DIAGNOSIS AND DETECTION OF SARCOIDOSIS

An Official American Thoracic Society Clinical Practice Guideline

ONLINE SUPPLEMENT

Elliott D. Crouser MD^{**,1}, Lisa A. Maier MD^{**,2}, Kevin C. Wilson MD^{*,3}, Catherine A. Bonham MD⁴, Adam S. Morgenthau MD⁵, Karen C. Patterson MD^{6,7}, Eric Abston MD³, Richard C. Bernstein MD⁸, Ron Blankstein MD⁹, Edward S. Chen MD¹⁰, Daniel A. Culver DO¹¹, Wonder Drake MD¹², Marjolein Drent MD¹³, Alicia K. Gerke MD¹⁴, Michael Ghobrial MD¹¹, Praveen Govender MD³, Nabeel Hamzeh MD¹⁴, W. Ennis James MD¹⁵, Marc A. Judson MD¹⁶, Liz Kellermeyer MSLS¹⁷, Shandra Knight MSLS¹⁷, Laura L. Koth MD¹⁸, Venerino Poletti MD¹⁹, Subha V. Raman MD²⁰, Melissa H. Tukey MD²¹, Gloria E. Westney MD²², and Robert P. Baughman MD^{*,23} on behalf of the ATS Assembly on Clinical Problems.

* Co-first authors, *Co-chairs of the Clinical Practice Guidelines Panel

Affiliations:

¹ Division of Pulmonary, Critical Care, & Sleep Medicine, The Ohio State University, Columbus, OH

² Division of Environmental & Occupational Health, National Jewish Health, Denver, CO

³ Division of Pulmonary, Allergy, Sleep, & Critical Care Medicine, Boston University School of Medicine, Boston, MA

⁴ Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, VA,

⁵ Division of Pulmonary, Critical Care, & Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY

⁶ Division of Pulmonary, Allergy, & Critical Care Medicine, University of Pennsylvania, Philadelphia, PA

⁷ Brighton and Sussex Medical School, Brighton, England

⁸ Division of Pulmonary, Allergy, & Critical Care Medicine, Penn State University, Hershey, PA

⁹ Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

¹⁰ Division of Pulmonary & Critical Care Medicine, Johns Hopkins Medical School, Baltimore, MD

¹¹ Department of Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH

¹² Division of Infectious Diseases, Vanderbilt University, Nashville, TN

¹³ ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein,

the Netherlands & Department of Toxicology and Pharmacology, FHML, University Maastricht, the Netherlands

¹⁴ Division of Pulmonary, Critical Care, & Occupational Medicine, University of Iowa, Iowa City, IA

¹⁵ Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Medical University of South Carolina, Charleston, SC

¹⁶ Division of Pulmonary Medicine, Albany Medical College, Albany, NY

¹⁷ Library and Knowledge Services, National Jewish Health, Denver, CO

 ¹⁸ Division of Pulmonary & Critical Care Medicine, University of California, San Francisco, CA
 ¹⁹ Department of Diseases of the Thorax, Morgagni Hospital. Forlì, Italy and Department of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark

²⁰ Division of Cardiovascular Medicine, The Ohio State University, Columbus OH

²¹ Kaiser Permanente Northern California, Oakland, CA

²² Division of Pulmonary & Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA

²³ Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH

TABLE OF CONTENTS

Methods

Panel composition Questions Literature search Evidence synthesis Recommendations Manuscript preparation Peer review Updating References

Implications of the strength of a recommendation

Question 1: Lymph node sampling for asymptomatic bilateral hilar lymphadenopathy

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 2: EBUS-guided sampling versus mediastinoscopy for suspected sarcoidosis

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 3: Screening eye examination

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 4: Screening renal function testing

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 5: Screening liver function testing

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 6: Screening calcium and vitamin D testing

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 7: Screening complete cell counts

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profile

Question 8: Screening for cardiac sarcoidosis (electrocardiography, transthoracic echocardiography, and 24-hour electrocardiography [Holter] monitoring)

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profiles

Question 9: Diagnostic evaluation of suspected cardiac sarcoidosis (cardiac MRI, PET scanning, and transthoracic echocardiography)

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profiles

Question 10: Echocardiography for suspected pulmonary hypertension

Search strategy Approach Selected studies with outcomes Meta-analysis Forest plots Markov model Evidence profiles

METHODS

Panel Composition

The project was proposed by one of the co-chairs (EDC) through an application to the American Thoracic Society (ATS). The project formally commenced January 1, 2018. The cochairs (EDC, RPB, LAM) identified potential panelists based on their expertise in the investigation and clinical management of sarcoidosis. The committee was diverse with respect to gender, specialties and disciplines, level of seniority, and geographical locations; in addition, a patient representative provided perspective on patient values and preferences. All potential panelists disclosed their conflicts of interest, which were vetted and managed according to the policies and procedures of the ATS. The final panel was approved by the ATS.

