of **15** is host to 2 regions of solvent, each of which approximates to half of a molecule of toluene. The latter moieties both straddle space group symmetry elements and are (necessarily) disordered. Symmetry related disorder normally lends itself to being well resolved with careful modelling, but the situation here was complicated by more extensive disorder, as there are extended channels in the gross structure in which the solvent resides. Ultimately, the guest toluene has been addressed *via* the solvent mask algorithm available in Olex-2, and an allowance for same made in the formula as presented. C41 and C42 in the main feature were treated for 50:50 disorder and associated C-C distance restraints were employed in this isopropyl group.

The crystal of compound **16** selected was deliberately large for good reason. In particular, several previous data collections led us to conclude that the crystals used were reacting over the duration of these experiments. The choice of a larger sample, in this instance, facilitated a speedy data collection and the added bulk of the larger sample was expected to confine reaction to the surface. This strategy appears to have been successful, given that there is no evidence of unassigned electron density in the Ca-Al region. Refinement was unremarkable and the asymmetric unit was seen to host half of one molecule of benzene as well as one molecule of the compound under study.

The asymmetric unit in **17** contains one cation and one anion. Disorder was prevalent in both moieties, but more extensive in the former. In the latter, disorder was limited to the two isopropyl groups containing C7 and C25 (each disordered in a 60:40 ratio). In the cation, however, all atoms in the THF ligands based on O2 and O4, the isopropyl methyl groups containing C42 and C43, and the *Dipp* functionality based on C52 were also modelled as being split over two sites in a component ratio of 60:40. Lastly, C69 in the THF ligand based on O3 was found to be disordered in a 65:35 split. Similarity distance restraints and ADP restraints were used in disordered regions to assist convergence. Furthermore, the minor component of the phenyl ring based on C52 was treated as a rigid hexagon.

One molecule of the complex and one molecule of benzene comprise the asymmetric unit in the structure of **18**. Atoms Si1, C13, C14, C15 and C16 were modelled to take account of 55:45 disorder, while the isopropyl group based on C62 was treated for 50:50 disorder. Distance and ADP restraints were employed in disordered regions to assist convergence. The hydrogen atoms attached to C32 and C33 were located and refined at a distance of 0.93 Å from the relevant parent carbon atoms. Unfortunately, the solvent was disordered to a large extent. Ultimately, this was treated via the solvent-mask algorithm available in Olex,<sup>[5]</sup> and allowance for same was made in the unit cell contents as presented.

| Compound                                    | 9'                                | 11                                | 12                               | 13                                | 14                                                |
|---------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------------------------|
| Empirical formula                           | $C_{36}H_{66}N_2Si_4$             | $C_{30}H_{50}A1IN_2Si_2$          | $C_{64}H_{110}Al_2K_2N_4OSi_4$   | C56.5H65BMgN2                     | C <sub>59</sub> H <sub>67</sub> BCaN <sub>2</sub> |
| Formula weight                              | 639.26                            | 648.78                            | 1196.07                          | 807.22                            | 855.03                                            |
| Temperature/K                               | 150.00(10)                        | 150.00(10)                        | 150.00(10)                       | 150.01(10)                        | 150.01(10)                                        |
| Crystal system                              | triclinic                         | monoclinic                        | monoclinic                       | monoclinic                        | monoclinic                                        |
| Space group                                 | <i>P</i> -1                       | $P2_{1}/c$                        | <i>P</i> 2 <sub>1</sub>          | $P2_{1}/n$                        | $P2_{1}/n$                                        |
| a/Å                                         | 9.9684(4)                         | 8.96893(5)                        | 10.66086(9)                      | 11.6955(2)                        | 15.1700(2)                                        |
| b/Å                                         | 13.5669(6)                        | 19.60916(13)                      | 17.75185(14)                     | 15.0628(2)                        | 16.9006(2)                                        |
| c/Å                                         | 15.8961(7)                        | 19.34132(12)                      | 19.60288(13)                     | 26.6703(4)                        | 19.1592(2)                                        |
| $\alpha/^{\circ}$                           | 71.271(4)                         | 90                                | 90                               | 90                                | 90                                                |
| β/°                                         | 89.165(3)                         | 99.6605(6)                        | 94.6395(7)                       | 101.833(1)                        | 92.3230(10)                                       |
| <i>γ</i> /°                                 | 75.145(4)                         | 90                                | 90                               | 90                                | 90                                                |
| Volume/Å <sup>3</sup>                       | 1962.51(16)                       | 3353.38(4)                        | 3697.69(5)                       | 4598.58(12)                       | 4908.04(10)                                       |
| Ζ                                           | 2                                 | 4                                 | 2                                | 4                                 | 4                                                 |
| $\rho_{\rm calc}  {\rm g/cm^3}$             | 1.082                             | 1.285                             | 1.074                            | 1.166                             | 1.157                                             |
| $\mu/\text{mm}^{-1}$                        | 1.580                             | 8.581                             | 2.269                            | 0.619                             | 1.388                                             |
| <i>F</i> (000)                              | 704.0                             | 1352.0                            | 1300.0                           | 1740.0                            | 1840.0                                            |
| Crystal size/mm <sup>3</sup>                | $0.364 \times 0.165 \times 0.122$ | $0.189 \times 0.166 \times 0.126$ | $0.139 \times 0.105 \times 0.09$ | $0.386 \times 0.156 \times 0.117$ | $0.213 \times 0.140 \times 0.105$                 |
| $2\theta$ range /°                          | 5.886 to 146.768                  | 6.466 to 146.284                  | 6.728 to 146.274                 | 6.772 to 146.644                  | 6.976 to 146.412                                  |
| Reflections collected                       | 22962                             | 42839                             | 27636                            | 68240                             | 67682                                             |
| Independent reflections                     | 7869, 0.0361                      | 6694 0.0352                       | 12920 0.0276                     | 9195 0.0406                       | 9813 0.0562                                       |
| Data/restraints/parameters                  | 7869/35/471                       | 6694/0/337                        | 12920/154/809                    | 9195/110/608                      | 9813/0/578                                        |
| Goodness-of-fit on $F^2$                    | 1.036                             | 1.056                             | 1.047                            | 1.027                             | 1.023                                             |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | 0.0372, 0.0979                    | 0.0236, 0.0576                    | 0.0314, 0.0796                   | 0.0406, 0.1040                    | 0.0424, 0.1023                                    |
| Final <i>R</i> indexes [all data]           | 0.0419, 0.1020                    | 0.0245, 0.0580                    | 0.0328, 0.0807                   | 0.0432, 0.1065                    | 0.0509, 0.1071                                    |
| Largest diff. peak/hole/e Å <sup>-3</sup>   | 0.31/-0.26                        | 0.63/-0.88                        | 0.38/-0.15                       | 0.33/-0.33                        | 0.38/-0.36                                        |