Questions

The co-chairs and lead methodologist (KCW) drafted key clinical questions in a PICO (Population, Intervention, Comparator, and Outcome) format. The questions were revised, and additional questions were proposed via a series of electronic surveys. Further discussion,

modification, and approval was performed by the full guideline panel at a face-to-face meeting held at the 2018 ATS International Conference in San Diego, California in May 2018.

Literature search

The published literature was searched by the librarian (SK) in the following databases: Medline, Excerpta Medica Database (EMBASE), and Cochrane Database of Systematic Reviews. Searching was conducted in June 2018 by the librarian and then a targeted updated was performed in April 2019 by the lead methodologist (KCW). The methodology team (KCW, MG, PG, MHT) reviewed all publications retrieved from the literature searches, initially screening based on title and/or abstract and then reviewing the full text of potentially relevant publications. Bibliographies of selected studies and relevant systematic reviews were also reviewed.

Evidence synthesis

Findings from relevant publications were extracted into data tables. When data were amenable to weighted pooling (i.e., meta-analysis), a random effects model was implemented in the Cochrane Collaboration Review Manager, version 5.3. For controlled studies, relative risk (RR) was used to report dichotomous outcomes and the mean difference (MD) was used to report continuous outcomes. For uncontrolled studies, proportion was estimated using generic inverse; in cases when generic inverse variance could not be used, data was pooled without weighting. Regardless of the approach used to pool individual studies, the accompanying 95% confidence interval (CI) was determined. Statistical heterogeneity was measured using the I² test; an I² \geq 75%, 50-75%, and 25-50% was considered severe, moderate, and mild heterogeneity,

E5

respectively. When heterogeneity was encountered, sensitivity analyses were initially performed to identify contributors and, if indicated, subgroup analyses and meta-regression was performed. No cause was usually found, so we eliminated outliers and the resulting estimates were presented to the committee to inform their discussion and judgements. Results are provided in the evidence tables.

The Grading, Recommendations, Assessment, Development, and Evaluation (GRADE) approach was used to assess certainty in the estimated effects (i.e., the quality of evidence) for each intervention on each outcome of interest (1). The methodologist created evidence profiles using the Guideline Development Tool (2), which categorized the overall certainty in the evidence into one of four levels: high, moderate, low, or very low. Each level represents the certainty in the accuracy of the estimated effects for a specific intervention. The full guideline panel reviewed the evidence profiles and provided input and feedback.

Recommendations

The methodology team presented the completed evidence syntheses to subcommittees via webinars, during which the evidence was discussed. Following each webinar, the subcommittees made conclusions and formulated and rated recommendations by email and teleconferences. The panelists made decisions about whether to recommend for or against an intervention based on: the balance of desirable consequences (benefits) and undesirable consequences (burdens, adverse effects, and costs), quality of evidence, feasibility, and acceptability to patients (i.e., patient values and preferences). Using the GRADE approach, each recommendation was rated as either "strong" or "conditional". Best practice statements were made when it was concluded that there was no appropriate alternative course of action. The full guideline panel met at the 2019 ATS

E6

Conference in Dallas, Texas in May 2019. Evidences syntheses and subcommittee conclusions and recommendations were presented to the full guideline panel, which was followed by discussion, revisions, and approvals.

Manuscript preparation

The initial draft of the manuscript was written by the co-chairs (EDC, RPB, LAM) and lead methodologist (KCW). All members of the guideline panel reviewed the manuscript; comments were addressed by the co-chairs and then incorporated into the revised manuscript. The manuscript was redistributed to the full panel for further review. The final product was the result of collective work from all co-chairs, panelists, and methodologists. Once the manuscript was approved by the full panel, it was submitted for external peer review.

Peer review

Peer review was overseen by the ATS Documents Editor. The guideline was peer reviewed by four content experts and a guideline methodologist. Following several cycles of review and revisions, the manuscript was deemed satisfactory and sent to the AT Board of Directors for further review and final approval.

Updating

The guideline will be reviewed by the ATS' Clinical Problems Assembly within five years. If one or more questions is deemed in need of an update, or related new questions need answered, a new task force will be approved to develop an updated guideline. Otherwise, the

E7

resources will be redirected toward developing a guideline on an alternative interstitial lung disease-related topic.

Methods references:

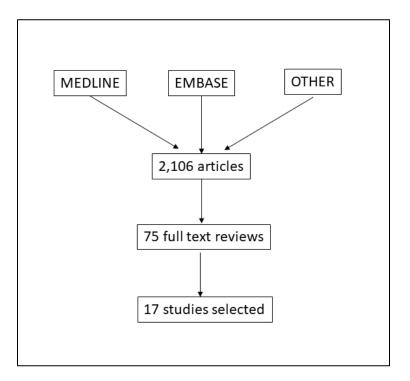
- Schunemann HJ, Jaeschke R, Cook DJ, Bria WF, El-Solh AA, Ernst A, Fahy BF, Gould MK, Horan KL, Krishnan JA, et al. An Official ATS Statement: Grading the Quality of Evidence and Strength of Recommendations in ATS Guidelines and Recommendations. Am J Respir Crit Care Med 2006; 174:605-614.
- GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available from gradepro.org.

IMPLICATIONS OF THE STRENGTH OF A RECOMMENDATION

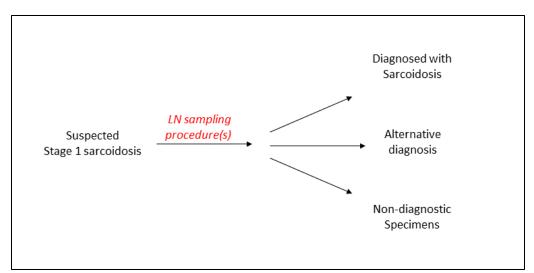
The strength of a recommendation can be conceptualized in several ways. First, a **strong** recommendation conveys that the recommended course of action is the appropriate in >95% of patients, whereas a **conditional** recommendation conveys that the recommended course of action is appropriate in >50% of patients but may not be appropriate in a sizeable minority. Second, a **strong** recommendation conveys "just do it", whereas a **conditional** recommendation conveys "slow down, think about it, discuss it". Third, **strong** recommendation also conveys that criticism may be warranted if the recommended course of action is not followed, whereas a **conditional** recommendation conveys that a decision to not follow the recommended course of action may be a matter of style or equipoise. Finally, a **strong** recommendation is often the basis of a performance measure, whereas **conditional** recommendations seldom make reasonable performance measures.

	Strong Recommendation	Conditional Recommendation
	("We recommend")	("We suggest")
For patients	The overwhelming majority of individuals in this situation would want the recommended course of action and only a small minority would not.	The majority individuals in this situation would want the suggested course of action, but a sizeable minority would not.
For clinicians	The overwhelming majority of individuals should receive the recommended course of action. Adherence to this recommendation according to the guideline could be used as a quality criterion or performance indicator. Formal decision aids are not likely to be needed to help individuals make decisions consistent with their values and preferences.	Different choices will be appropriate for different patients and you must help each patient arrive at a management decision consistent with her or his values and preferences. Decision aids may be useful to help individuals make decisions consistent with their values and preferences. Clinicians should expect to spend more time with patients when working towards a decision.
For policy makers	The recommendation can be adapted as policy in most situations including for the use as performance indicators.	Policy-making will require substantial debates and involvement of many stakeholders. Policies are also more likely to vary between regions. Performance indicators would have to focus on the fact that adequate deliberation about the management options has taken place.

TABLE: Implications of strong and conditional recommendations


<u>QUESTION #1</u>: Should a lymph node biopsy be performed in a patient presenting with asymptomatic bilateral hilar lymphadenopathy?

Search strategy


#	Searches
1	lymphadenopathy/
2	((enlarg\$ or swollen) adj2 lymph node\$).mp.
3	(Hilar adj3 (lymph\$ or adenopath\$)).mp.
4	(Bilateral adj3 (hilar or lymph\$ or adenopath\$)).mp.
5	or/1-4 [lymphadenopathy]
6	lymph node biopsy/
	(lymph\$ adj2 (tissue\$ or node\$ or gland\$) adj2 (biops\$ or puncture\$ or
7	aspirat\$)).mp.
8	6 or 7 [biopsy]
9	5 and 8
10	exp sarcoidosis/
11	sarcoidosis/
12	sarcoid\$.mp.
13	(besnier adj boeck\$).tw.