## **Table S1:** Single Crystal X-ray Data Parameters for compounds 9' and 11 - 14.

| Compound                                        | 15                                                                 | 16                                                                 | 17                                                                                 | 18                                                                  |
|-------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Empirical formula                               | C <sub>66</sub> H <sub>99</sub> AlMgN <sub>4</sub> Si <sub>2</sub> | C <sub>62</sub> H <sub>94</sub> AlCaN <sub>4</sub> Si <sub>2</sub> | C <sub>75</sub> H <sub>123</sub> AlCaN <sub>4</sub> O <sub>4</sub> Si <sub>2</sub> | C <sub>73</sub> H <sub>105</sub> AlCaN <sub>4</sub> Si <sub>2</sub> |
| Formula weight                                  | 1055.96                                                            | 1018.65                                                            | 1268.01                                                                            | 1161.84                                                             |
| Temperature/K                                   | 150.00(10)                                                         | 150.00(10)                                                         | 150.00(10)                                                                         | 150.00(10)                                                          |
| Crystal system                                  | monoclinic                                                         | monoclinic                                                         | orthorhombic                                                                       | triclinic                                                           |
| Space group                                     | <i>I</i> 2/a                                                       | $P2_{1}/n$                                                         | Pbca                                                                               | <i>P</i> -1                                                         |
| a/Å                                             | 22.7811(2)                                                         | 15.3502(1)                                                         | 24.6044(3)                                                                         | 12.6087(3)                                                          |
| b/Å                                             | 23.4456(2)                                                         | 18.4658(1)                                                         | 24.3835(2)                                                                         | 13.0722(3)                                                          |
| c/Å                                             | 24.3950(2)                                                         | 21.5635(1)                                                         | 25.4954(3)                                                                         | 23.4013(5)                                                          |
| <i>α</i> /°                                     | 90                                                                 | 90                                                                 | 90                                                                                 | 97.692(2)                                                           |
| $\beta/^{\circ}$                                | 99.224(1)                                                          | 93.130(1)                                                          | 90                                                                                 | 98.162(2)                                                           |
| 21/°                                            | 90                                                                 | 90                                                                 | 90                                                                                 | 111.553(2)                                                          |
| Volume/Å <sup>3</sup>                           | 12861.29(19)                                                       | 6103.14(6)                                                         | 15295.7(3)                                                                         | 3477.82(15)                                                         |
| Ζ                                               | 8                                                                  | 4                                                                  | 8                                                                                  | 2                                                                   |
| $\rho_{\rm calc}  {\rm g/cm^3}$                 | 1.091                                                              | 1.109                                                              | 1.101                                                                              | 1.109                                                               |
| $\mu/\text{mm}^{-1}$                            | 1.024                                                              | 1.690                                                              | 1.474                                                                              | 1.540                                                               |
| F(000)                                          | 4608.0                                                             | 2220.0                                                             | 5552.0                                                                             | 1264.0                                                              |
| Crystal size/mm <sup>3</sup>                    | $0.234 \times 0.221 \times 0.187$                                  | $0.57 \times 0.372 \times 0.209$                                   | $0.218 \times 0.164 \times 0.152$                                                  | $0.392 \times 0.3 \times 0.205$                                     |
| $2\theta$ range /°                              | 5.446 to 158.636                                                   | 6.306 to 146.086                                                   | 6.17 to 146.17                                                                     | 7.424 to 146.324                                                    |
| Reflections collected                           | 65665                                                              | 42390                                                              | 80501                                                                              | 46933                                                               |
| Independent reflections                         | 12814 0.0254                                                       | 12081 0.0415                                                       | 14675 0.0512                                                                       | 13842 0.0537                                                        |
| Data/restraints/parameters                      | 12814/6/646                                                        | 12081/0/653                                                        | 14675/876/1074                                                                     | 13842/15/782                                                        |
| Goodness-of-fit on $F^2$                        | 1.056                                                              | 1.029                                                              | 1.031                                                                              | 1.049                                                               |
| Final R1, w2 indexes $[I \ge 2\sigma$<br>(I)]   | 0.0444, 0.1238                                                     | 0.0481, 0.1310                                                     | 0.0619, 0.1685                                                                     | 0.0855, 0.2228                                                      |
| Final <i>R</i> 1, <i>w</i> 2 indexes [all data] | 0.0502, 0.1299                                                     | 0.0513, 0.1355                                                     | 0.0725, 0.1800                                                                     | 0.0884, 0.2305                                                      |
| Largest diff. peak/hole/e Å <sup>-3</sup>       | 0.76/-0.65                                                         | 0.47/-0.41                                                         | 0.42/0.32                                                                          | 1.41/0.86                                                           |

## Table S2: Single Crystal X-ray Data Parameters for compounds 15 - 18.

### **Computational Details / Methodology**

DFT calculations were run with Gaussian 09 (Revision D.01).<sup>[8]</sup> The Mg, Al, Si and Ca centres were described with the Stuttgart RECPs and associated basis sets,<sup>[9]</sup> and 6-31G\*\* basis sets were used for all other atoms (BS1).<sup>[10]</sup> A polarization function was also added to Al ( $\zeta d = 0.180$ ) and Si ( $\zeta d = 0.284$ ). Initial BP86<sup>[11]</sup> optimizations were performed using the 'grid = ultrafine' option, with all stationary points being fully characterized via analytical frequency calculations as minima (all positive eigenvalues).

The Quantum Theory of Atoms in Molecules (QTAIM, AIMAll program<sup>[12]</sup>), Natural Bonding Orbital (NBO6.0<sup>[13]</sup>) and Non-Covalent Interactions Plot (NCI, NCIPLOT<sup>[14]</sup>) analyses were performed on the BP86-optmised geometries of **1** and **2**. The Pipek-Mezey localized orbitals<sup>[15]</sup> were also computed with ORCA<sup>[16]</sup> (Version 4.1.1) using the def2-TZVP<sup>[17]</sup> basis set for all atoms.

### **Orbital Calculations and Results**



Quantum Theory of Atoms in Molecules (QTAIM, Figures S35 and S36), Natural Bonding Orbital (NBO, Figure S37), Pipek–Mezey localised orbitals (Figure S38) and a Non-Covalent Interaction (NCI) (Figure S39) plot were used to characterize the nature of the interaction between the s-block metal (Ca or Mg) and Al centres in the BP86-optimised geometries of **15** and **16**.



**Figure S35.** QTAIM molecular graph of **15**. The electron density contours are computed in the {Mg/Al/Si} planes with bond critical points (BCPs) shown as small red spheres. BCP electron densities ( $\rho(r)$  in eÅ<sup>-3</sup>), values of the Laplacian of the electron density [ $\nabla^2 \rho(r)$  in eÅ<sup>-5</sup>), ellipticities ( $\epsilon$ ) and total energy densities (H(r) in a.u.].



**Figure S36.** QTAIM molecular graph of **16**. The electron density contours are computed in the {Ca/Al/Si} planes with bond critical points (BCPs) shown as small red spheres. BCP electron densities ( $\rho(r)$  in eÅ<sup>-3</sup>), values of the Laplacian of the electron density ( $\nabla^2 \rho(r)$  in eÅ<sup>-5</sup>), ellipticities ( $\epsilon$ ) and total energy densities (H(r) in a.u.).



Figure S37. Natural Bond Orbitals and energies (eV) of the Frontier Molecular Orbitals computed for 15 (left) and 16 (right).



 $\sigma_{\text{AI}\text{--Mg}} = 0.35 \text{Mg} + 0.64 \text{AI}$ 



Figure S38. Localised Pipek–Mezey orbitals of 15 and 16 showing Al—Ca and Al—Mg  $\sigma$ -bonding orbitals, respectively.



**Figure S39.** NCI plots computed for the BP86-optimised geometries of **15** and **16**. Isosurfaces generated for s = 0.3 au and  $-0.07 < \rho < 0.07$  au. Regions of weak interactions are color coded, with stronger stabilising interactions in blue, weaker stabilising interactions in green and stronger destabilising areas in red.