14	(boeck\$ adj (disease or sarcoid)).tw.
15	(schaumann\$ adj (disease or syndrome)).tw.
16	uveoparoti\$.tw.
17	(benign\$ adj lymphogranuloma\$).tw.
18	((junging or heerfordt or lofgren) adj syndrome).tw.
19	neurosarcoidosis.tw.
20	(lupus adj pernio).tw.
21	(idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
22	or/13-24 [sarcoidosis]
23	9 and 22

Flow of information

Approach

Note: In contrast to the approach taken for PICO 2, we assumed that the all procedures alone or in combination yielded adequate samples

Selected studies with outcomes

Diagnostic findings

Study	Size, N	Procedure	Sarcoidosis confirmed	Alternative diagnosis	Alternative diagnoses	Non-diagnostic evaluation
Boujaoude 2012 [*]	78	EBUS-TBNA	56/78 (72%)	14/78 (18%)	Lymphoma 8 cases, malignant other 1 case, non- malignant other 5 cases	NR
Fritscher-Ravens 2000	12	EUS-FNA	11/12 (92%)	1/12 (8%)	Tuberculosis (1)	0/12 (0%)
Garwood 2007	32	EBUS-TBNA	30/32 (94%)	0/32 (0%)	N/A	2/32 (6%)
Hong 2013	11	EBUS-TBNA, TBBX, EBBX, BAL	9/11 (82%)	NR	NR	NR
Iwashita 2008	41	EUS-FNA	35/41 (85%)	1/41 (2%)	Lymphoma (1)	5/41 (12%)
Koerner 1975	10	TBBX	7/10 (70%)	2/10 (20%)	Tuberculosis (1), Pulmonary embolism (1)	1/10 (10%)
Koonitz 1976	20	TBBX	18/20 (90%)	0/20 (0%)	N/A	2/20 (10%)
Leonard 1997	5	TBBX, TBNA, BAL	3/5 (60%)	1/5 (20%)	Lymphoma (1)	1/5 (20%)
Oki 2007	11	EBUS-TBNA	11/11 (100%)	0/11 (0%)	N/A	0/11 (0%)
Oki 2012	44	EBUS-TBNA, TBBX	37/44 (84%)	NR	NR	NR
Oki 2013	18	EUS-FNA	17/18 (94%)	NR	NR	NR
Oki 2018	58	EBUS-TBNA	47/58 (81%)	NR	NR	NR
Pakhale 2006	55	Mediastinoscopy	49/55 (89%)	1/55 (1.8%)		1/55 (2%)
Pauli 1984	152	TBNA	121/152 (80%)	0/152 (0%)	N/A	31/152 (20%)
Ribeiro 2014	27	EBUS-TBNA	21/27 (28%)	2/27 (7.4%)	Tuberculosis (1), Non-tuberculous mycobacterium (1)	1/27 (4%)
Trisolini 2004	17	TBNA, TBBX	17/17 (100%)	0/17 (0%)	N/A	0/17 (0%)
Yanardag 2006**	43	Mediastinoscopy	42/43 (98%)	0/43 (0%)	N/A	1/43 (2.3%)
Pooled (weighted)	N/A	N/A	Not estimable	Not estimable	N/A	Not estimable

Pooled (unweighted)	556	N/A	<u>475/556 (85.4%)</u> (<u>95% CI 82.2- 88.3%)</u>	<u>8/425 (1.9%)</u> (95% CI 1.0- 3.7%)	N/A	<u>45/425 (10.6%)</u> (<u>95% CI 7.8- 13.9%)</u>
Median (range)	N/A	N/A	87.2% (60.0-100%)	0.9% (0- 20.0%)	N/A	5.0% (0- 20.4%)

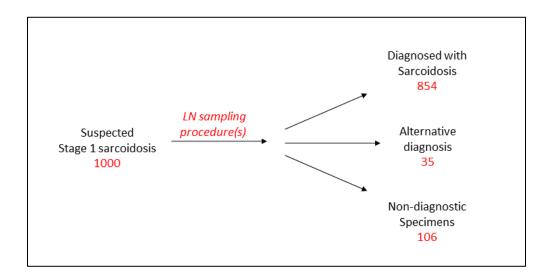
NR= not reported, N/A= not applicable

* Study was selected because it met selection criteria but was excluded from the analysis as an outlier.

**Assumed 1 patient in the entire cohort who had a non-diagnostic mediastinoscopy was stage 1.

Complications

Study	Mortality	Major bleeding	Pneumo- thorax	Other
Boujaoude 2012 [*]	0/60 (0%)	0/60 (0%)	0/60 (0%)	0/60 (0%)
Fritscher-Ravens 2000	0/12 (0%)	0/12 (0%)	0/12 (0%)	0/12 (0%)
Garwood 2007	0/32 (0%)	0/32 (0%)	0/32 (0%)	0/32 (0%)
Hong 2013	0/11 (0%)	0/11 (0%)	NR	0/11 (0%)
Iwashita 2008	0/41 (0%)	0/41 (0%)	0/41 (0%)	1/41 (2%) - mediastinitis
Koerner 1975	0/10 (0%)	0/10 (0%)	NR	0/10 (0%)
Koonitz 1976	0/20 (0%)	0/20 (0%)	NR	0/20 (0%)
Leonard 1997	0/5 (0%)	0/5 (0%)	0/5 (0%)	0/5 (0%)
Oki 2007	0/11 (0%)	0/11 (0%)	0/11 (0%)	0/11 (0%)
Oki 2012	0/44 (0%)	0/44 (0%)	NR	0/44 (0%)
Oki 2013	0/18 (0%)	0/18 (0%)	0/18 (0%)	0/18 (0%)
Oki 2018	0/58 (0%)	0/58 (0%)	0/58 (0%)	0/58 (0%)
Pakhale 2006	NR	NR	NR	NR
Pauli 1984	0/152 (0%)	0/152 (0%)	0/152 (0%)	0/152 (0%)
Ribeiro 2014	0/27 (0%)	0/27 (0%)	0/27 (0%)	0/27 (0%)
Trisolini 2004	0/17 (0%)	0/17 (0%)	0/17 (0%)	0/17 (0%)
Yanardag 2006*	0/43 (0%)	0/43 (0%)	0/43 (0%)	0/43 (0%)
Pooled (weighted)	Not estimable	Not estimable	Not estimable	Not estimable
Pooled (unweighted)	0/501 (0%) (95% CI 0- 0.01%)	0/501 (0%) (95% CI 0- 0.01%)	0/232 (0%) (95% CI 0- 0.02%)	1/501 (0.001%) (95% CI 0- 0.01%)
Median (range)	0% (0- 0%)	0% (0- 0%)	0% (0- 0%)	0% (0- 2.4%)


NR= not reported

* Study was selected because it met selection criteria but was excluded from the analysis as an outlier.

Meta-analysis Forest plots

None. Studies without control groups require Generic Inverse Variance for meta-analysis, which cannot be used if individual studies yield 0% or 100%. Thus, studies underwent only unweighted pooling instead.

Markov model

Evidence profile

Comparison: Lymph node sampling versus no lymph node sampling

Bibliography:

- 1. Boujaoude Z, et al. Endobronchial ultrasound with transbronchial needle aspiration in the diagnosis of bilateral hilar and mediastinal lymphadenopathy. J Bronchology and Interv Pulmonology 2012; 19(1):19-23.¹
- 2. Fritscher-Ravens, A., et al. (2000). "Diagnosing sarcoidosis using endosonography-guided fine-needle aspiration." Chest 118(4): 928-935.
- 3. Garwood S, et al. Endobronchial ultrasound for the diagnosis of pulmonary sarcoidosis. CHEST 2007; 132(4):1298-1304.
- Hong G. et al. Usefulness of Endobronchial Ultrasound guided transbronchial needle aspiration for diagnosis of sarcoidosis. Yonsei Med J 2013;5(4)6):1416-1421
- Iwashita, T., et al. (2008). "The yield of endoscopic ultrasound-guided fine needle aspiration for histological diagnosis in patients suspected of stage I sarcoidosis." Endoscopy 40(5): 400-405.
- 6. Koerner, S. K., et al. (1975). "Transbronchinal lung biopsy for the diagnosis of sarcoidosis." N Engl J Med 293(6): 268-270.
- 7. Koonitz, C. H., et al. (1976). "Transbronchial lung biopsy via the fiberoptic bronchoscope in sarcoidosis." Ann Intern Med 85(1): 64-66
- 8. Leonard, C., et al. (1997). "Bronchoscopic diagnosis of sarcoidosis." European Respiratory Journal 10(12): 2722-2724.
- Oki, M., et al. (2007). "Real-time endobronchial ultrasound-guided transbronchial needle aspiration is useful for diagnosing sarcoidosis." Respirology 12(6): 863-868.
- 10. Pakhale SS et al. Has mediastinoscopy still a role in suspected stage I sarcoidosis? Sarcoidosis Vasculitis & Diffuse Lung Diseases. 2006;23(1)66-69.
- 11. Pauli, G., et al. (1984). "Transbronchial needle aspiration in the diagnosis of sarcoidosis." Chest 85(4): 482-484.
- 12. Ribeiro, C., et al. (2014). "Diagnosis of sarcoidosis in the endobronchial ultrasound-guided transbronchial needle aspiration era." Revista Portuguesa de Pneumologia 20(5): 237-241.
- 13. Trisolini, R., et al. (2004). "Transbronchial needle aspiration improves the diagnostic yield of bronchoscopy in sarcoidosis." Sarcoidosis Vasculitis & Diffuse Lung Diseases 21(2): 147-151.
- 14. Oki, M., et al. (2012). "Prospective study of endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes versus transbronchial lung biopsy of lung tissue for diagnosis of sarcoidosis." Journal of Thoracic & Cardiovascular Surgery 143(6): 1324-1329.
- 15. Oki, M., et al. (2013). "Transesophageal bronchoscopic ultrasound-guided fine needle aspiration for diagnosis of sarcoidosis." Respiration 85(2): 137-143.
- 16. Oki, M., et al. (2018). "How Many Passes Are Needed for Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Sarcoidosis? A Prospective Multicenter Study." Respiration 95(4): 251-257.Yanardag, H., et al. (2006). "Clinical value of mediastinoscopy in the diagnosis of sarcoidosis: an analysis of 68 cases." Thoracic & Cardiovascular Surgeon 54(3): 198-201.
- 17. Yanardag, H., et al. (2006). "Clinical value of mediastinoscopy in the diagnosis of sarcoidosis: an analysis of 68 cases." Thoracic & Cardiovascular Surgeon 54(3): 198-201.