**Table S3**. NBO Charges (a.u.) of selected atoms in the Mg-Al species 15 and the Ca-Al species16.



| Car          | tesi        | .an        | Coc         | ordi             | nat            | es       | and      | i C        | om               | puted            |
|--------------|-------------|------------|-------------|------------------|----------------|----------|----------|------------|------------------|------------------|
| Ene          | rgie        | s          | (in         | Har              | tre            | es)      | -        |            |                  |                  |
| 15           |             |            |             |                  |                |          |          |            |                  |                  |
| SCF          | (BI         | 286        | 5) E        | ner              | gу             | = -      | 25       | 32.        | 99               | 685666           |
| Ent.         | halp        | ру         | UK          | = -              | 253            | 1.0      | 500      | 6/4<br>771 | !<br>            | ,                |
| Enc.<br>Fred | nai<br>e Er | y<br>ne i  | 290<br>av   | 298 <sup>.</sup> | <br>K =        | -2       | J<br>53  | //1<br>1 7 | - 33<br>771      | ,<br>7.4.4.1     |
| Low          | est.        | Fi         | -91<br>ceau | enc              | v =            | 17       | .3       | 298        | 3 C              | 2m <sup>-1</sup> |
| Sec          | ond         | Fı         | requ        | enc              | ý =            | 21       | .0       | 370        | ) C              | 2m <sup>−1</sup> |
|              |             |            | _           |                  | _              |          |          |            |                  |                  |
| Al           | 1.3         | 381        | L77         | -0.              | 401            | 64       | 0        | .17        | 01               | . 6              |
| Si           | 4.(         | )12        | 202         | -1.              | 618            | 13       | -1       | .31        | .79              | 1                |
| Si           | 3.2         | 299        | 959         | -1.              | 907<br>226     | 22       | 2        | .50        | 94               | 2                |
| IN<br>NI     | ⊥.<br>⊃ (   | /44<br>\   | ±37<br>170  | -1.              | 330<br>726     | 47       | T        | . / /      | 133              | 94<br>: 2        |
| C            | 2•3<br>0 ¤  | 585        | ±70<br>749  | -0.              | 230<br>558     | 98       | -0       | • 94<br>61 | 50               | 17               |
| C            | 0.0         | 160        | )08         | -0               | 565<br>565     | 80       | 2        | 55         | 534              | 9                |
| C ·          | -0.1        | 121        | L90         | -2.              | 801            | 70       | 2        | .54        | 158              | 0                |
| С            | 0.9         | 940        | 016         | 0.               | 728            | 43       | 3        | .79        | 01               | .8               |
| Н            | 1.8         | 313        | 355         | 0.               | 708            | 55       | 3        | .11        | 62               | 3                |
| С            | 3.1         | 197        | 737         | 0.               | 988            | 36       | -1       | .65        | 585              | 51               |
| С            | 2.5         | 525        | 503         | 1.               | 314            | 04       | -2       | .88        | 323              | 86               |
| С            | -0.9        | 986        | 593         | -0.              | 807            | 23       | 4        | .33        | 883              | 34               |
| H            | -1.S        | 312        | 264         | -0.              | 041<br>420     | 58       | 5        | .05        | 21               | .8               |
| С<br>ц       | 1 '         | 14(<br>272 | )UU<br>272  | _0.              | 428<br>//13    | 67<br>95 | -3       | .45        | 105<br>127       | ) 3<br>  A       |
| C            | 0 1         | 334        | 156         | -3               | 921            | 11       | 1        | 60         | ) 9 7            | -<br>16          |
| H            | 1.4         | 101        | L35         | -3.              | 736            | 96       | 1        | .39        | 907              | 0                |
| С            | -1.2        | 253        | 351         | -2.              | 997            | 34       | 3        | .35        | 595              | 9                |
| H            | -1.7        | 789        | 985         | -3.              | 951            | 14       | 3        | .30        | 83               | 5                |
| С            | 0.1         | 108        | 310         | 1.               | 193            | 51       | -3       | .66        | 509              | 0                |
| Н            | -0.2        | 220        | )54         | 1.               | 656            | 04       | -2       | .71        | .16              | 55               |
| Н            | 0.1         | 199        | 930         | 2.               | 018            | 67       | -4       | .38        | 392              | 25               |
| H            | -0.6        | 594        | 125         | 0.               | 526            | 12       | -4       | .02        | 204              | 0                |
| C .          | 4.2<br>_1 4 | 200        | 765         | ⊥.<br>_2         | 000<br>007     | 01<br>75 | -T       | •±¢        | 020<br>165       | 50               |
| н            | -2.5        | 579        | 943         | -2.              | 180            | 35       | 4        | .87        | 227              | 2                |
| С            | 1.4         | 162        | 204         | 0.               | 807            | 32       | 5        | .24        | 44               | 9                |
| Н            | 0.0         | 529        | 913         | 0.               | 885            | 72       | 5        | .96        | 557              | 6                |
| Н            | 2.0         | )50        | )99         | -0.              | 084            | 37       | 5        | .51        | 81               | . 6              |
| Η            | 2.1         | 101        | L81         | 1.               | 697            | 55       | 5        | .37        | 91               | .7               |
| С            | 1.8         | 376        | 579         | -0.              | 154            | 28       | -4       | .86        | 508              | 34               |
| H            | 2           |            | 285         | 0.               | 648<br>700     | 30       | -5       | .58        | 317              | 2                |
| H            | 2.          | //2<br>171 | 298         | -0.              | 188<br>760     | 20<br>91 | -4       | . / 6      | 043<br>006       | 5                |
| п<br>С       | 2 0         | 201        | 103         | -0.<br>-3        | 700<br>141     | 29<br>70 | -J<br>_1 | . SC<br>83 | 866              | 59<br>59         |
| H            | 2.2         | 201        | L76         | -3.              | 384            | 96       | -1       | .10        | )38              | 37               |
| Н            | 2.5         | 505        | 575         | -2.              | 980            | 51       | -2       | .81        | .33              | 32               |
| Н            | 3.6         | 543        | 321         | -4.              | 028            | 43       | -1       | . 92       | 242              | 8                |
| С            | 0.1         | 115        | 588         | 1.               | 987            | 39       | 3        | .45        | 557              | 9                |
| H            | -0.2        | 213        | 360         | 1.               | 993            | 04       | 2        | .40        | )32              | :5               |
| H            | -0.7        | 787        | 766         | 2.               | 061            | 12       | 4        | .08        | 358              | 3                |
| H            | 0.          |            | L30         | 2.               | 901<br>171     | 57       | 3        | • 62       | 244              | 6                |
| с<br>н       | Э<br>5 (    | LUU<br>REC | 048<br>048  | -2.<br>_?        | エ / ⊥<br>タ ス フ | 54<br>56 | 0        | ידב.<br>אנ | ) () 4<br>) () / | - 4              |
| п<br>Н       | 5.0         | 503<br>672 | 258         | -2.<br>-1        | 304            | 52       | 0-       | .50        | ,44<br>}78       | 18               |
| C            | 2.8         | 379        | 953         | 2.               | 484            | 93       | -3       | .58        | 339              | 2                |
| H            | 2.3         | 365        | 521         | 2.               | 714            | 18       | -4       | .52        | 248              | 81               |
| С            | 4.3         | 365        | 541         | -0.              | 492            | 87       | 3        | .22        | 217              | 9                |
| Н            | 4.5         | 512        | 273         | 0.               | 335            | 12       | 2        | .51        | . 32             | 21               |
| Η            | 3.9         | 915        | 547         | -0.              | 076            | 99       | 4        | .13        | 376              | 9                |
| H            | 5.3         | 361        | L60         | -0.              | 889            | 16       | 3        | .48        | 399              | 2                |
| C            | 4.          | 385        | זצנ         | -2.              | 912            | 33       | 1        | .29        | 196              | 94               |