Quality assessment Effect Quality Importance
--

No of	Design	Risk of	Inconsistency	Indirectness	Imprecision	Other					
studies	Ū	bias	,		•	considerations					
Confirm	Confirmed sarcoidosis (%)										
16 ²	Case series	Serious ³	Serious ⁴	None	None⁵	None	475/556 (85.4%) (95% CI 82.2- 88.3%)	VERY LOW	TBD		
Alterna	tive dia	gnoses (%))								
12 ⁶	Case series	Serious ³	Serious ⁴	None	None⁵	None	15/425 (3.5%) (95% CI 2.0- 5.8%)	VERY LOW	TBD		
Non-dia	agnostic	sampling	(%)								
12 ⁶	Case series	Serious ³	Serious ⁴	None	None⁵	None	45/425 (10.6%) (95% CI 7.8- 13.9%)	VERY LOW	TBD		
Mortali	ty, proce	edural (%)									
15 ⁷	Case series	Serious ³	None	None	None⁵	None	0/501 (0%) (95% CI 0- 0.01%)	VERY LOW	TBD		
Major b	leeding	(%)									
15 ⁷	Case series	Serious ³	None	None	None⁵	None	0/501 (0%) (95% CI 0- 0.01%)	VERY LOW	TBD		
Pneum	othorax	(%)									
10 ⁸	Case series	Serious ³	None	None	None⁵	None	0/232 (0%) (95% CI 0- 0.02%)	VERY LOW	TBD		

Footnotes:

¹ Bonjaoude, et al. was excluded from the analysis and evidence profile as an outlier, likely due to enrollment of a slightly different population.

² Included all studies in the bibliography except Bonjaoude (2012).

³ Most studies were retrospective analyses, rather than prospective studies that enrolled consecutive patients with legitimate uncertainty.

⁴ Could not do a meta-analysis using Generic Inverse Variance and, therefore, could not calculate the I². However, the wide range suggests inconsistency across studies.

⁵ The ends of the confidence interval would likely lead to the same clinical decision.

⁶ Included all studies in the bibliography except Bonjaoude (2012), Hong (2013), Oki (2012, 2013, and 2018).

⁷ Included all studies in the bibliography except Bonjaoude (2012) and Pakhale (2006).

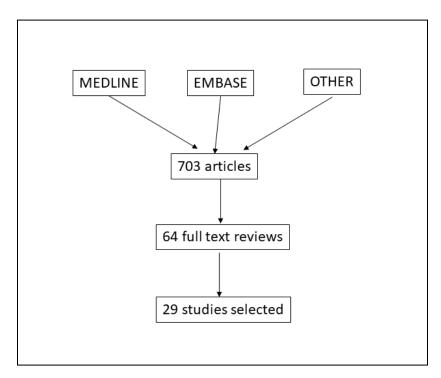
⁸ Included all studies in the bibliography except Bonjaoude (2012), Hong (2013), Koerner (1975), Koonitz (1976), Oki (2012), and Pakhale (2006).

<u>QUESTION #2</u>: Should patients with suspected sarcoidosis and mediastinal and/or hilar lymphadenopathy for whom it has been determined that tissue sampling is necessary undergo EBUS-guided lymph node sampling or mediastinoscopy as the initial mediastinal and/or hilar lymph node sampling procedure?

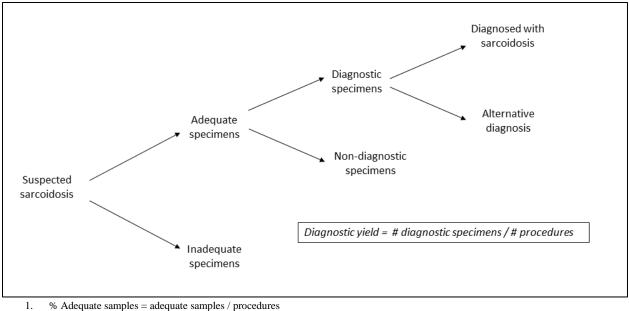
Search strategy

#

		Sedicites
1	-	Endoscopic Ultrasound-Guided Fine Needle Aspiration/


2 EBUS\$.mp.

Cooreboo


- 3 (endoscop\$ adj3 (ultrasound or ultrasonograph\$)).mp.
- 4 endosonograph\$.mp.
- 5 "Ultrasonography, Interventional"/
- 6 or/1-5 [all EBUS]
 - 7 Mediastinoscopy/
 - 8 Mediastinoscopes/
 - 9 mediastinoscop\$.mp.
 - 10 (endoscop\$ adj3 (mediastin\$ or lymph\$)).mp.

11	or/7-10 [mediastinoscopy]
12	6 or 11
13	exp sarcoidosis/
14	sarcoidosis/
15	sarcoid\$.mp.
16	(besnier adj boeck\$).tw.
17	(boeck\$ adj (disease or sarcoid)).tw.
18	(schaumann\$ adj (disease or syndrome)).tw.
19	uveoparoti\$.tw.
20	(benign\$ adj lymphogranuloma\$).tw.
21	((junging or heerfordt or lofgren) adj syndrome).tw.
22	neurosarcoidosis.tw.
23	(lupus adj pernio).tw.
24	(idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
25	or/13-24 [sarcoidosis]
26	12 and 25 [EBUS or mediastinoscopy and sarcoidosis]

Flow of information

Definitions

- 2. 3.
- % Fuceduate samples adequate samples / procedures
 % Inadequate samples = inadequate samples / procedures
 % Diagnostic samples = specific diagnoses / adequate specimens
 % Non-diagnostic samples = non-diagnostic samples / adequate specimens
 % Sarcoidosis diagnoses = sarcoidosis diagnoses / specific diagnoses 4.
- 5.
- % Other diagnoses = other diagnoses / specific diagnoses Diagnostic yield = specific diagnoses / procedures 6.
- 7.
- 8. Note that when all procedures yield adequate specimens, then % diagnostic samples = diagnostic yield

Selected studies with outcomes

EBUS-guided lymph node sampling										
Study	Adequate samples	Inadequate samples	Diagnostic samples among adequate samples	Non- diagnostic samples among adequate samples	Sarcoidosis among diagnostic samples	Other diagnoses among diagnostic samples	Diagnoses other than sarcoidosis	Diagnostic yield (diagnoses among all procedures)		
Adolfo Aragaki- Nakahodo 2017	NR	NR	NR	NR	12/14 (86%)	2/14 (14%)	1 tuberculosis, 1 mantle cell 1ymphoma	14/36 (39%)		
Balwan 2018	15/15 (100%)	0/15 (0%)	14/15 (93%)	1/15 (7%)	14/14 (100%)	0/14 (0%)	None	14/15 (93%)		
Boujaoude 2012	NR	NR	NR	NR	53/64 (83%)	11/64 (17%)	4 NHL, 2 HL, 2 silicosis, 2 fibrosis, 1 cancer	64/78 (82%)		
Garwood 2007	NR	NR	NR	NR	41/41 (100%)	0/41 (0%)	N/A	41/49 (84%)		
Hong 2013	NR	NR	NR172 our	NR	29/30 (97%)	1/30 (3%)	1 cancer	30/33 (91%)		
Li 2014	NR	NR	NR	NR	29/30 (97%)	1/30 (3%)	1 tuberculosis	30/31 (97%)		
Low 2014	13/15 (87%)	2/15 (13%)	9/13 (69%)	4/13(31%)	9/9 (100%)	0/10 (0%)	N/A	9/15 (60%)		