| н                                                                                                                                   |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11                                                                                                                                  | 5.13958                                                                                                                                                                                                                                                                                                                    | -3.38686                                                                                                                                                                                                                                                                        | 1.96544                                                                                                                                                                                                                                                                            |
| тт                                                                                                                                  | 2 70661                                                                                                                                                                                                                                                                                                                    | 2 7 5 2 4 0                                                                                                                                                                                                                                                                     | 0 00224                                                                                                                                                                                                                                                                            |
| п                                                                                                                                   | 3./0001                                                                                                                                                                                                                                                                                                                    | -3./3249                                                                                                                                                                                                                                                                        | 0.90334                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | 4.96416                                                                                                                                                                                                                                                                                                                    | 1.65011                                                                                                                                                                                                                                                                         | 0.12494                                                                                                                                                                                                                                                                            |
| ы                                                                                                                                   | 1 61537                                                                                                                                                                                                                                                                                                                    | 0 68045                                                                                                                                                                                                                                                                         | 0 51503                                                                                                                                                                                                                                                                            |
| п                                                                                                                                   | 4.01337                                                                                                                                                                                                                                                                                                                    | 0.00045                                                                                                                                                                                                                                                                         | 0.51505                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | -0.42171                                                                                                                                                                                                                                                                                                                   | -3.85976                                                                                                                                                                                                                                                                        | 0.26726                                                                                                                                                                                                                                                                            |
| TT                                                                                                                                  | 1 50/06                                                                                                                                                                                                                                                                                                                    | 1 01122                                                                                                                                                                                                                                                                         | 0 40016                                                                                                                                                                                                                                                                            |
| п                                                                                                                                   | -1.30490                                                                                                                                                                                                                                                                                                                   | -4.01422                                                                                                                                                                                                                                                                        | 0.40910                                                                                                                                                                                                                                                                            |
| Н                                                                                                                                   | -0.29387                                                                                                                                                                                                                                                                                                                   | -2.87274                                                                                                                                                                                                                                                                        | -0.21374                                                                                                                                                                                                                                                                           |
| ы                                                                                                                                   | _0 05538                                                                                                                                                                                                                                                                                                                   | -1 63066                                                                                                                                                                                                                                                                        | -0 13368                                                                                                                                                                                                                                                                           |
| п                                                                                                                                   | -0.03536                                                                                                                                                                                                                                                                                                                   | -4.03000                                                                                                                                                                                                                                                                        | -0.43300                                                                                                                                                                                                                                                                           |
| С                                                                                                                                   | 4.53373                                                                                                                                                                                                                                                                                                                    | 3.03801                                                                                                                                                                                                                                                                         | -1.92810                                                                                                                                                                                                                                                                           |
| U                                                                                                                                   | 5 31762                                                                                                                                                                                                                                                                                                                    | 3 70742                                                                                                                                                                                                                                                                         | _1 55/61                                                                                                                                                                                                                                                                           |
| п                                                                                                                                   | J.J1/02                                                                                                                                                                                                                                                                                                                    | 5.70742                                                                                                                                                                                                                                                                         | -1.55401                                                                                                                                                                                                                                                                           |
| С                                                                                                                                   | 3.88266                                                                                                                                                                                                                                                                                                                    | 3.34496                                                                                                                                                                                                                                                                         | -3.12747                                                                                                                                                                                                                                                                           |
| ч                                                                                                                                   | 1 15256                                                                                                                                                                                                                                                                                                                    | 1 21012                                                                                                                                                                                                                                                                         | -3 69728                                                                                                                                                                                                                                                                           |
| 11                                                                                                                                  | 4.15250                                                                                                                                                                                                                                                                                                                    | 4.24042                                                                                                                                                                                                                                                                         | 5.05720                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | 2.93699                                                                                                                                                                                                                                                                                                                    | -3.07050                                                                                                                                                                                                                                                                        | 3.97661                                                                                                                                                                                                                                                                            |
| н                                                                                                                                   | 2 26328                                                                                                                                                                                                                                                                                                                    | -2 60975                                                                                                                                                                                                                                                                        | 4 71673                                                                                                                                                                                                                                                                            |
|                                                                                                                                     | 2.20520                                                                                                                                                                                                                                                                                                                    | 4.000000                                                                                                                                                                                                                                                                        | 1.71070                                                                                                                                                                                                                                                                            |
| Н                                                                                                                                   | 2.48556                                                                                                                                                                                                                                                                                                                    | -4.02383                                                                                                                                                                                                                                                                        | 3.65848                                                                                                                                                                                                                                                                            |
| н                                                                                                                                   | 3 89049                                                                                                                                                                                                                                                                                                                    | -3 30229                                                                                                                                                                                                                                                                        | 4 48384                                                                                                                                                                                                                                                                            |
|                                                                                                                                     | 5.05015                                                                                                                                                                                                                                                                                                                    | 0.00220                                                                                                                                                                                                                                                                         | 1.10001                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | 5.17936                                                                                                                                                                                                                                                                                                                    | -1.16730                                                                                                                                                                                                                                                                        | -2.75318                                                                                                                                                                                                                                                                           |
| н                                                                                                                                   | 4.62744                                                                                                                                                                                                                                                                                                                    | -0.84478                                                                                                                                                                                                                                                                        | -3.65029                                                                                                                                                                                                                                                                           |
|                                                                                                                                     | L 07/11                                                                                                                                                                                                                                                                                                                    | 0.05454                                                                                                                                                                                                                                                                         | 0.400020                                                                                                                                                                                                                                                                           |
| Н                                                                                                                                   | 5.8/414                                                                                                                                                                                                                                                                                                                    | -0.35454                                                                                                                                                                                                                                                                        | -2.48803                                                                                                                                                                                                                                                                           |
| Н                                                                                                                                   | 5.77899                                                                                                                                                                                                                                                                                                                    | -2.05490                                                                                                                                                                                                                                                                        | -3.02155                                                                                                                                                                                                                                                                           |
| C                                                                                                                                   | 1 62002                                                                                                                                                                                                                                                                                                                    | 2 72157                                                                                                                                                                                                                                                                         | 1 177/0                                                                                                                                                                                                                                                                            |
| C                                                                                                                                   | 4.03003                                                                                                                                                                                                                                                                                                                    | 2.13131                                                                                                                                                                                                                                                                         | 1.1//49                                                                                                                                                                                                                                                                            |
| Η                                                                                                                                   | 4.90502                                                                                                                                                                                                                                                                                                                    | 3.73919                                                                                                                                                                                                                                                                         | 0.81861                                                                                                                                                                                                                                                                            |
| U                                                                                                                                   | 3 55204                                                                                                                                                                                                                                                                                                                    | 2 71126                                                                                                                                                                                                                                                                         | 1 /1 2 1 1                                                                                                                                                                                                                                                                         |
| н                                                                                                                                   | 5.55294                                                                                                                                                                                                                                                                                                                    | 2./4420                                                                                                                                                                                                                                                                         | 1.41311                                                                                                                                                                                                                                                                            |
| Н                                                                                                                                   | 5.18222                                                                                                                                                                                                                                                                                                                    | 2.54884                                                                                                                                                                                                                                                                         | 2.11659                                                                                                                                                                                                                                                                            |
| C                                                                                                                                   | 0 21513                                                                                                                                                                                                                                                                                                                    | -5 331/8                                                                                                                                                                                                                                                                        | 2 22427                                                                                                                                                                                                                                                                            |
| C                                                                                                                                   | 0.21313                                                                                                                                                                                                                                                                                                                    | -3.33140                                                                                                                                                                                                                                                                        | 2.2242/                                                                                                                                                                                                                                                                            |
| Н                                                                                                                                   | 0.70127                                                                                                                                                                                                                                                                                                                    | -5.39238                                                                                                                                                                                                                                                                        | 3.21275                                                                                                                                                                                                                                                                            |
| ч                                                                                                                                   | -0 83773                                                                                                                                                                                                                                                                                                                   | -5 64057                                                                                                                                                                                                                                                                        | 2 3/032                                                                                                                                                                                                                                                                            |
|                                                                                                                                     | 0.03773                                                                                                                                                                                                                                                                                                                    | 5.04057                                                                                                                                                                                                                                                                         | 2.54552                                                                                                                                                                                                                                                                            |
| Н                                                                                                                                   | 0.69120                                                                                                                                                                                                                                                                                                                    | -6.07461                                                                                                                                                                                                                                                                        | 1.56104                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | 6.49372                                                                                                                                                                                                                                                                                                                    | 1.56121                                                                                                                                                                                                                                                                         | -0.07564                                                                                                                                                                                                                                                                           |
| TT                                                                                                                                  | 6 76707                                                                                                                                                                                                                                                                                                                    | 0 77706                                                                                                                                                                                                                                                                         | 0 00070                                                                                                                                                                                                                                                                            |
| п                                                                                                                                   | 0.10191                                                                                                                                                                                                                                                                                                                    | 0.///00                                                                                                                                                                                                                                                                         | -0.00072                                                                                                                                                                                                                                                                           |
| Н                                                                                                                                   | 6.91212                                                                                                                                                                                                                                                                                                                    | 2.51509                                                                                                                                                                                                                                                                         | -0.44299                                                                                                                                                                                                                                                                           |
| Н                                                                                                                                   | 6.99445                                                                                                                                                                                                                                                                                                                    | 1.32874                                                                                                                                                                                                                                                                         | 0.88104                                                                                                                                                                                                                                                                            |
| ۰-<br>۲ <i>۴</i>                                                                                                                    | 1 00000                                                                                                                                                                                                                                                                                                                    | 0 20004                                                                                                                                                                                                                                                                         | 0 52475                                                                                                                                                                                                                                                                            |
| мg                                                                                                                                  | -1.26003                                                                                                                                                                                                                                                                                                                   | 0.39984                                                                                                                                                                                                                                                                         | -0.534/5                                                                                                                                                                                                                                                                           |
| Ν                                                                                                                                   | -2.83369                                                                                                                                                                                                                                                                                                                   | -0.54566                                                                                                                                                                                                                                                                        | -1.59613                                                                                                                                                                                                                                                                           |
| Ν                                                                                                                                   | -2.22752                                                                                                                                                                                                                                                                                                                   | 2.27415                                                                                                                                                                                                                                                                         | -0.48475                                                                                                                                                                                                                                                                           |
| 2                                                                                                                                   | 2 11 00                                                                                                                                                                                                                                                                                                                    | 0 5 6 0 0 1                                                                                                                                                                                                                                                                     | 1 45020                                                                                                                                                                                                                                                                            |
| C                                                                                                                                   | -3.11602                                                                                                                                                                                                                                                                                                                   | 2.36801                                                                                                                                                                                                                                                                         | -1.45930                                                                                                                                                                                                                                                                           |
| С                                                                                                                                   | -2.03222                                                                                                                                                                                                                                                                                                                   | 3.28415                                                                                                                                                                                                                                                                         | 0.53298                                                                                                                                                                                                                                                                            |
| C                                                                                                                                   | -3 15504                                                                                                                                                                                                                                                                                                                   | -1 95721                                                                                                                                                                                                                                                                        | -1 53362                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                   | 5.15504                                                                                                                                                                                                                                                                                                                    | 1.99721                                                                                                                                                                                                                                                                         | 1.00002                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | -3.60556                                                                                                                                                                                                                                                                                                                   | 0.22209                                                                                                                                                                                                                                                                         | -2 4() $+$ 4                                                                                                                                                                                                                                                                       |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 | 2.10011                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | -2.97602                                                                                                                                                                                                                                                                                                                   | 3,41085                                                                                                                                                                                                                                                                         | 1.59408                                                                                                                                                                                                                                                                            |
| С                                                                                                                                   | -2.97602                                                                                                                                                                                                                                                                                                                   | 3.41085                                                                                                                                                                                                                                                                         | 1.59408                                                                                                                                                                                                                                                                            |
| C<br>C                                                                                                                              | -2.97602<br>-2.65851                                                                                                                                                                                                                                                                                                       | 3.41085<br>-2.87999                                                                                                                                                                                                                                                             | 1.59408                                                                                                                                                                                                                                                                            |
| C<br>C<br>C                                                                                                                         | -2.97602<br>-2.65851<br>-3.61409                                                                                                                                                                                                                                                                                           | 3.41085<br>-2.87999<br>1.63734                                                                                                                                                                                                                                                  | 1.59408<br>-2.49977<br>-2.40589                                                                                                                                                                                                                                                    |
| С<br>С<br>С<br>Н                                                                                                                    | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337                                                                                                                                                                                                                                                                               | 3.41085<br>-2.87999<br>1.63734<br>2.08018                                                                                                                                                                                                                                       | 1.59408<br>-2.49977<br>-2.40589<br>-3 16514                                                                                                                                                                                                                                        |
| C<br>C<br>H                                                                                                                         | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337                                                                                                                                                                                                                                                                               | 3.41085<br>-2.87999<br>1.63734<br>2.08018                                                                                                                                                                                                                                       | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514                                                                                                                                                                                                                                        |
| C<br>C<br>H<br>C                                                                                                                    | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816                                                                                                                                                                                                                                                                   | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769                                                                                                                                                                                                                            | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930                                                                                                                                                                                                                             |
| C<br>C<br>H<br>C                                                                                                                    | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497                                                                                                                                                                                                                                                       | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376                                                                                                                                                                                                                | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162                                                                                                                                                                                                                 |
| C<br>C<br>H<br>C<br>L                                                                                                               | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158                                                                                                                                                                                                                                           | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089                                                                                                                                                                                                    | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162                                                                                                                                                                                                                 |
| C<br>C<br>H<br>C<br>H<br>C<br>H                                                                                                     | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158                                                                                                                                                                                                                                           | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089                                                                                                                                                                                                    | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509                                                                                                                                                                                                     |
| C<br>C<br>H<br>C<br>H<br>C<br>H<br>C                                                                                                | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827                                                                                                                                                                                                                               | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051                                                                                                                                                                                        | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374                                                                                                                                                                                         |
| C<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H                                                                                 | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480                                                                                                                                                                                                                   | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215                                                                                                                                                                            | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339                                                                                                                                                                             |
| C<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>H<br>C<br>H<br>C                                                             | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480                                                                                                                                                                                                                   | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215                                                                                                                                                                            | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339                                                                                                                                                                             |
| C<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C                                                                                      | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595                                                                                                                                                                                                       | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740                                                                                                                                                                | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307                                                                                                                                                                 |
| С<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>С<br>С                                    | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269                                                                                                                                                                                           | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041                                                                                                                                                     | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967                                                                                                                                                      |
| С<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С<br>Н<br>С<br>С | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626                                                                                                                                                                                | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605                                                                                                                                          | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967                                                                                                                                                      |
| C<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>C<br>H<br>C<br>C                               | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626                                                                                                                                                                                | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605                                                                                                                                          | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632                                                                                                                                           |
| C C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C                                                         | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818                                                                                                                                                                    | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658                                                                                                                               | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207                                                                                                                                |
| СССНССНСНСНСНСН                                                                                                                     | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791                                                                                                                                                        | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758                                                                                                                    | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754                                                                                                                     |
| СССНССНСНСНСНС                                                                                                                      | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791                                                                                                                                                        | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758                                                                                                                    | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754                                                                                                                     |
| СССНССНСНССНСНС                                                                                                                     | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945                                                                                                                                            | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005                                                                                                        | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840                                                                                                         |
| С С С Н С С Н С Н С Н С Н С Н                                                                                                       | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777                                                                                                                                | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160                                                                                            | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576                                                                                             |
| СССНССНСНСНСНСН                                                                                                                     | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613                                                                                                                    | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910                                                                                | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893                                                                                 |
| СССНССНСНСНСНСНН                                                                                                                    | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613                                                                                                                    | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910                                                                                | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>2.7017                                                                       |
| СССНССНСНСНСНСННН                                                                                                                   | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906                                                                                                        | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677                                                         | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174                                                                     |
| СССНССНСНСНСНСНННС                                                                                                                  | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630                                                                                            | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861                                                          | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.469300<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227                                                         |
| СССНССНСНССНСНННСН                                                                                                                  | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630<br>-1.5688                                                                                 | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690                                               | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182                                               |
| СССНССНСНСНСНСНННСНС                                                                                                                | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630<br>-1.56889                                                                                | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690                                               | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182                                               |
| СССНССНСНССНСНСНННСНС                                                                                                               | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630<br>-1.56889<br>-2.78281                                                                    | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690<br>4.42284                                    | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182<br>2.55515                                    |
| СССНССНСНССНСНСНННСНСН                                                                                                              | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630<br>-1.56889<br>-2.78281<br>-3.50419                                                        | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690<br>4.42284<br>4.52473                         | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182<br>2.55515<br>3.37382                         |
| СССНССНСНССНСНСНННСНСН С                                                                                                            | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630<br>-1.56889<br>-2.78281<br>-3.50419                                                        | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690<br>4.42284<br>4.52473<br>-4.69825             | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182<br>2.55515<br>3.37382<br>-1.35582             |
| СССНССНСНССНСНННСНСНС                                                                                                               | -2.97602<br>-2.65851<br>-3.61409<br>-4.26337<br>-0.89816<br>-1.75497<br>-1.70158<br>-3.00827<br>-2.62480<br>-3.99595<br>-0.76269<br>0.09626<br>-4.17818<br>-4.21791<br>-4.56945<br>-4.01777<br>-5.13613<br>-5.27906<br>-1.69630<br>-1.56889<br>-2.78281<br>-3.50419<br>-3.83660                                            | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690<br>4.42284<br>4.52473<br>-4.69825             | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182<br>2.55515<br>3.37382<br>-1.35583<br>-2.55515 |
| СССНССНСНССНСНННСНСНСН                                                                                                              | $\begin{array}{r} -2.97602 \\ -2.65851 \\ -3.61409 \\ -4.26337 \\ -0.89816 \\ -1.75497 \\ -1.70158 \\ -3.00827 \\ -2.62480 \\ -3.99595 \\ -0.76269 \\ 0.09626 \\ -4.17818 \\ -4.21791 \\ -4.56945 \\ -4.01777 \\ -5.13613 \\ -5.27906 \\ -1.69630 \\ -1.56889 \\ -2.78281 \\ -3.50419 \\ -3.83660 \\ -4.10231 \end{array}$ | 3.41085<br>-2.87999<br>1.63734<br>2.08018<br>4.14769<br>-2.46376<br>-1.36089<br>-4.24051<br>-4.95215<br>-2.41740<br>5.15041<br>5.82605<br>2.47658<br>1.81758<br>-0.43005<br>-0.87160<br>-1.24910<br>0.30677<br>5.29861<br>6.08690<br>4.42284<br>4.52473<br>-4.69825<br>-5.75853 | 1.59408<br>-2.49977<br>-2.40589<br>-3.16514<br>0.46930<br>-3.66162<br>-3.66509<br>-2.38374<br>-3.12339<br>-0.47307<br>1.44967<br>1.40632<br>1.75207<br>0.86754<br>-3.38840<br>-4.23576<br>-2.91893<br>-3.79174<br>2.48227<br>3.23182<br>2.55515<br>3.37382<br>-1.35583<br>-1.28841 |

| Н | 0.26026  | 2.92659  | -0.84604 |
|---|----------|----------|----------|
| С | -4.32235 | -3.78631 | -0.41146 |
| Н | -4.97226 | -4.14472 | 0.39255  |
| С | -2.29755 | -2.92390 | -5.03509 |
| Н | -2.26772 | -4.02327 | -5.13180 |
| Н | -3.34121 | -2.60866 | -5.20136 |
| Н | -1.67978 | -2.50744 | -5.84974 |
| С | -4.59368 | -1.45515 | 0.55754  |
| Н | -3.89411 | -0.60355 | 0.65832  |
| С | -3.72792 | 3.96161  | -1.56079 |
| Н | -4.64677 | 4.01720  | -0.95092 |
| Н | -3.05131 | 4.74892  | -1.20030 |
| Н | -4.01401 | 4.17658  | -2.60231 |
| С | -0.32294 | -3.00318 | -3.46140 |
| Н | 0.12016  | -2.62679 | -2.52634 |
| Н | -0.31935 | -4.10621 | -3.41016 |
| Η | 0.33110  | -2.70309 | -4.29839 |
| С | -5.94404 | -0.87639 | 0.06940  |
| Η | -5.83465 | -0.30305 | -0.86458 |
| Н | -6.67177 | -1.68818 | -0.10883 |
| Η | -6.37176 | -0.20035 | 0.83101  |
| С | -4.01371 | 1.58138  | 3.00197  |
| Η | -3.10628 | 0.95694  | 2.94697  |
| Η | -3.94156 | 2.19365  | 3.91841  |
| Η | -4.88434 | 0.91214  | 3.11758  |
| С | -4.76860 | -2.08817 | 1.95222  |
| Η | -5.55701 | -2.86162 | 1.95790  |
| Η | -3.83149 | -2.54093 | 2.31328  |
| Η | -5.07322 | -1.31656 | 2.67883  |
| С | -5.51806 | 3.24461  | 1.82690  |
| Η | -5.57878 | 3.86505  | 2.73829  |
| Η | -5.66079 | 3.91405  | 0.96215  |
| Η | -6.36547 | 2.53749  | 1.85300  |
| С | 1.54517  | 4.52031  | -0.19812 |
| Η | 1.57317  | 5.62360  | -0.13977 |
| Η | 1.83777  | 4.12246  | 0.78734  |
| Η | 2.30419  | 4.21092  | -0.93340 |
| С | -0.25027 | 4.70187  | -1.95210 |
| Η | -1.15768 | 4.26128  | -2.39255 |
| Η | -0.43490 | 5.77839  | -1.78548 |
| Н | 0.56407  | 4.60520  | -2.69068 |

#### 16

SCF (BP86) Energy = -2532.99685666 Enthalpy 0K = -2531.660674 Enthalpy 298K = -2531.577133 Free Energy 298K = -2531.777441 Lowest Frequency = 17.3298 cm<sup>-1</sup> Second Frequency = 21.0370 cm<sup>-1</sup>

| ΑL | 1.381//  | -0.40164 | 0.1/016  |
|----|----------|----------|----------|
| Si | 4.01202  | -1.61813 | -1.31791 |
| Si | 3.29959  | -1.90722 | 2.50942  |
| Ν  | 1.74457  | -1.33647 | 1.77334  |
| Ν  | 2.91470  | -0.23667 | -0.94353 |
| С  | 0.58749  | -1.55898 | 2.61597  |
| С  | 0.16008  | -0.56580 | 3.55349  |
| С  | -0.12190 | -2.80170 | 2.54580  |
| С  | 0.94016  | 0.72843  | 3.79018  |
| Н  | 1.81355  | 0.70855  | 3.11623  |
| С  | 3.19737  | 0.98836  | -1.65851 |
| С  | 2.52503  | 1.31404  | -2.88236 |
| С  | -0.98693 | -0.80723 | 4.33834  |

| Н        | -1.31264 | -0.04158    | 5.05218       |
|----------|----------|-------------|---------------|
| С        | 1 44000  | 0 42867     | -3 49693      |
| н        | 1 27272  | -0 41395    | -2 80274      |
| C        | 0 22/56  | 2 02111     | 1 600274      |
| C        | 1 40125  | -3.92111    | 1 20070       |
| н        | 1.40135  | -3./3696    | 1.39070       |
| С        | -1.25351 | -2.99734    | 3.35959       |
| Н        | -1.78985 | -3.95114    | 3.30835       |
| С        | 0.10810  | 1.19351     | -3.66090      |
| Η        | -0.22054 | 1.65604     | -2.71165      |
| Н        | 0.19930  | 2.01867     | -4.38925      |
| Н        | -0.69425 | 0.52612     | -4.02040      |
| C        | 4 20884  | 1 88881     | -1 18209      |
| c        | -1 69765 | -2 00775    | 1 24650       |
|          | -1.09703 | -2.00775    | 4.24030       |
| п        | -2.37943 | -2.18035    | 4.0/2/2       |
| C        | 1.46204  | 0.80732     | 5.24449       |
| Η        | 0.62913  | 0.88572     | 5.96576       |
| Η        | 2.05099  | -0.08437    | 5.51816       |
| Н        | 2.10181  | 1.69755     | 5.37917       |
| С        | 1.87679  | -0.15428    | -4.86084      |
| Н        | 2.11285  | 0.64830     | -5.58172      |
| Н        | 2.77298  | -0.78891    | -4.76435      |
| н        | 1 07106  | -0 76829    | -5 30069      |
| C        | 2 00002  | 2 1 4 1 7 0 | 1 02660       |
| C        | 2.99003  | -3.14170    | -1.03009      |
| Н        | 2.201/6  | -3.38496    | -1.1038/      |
| Η        | 2.50575  | -2.98051    | -2.81332      |
| Η        | 3.64321  | -4.02843    | -1.92428      |
| С        | 0.11588  | 1.98739     | 3.45579       |
| Η        | -0.21360 | 1.99304     | 2.40325       |
| Н        | -0.78766 | 2.06112     | 4.08583       |
| Н        | 0.71130  | 2.90157     | 3.62446       |
| C        | 5 10648  | -2 17154    | 0 15044       |
| ц        | 5 86948  | -2 83756    | -0 30445      |
| 11<br>TT | 5.00040  | 1 20452     | 0.50445       |
| Н        | 5.67258  | -1.30452    | 0.53/88       |
| С        | 2.8/953  | 2.48493     | -3.58392      |
| Η        | 2.36521  | 2.71418     | -4.52481      |
| С        | 4.36541  | -0.49287    | 3.22179       |
| Η        | 4.51273  | 0.33512     | 2.51321       |
| Η        | 3.91547  | -0.07699    | 4.13769       |
| Н        | 5.36160  | -0.88916    | 3.48992       |
| С        | 4.38831  | -2.91233    | 1.29964       |
| н        | 5 13958  | -3 38686    | 1 96544       |
| н        | 3 78661  | -3 75249    | 0 90334       |
| C        | 1 96416  | 1 65011     | 0 12494       |
|          | 4.90410  | 1.03011     | 0.12494       |
| H        | 4.61537  | 0.68045     | 0.51503       |
| C        | -0.421/1 | -3.85976    | 0.26/26       |
| Η        | -1.50496 | -4.01422    | 0.40916       |
| Н        | -0.29387 | -2.87274    | -0.21374      |
| Η        | -0.05538 | -4.63066    | -0.43368      |
| С        | 4.53373  | 3.03801     | -1.92810      |
| Н        | 5.31762  | 3.70742     | -1.55461      |
| С        | 3.88266  | 3.34496     | -3.12747      |
| н        | 4 15256  | 4 24042     | -3 69728      |
| C        | 2 93699  | -3 07050    | 3 97661       |
| 11       | 2.0000   | 2 60075     | 1 71 672      |
| п        | 2.20320  | -2.60975    | 4./10/3       |
| Н        | 2.48556  | -4.02383    | 3.65848       |
| Η        | 3.89049  | -3.30229    | 4.48384       |
| С        | 5.17936  | -1.16730    | -2.75318      |
| Η        | 4.62744  | -0.84478    | -3.65029      |
| Н        | 5.87414  | -0.35454    | -2.48803      |
| Н        | 5.77899  | -2.05490    | -3.02155      |
| С        | 4.63003  | 2.73157     | 1.17749       |
| н        | 4,90502  | 3.73919     | 0.81861       |
| н        | 3.55294  | 2.74426     | 1,41311       |
| н        | 5 18000  | 2 54881     | 2 11650       |
| 11       | J. IUZZZ | 2.01004     | _ • T T O D D |

| С      | 0.21513   | -5.33148    | 2.22427  |
|--------|-----------|-------------|----------|
| Н      | 0.70127   | -5.39238    | 3.21275  |
| Н      | -0.83773  | -5.64057    | 2.34932  |
| н      | 0 69120   | -6 07461    | 1 56104  |
| C      | 6 10272   | 1 56101     | 0 07564  |
|        | 0.49572   | 1.30121     | -0.07304 |
| Н      | 6.76797   | 0.77706     | -0.80072 |
| Н      | 6.91212   | 2.51509     | -0.44299 |
| Н      | 6.99445   | 1.32874     | 0.88104  |
| Ma     | -1.26003  | 0.39984     | -0.53475 |
| N      | -2 83369  | -0 54566    | -1 59613 |
| NT     | 2.00000   | 2 27415     | 0 40475  |
| IN     | -2.22/J2  | 2.27413     | -0.40475 |
| С      | -3.11602  | 2.56801     | -1.45930 |
| С      | -2.03222  | 3.28415     | 0.53298  |
| С      | -3.15504  | -1.95721    | -1.53362 |
| С      | -3.60556  | 0.22209     | -2.40314 |
| C      | -2 97602  | 3 41085     | 1 59408  |
| ĉ      | 2.57002   | 2 07000     | 2 40077  |
| Ĉ      | -2.03031  | -2.07999    | -2.49977 |
| С      | -3.61409  | 1.63/34     | -2.40589 |
| Η      | -4.26337  | 2.08018     | -3.16514 |
| С      | -0.89816  | 4.14769     | 0.46930  |
| С      | -1.75497  | -2.46376    | -3.66162 |
| н      | -1 70158  | -1 36089    | -3 66509 |
| C      | 2 00027   | 4 24051     | 2 20271  |
|        | -3.00827  | -4.24031    | -2.30374 |
| Н      | -2.62480  | -4.95215    | -3.12339 |
| С      | -3.99595  | -2.41740    | -0.47307 |
| С      | -0.76269  | 5.15041     | 1.44967  |
| Н      | 0.09626   | 5.82605     | 1.40632  |
| С      | -4.17818  | 2.47658     | 1.75207  |
| н      | -4 21791  | 1 81758     | 0 86754  |
| C      | 4.21791   | 0 42005     | 2 20010  |
|        | -4.50945  | -0.43003    | -3.30040 |
| Н      | -4.01//// | -0.87160    | -4.23576 |
| Η      | -5.13613  | -1.24910    | -2.91893 |
| Η      | -5.27906  | 0.30677     | -3.79174 |
| С      | -1.69630  | 5.29861     | 2.48227  |
| н      | -1 56889  | 6 08690     | 3 23182  |
| C      | -2 78281  | 1 12281     | 2 55515  |
|        | 2.70201   | 4.52472     | 2.00010  |
| Н      | -3.50419  | 4.524/3     | 3.3/382  |
| С      | -3.83660  | -4.69825    | -1.35583 |
| Η      | -4.10231  | -5.75853    | -1.28841 |
| С      | 0.15795   | 4.00958     | -0.63020 |
| Н      | 0.26026   | 2,92659     | -0.84604 |
| C      | -4 32235  | -3 78631    | -0 41146 |
|        | 1 07226   | 1 1 1 1 7 7 | 0 20255  |
| п      | -4.97220  | -4.144/2    | 0.39233  |
| C      | -2.29/55  | -2.92390    | -5.03509 |
| Н      | -2.26772  | -4.02327    | -5.13180 |
| Η      | -3.34121  | -2.60866    | -5.20136 |
| Н      | -1.67978  | -2.50744    | -5.84974 |
| С      | -4.59368  | -1.45515    | 0.55754  |
| н      | -3 89411  | -0 60355    | 0 65832  |
| C      | 2 72702   | 2 06161     | 1 56070  |
|        | -3.72792  | 3.90101     | -1.30079 |
| н      | -4.646//  | 4.01/20     | -0.95092 |
| Η      | -3.05131  | 4.74892     | -1.20030 |
| Η      | -4.01401  | 4.17658     | -2.60231 |
| С      | -0.32294  | -3.00318    | -3.46140 |
| Н      | 0.12016   | -2.62679    | -2.52634 |
| н      | -0 31935  | -4 10621    | -3 41016 |
| ц<br>Ц | 0 22110   | -2 70200    | -1 20020 |
| п      | U.JJIIU   | 2.70309     | 4.29039  |
| C      | -5.94404  | -0.8/639    | 0.06940  |
| H      | -5.83465  | -0.30305    | -0.86458 |
| Н      | -6.67177  | -1.68818    | -0.10883 |
| Н      | -6.37176  | -0.20035    | 0.83101  |
| С      | -4.01371  | 1.58138     | 3.00197  |
| Н      | -3.10628  | 0.95694     | 2,94697  |
| <br>ц  | -3 0/156  | 2 10265     | 3 01 0/1 |
| тī     | J. J. I.  | 2.1.J.J.J   | J.JI041  |

| Η | -4.88434 | 0.91214  | 3.11758  |
|---|----------|----------|----------|
| С | -4.76860 | -2.08817 | 1.95222  |
| Η | -5.55701 | -2.86162 | 1.95790  |
| Н | -3.83149 | -2.54093 | 2.31328  |
| Η | -5.07322 | -1.31656 | 2.67883  |
| С | -5.51806 | 3.24461  | 1.82690  |
| Н | -5.57878 | 3.86505  | 2.73829  |
| Н | -5.66079 | 3.91405  | 0.96215  |
| Η | -6.36547 | 2.53749  | 1.85300  |
| С | 1.54517  | 4.52031  | -0.19812 |
| Η | 1.57317  | 5.62360  | -0.13977 |
| Н | 1.83777  | 4.12246  | 0.78734  |
| Н | 2.30419  | 4.21092  | -0.93340 |
| С | -0.25027 | 4.70187  | -1.95210 |
| Н | -1.15768 | 4.26128  | -2.39255 |
| Н | -0.43490 | 5.77839  | -1.78548 |
| Н | 0.56407  | 4.60520  | -2.69068 |

#### References

- [1] S. Majumder, A. L. Odom, *Tetrahedron Lett.* 2008, 49, 1771 1772.
- [2] A. P. Dove, V. C Gibson, P. Hormnirun, E. L. Marshall, J. A. Segal, A. J. P. White, D. J. Williams, *Dalton Trans.* 2003, 3088 3097.
- [3] M. R. Crimmin, M. S. Hill, P. B. Hitchcock, M. F. Mahon, New J. Chem. 2010, 34, 1572-1578.
- [4] I. J. Casely, J. W. Ziller, B. J. Mincher and W. J. Evans, *Inorg. Chem.* 2011, 50, 4, 1513-1520.
- [5] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, Acta Cryst. A 2015, 71, 59-75.
- [6] G. M. Sheldrick, G. M. Acta Cryst. A, 2008, 64, 112-122.
- [7] D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Cryst. 2015, 48, 933-938.
- [8] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 (Revision D.01); Gaussian Inc.: Wallingford, CT, 2009.
- [9] Andrae, D., Häußermann, U., Dolg, M., Stoll, H., Preuß, H., Theor. Chim. Acta, 77, 123–141 (1990).
- [10] (a) Hariharan, P. C., Pople, J. A. *Theor. Chim. Acta*, 28, 213–222 (1973). (b) Hehre, W. J., Ditchfield, R., Pople, J. A. *J. Chem. Phys.* 56, 2257 (1972).
- [11] (a) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098 (1988). (b) Perdew, J. P. Phys. Rev. B: Condens. Matter Mater. Phys. 33, 8822–8824 (1986).
- [12] AIMAll (Version 13.02.26, Professional), Keith, T. A.; Gristmill, T. K. Software, Overland Park KS, USA, 2015 (aim.tkgristmill.com).

- [13] E.D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, A. J. Bohmann, C. M. Morales,
   C. R. Landis and F. Weinhold, NBO 6.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI., 2013.
- [14] (a) J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J. -P. Piquemal, D. N. Beratan and W. Yang, *J. Chem. Theory. Comput.* 7, 625-632 (2011). (b) E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen and W Yang, *J. Am. Chem. Soc.* 132, 6498 (2010).
- [15] J. Pipek, P. G. Mezey, J. Chem. Phys. 90, 4916-4926 (1989).
- [16] F. Neese Wiley Interdisciplinary Reviews: Computational Molecular Science, 10.1002/wcms.1327.
- [17] (a) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; (b) F. Weigend, Phys. Chem. Chem. Phys. 8, 1057-1065 (2006).