Navasakulpong 2016	44/45 (98%)	1/45(2%)	36/44 (82%)	8/44 (18%)	36/36 (100%)	0/36 (0%)	N/A	36/45 (80%)
Oki 2012	NR	NR	NR	NR	51/53 (96%)	2/53 (4%)	2 tuberculosis	53/62 (85%)
Raddaoui 2014	NR	NR	NR	NR	16/16 (100%)	0/16 (0%)	N/A	16/19 (84%)
Ribeiro 2014	38/39 (97%)	1/39 (3%)	31/38 (82%)	7/38 (18%)	31/31 (100%)	0/31 (0%)	N/A	31/39 (79%)
Tremblay 2009	NR	NR	NR	NR	23/23 (100%)	0/23 (0%)	N/A	23/24 (96%)
Wong 2007	62/65 (95%)	3/65 (5%)	56/62 (90%)	6/62 (10%)	56/56 (100%)	0/56 (0%)	N/A	56/65 (86%)
Oki 2007	NR	NR	NR	NR	13/13 (100%)	0/13 (0%)	N/A	13/15 (87%)
Yanardag 2006	NR	NR	NR	NR	66/66 (100%)	0/66 (0%)	N/A	66/68 (97%)
Dziedzic 2017	NR	NR	NR	NR	549/549 (100%)	0/549 (0%)	N/A	549/653 (84%)
Oki 2018	NR	NR	NR	NR	81/90 (90%)	9/90 (10)	5 lung cancers, 3 other cancers, 1 necrotizing granulomas	90/109 (83%)
Pooled (weighted)	Not estimable	Not estimable	<u>86%</u> (95% CI 81- 92%)	<u>14%</u> (95% CI 8- 20%)	Not estimable	Not estimable		<u>(95% CI 84-</u> 91%)
Pooled (unweighted)	<u>172/179</u> (96.1%) (95% CI <u>92.2-</u> <u>98.1%)</u>	7/179 (3.9%) (95% CI 1.9-7.9%)	146/172 (84.9%) (95% CI 78.8- 89.5%)	26/172 (15.1%) (95% CI 10.5- 21.2%)	<u>1097/1121</u> (97.9%) (95% CI 96.8- 98.6%)	<u>24/1121</u> (<u>2.1%)</u> (<u>95% CI</u> <u>1.4- 3.2%)</u>		1121/1320 (84.9%) (95% CI 82.9- 86.8%)
Median (range)	97.4% (86.7% to 100%)	2.6% (0% to 13.3%)	81.8% (69.2% to 93.3%)	13.9% (6.7% to 30.8%)	100% (82.8% to 100%)	0% (0% to 17.2%)		84.8% (60.0% to 97.1%)

Mediastinos	сору									
Study	Adequate samples	Inadequ ate samples	Diagnostic samples among adequate samples	Non- diagnostic samples among adequate samples	a dia	coidosis mong gnostic mples	Other diagnoses among diagnostic samples	Diagnoses other than sarcoidosis	Diagnostic yield (diagnoses among all procedures)	
Pakhale 2006	<u>55/55</u> (100%)	0/55 (0%)	<u>54/55</u> (98%)	1/55 (2%)	<u>49/3</u>	54 (91% <u>)</u>	5/54 (9%)	Reactive LAN x5	<u>54/55 (98%)</u>	
Study	Study Sarcoidosis among all procedures					Oth	0	on-diagnostic sam procedures	ples among all	
Pakhale	2006		49/55 (899	%)				6/55 (11%)		
Tucker	1970		48/50 (969	%)		2/50 (4%)				
Carlens	1959		118/123 (96	5%)		5/123 (4%)				
Nielsen 1	1966		115/121 (95	5%)		6/121 (5%)				
Maassen	1967		115/115 (10	0%)		0/115 (0%)				
Jepsen 1	1966		41/43 (959	%)		2/43 (5%)				
Lofgren	Lofgren 1964 32/35 (91%)				3/35 (9%)					
Palva 1	Palva 1964 27/28 (96%)						1/28 (4%)			
Patilia 1	964		25/25 (100	%)				0/25 (0%)		
Mikhail	1971		121/130 (93	3%)				9/130 (7%)		

Berge 1964	33/33 (100%)	0/33 (0%)
Friedel 1964	30/30 (100%)	0/30 (0%)
Pooled (weighted)	Not estimable	Not estimable
Pooled (unweighted)	<u>754/787 (95.8%)</u> (95% CI 94.2% to 97.0%)	<u>33/787 (4.2%)</u> (95% CI 3.0 to 5.8%)
Median (range)	96.0% (90.7% to 100%)	4.0% (0% to 9.3%)

		Sarcoidosis among all procedure	s
	Pooled (weighted)	Pooled (unweighted)	Median (range)
EBUS	85% (95% CI 80% to 89%)	83.1% (95% CI 81.0-85.0%)	84.1% (60.0 – 97.1%)
Mediastinoscopy	Not estimable	95.8% (95% CI 94.2 – 97%)	96% (90.7 - 100%)
		Diagnostic yield	
	Pooled (weighted)	Pooled (unweighted)	Median (range)
EBUS	87% (95% CI 84-91%)	84.9% (95% CI 82.9- 86.8%)	84.8% (60% to 97.1%)
Mediastinoscopy		98% (95% CI 90-99.9%) Single study	

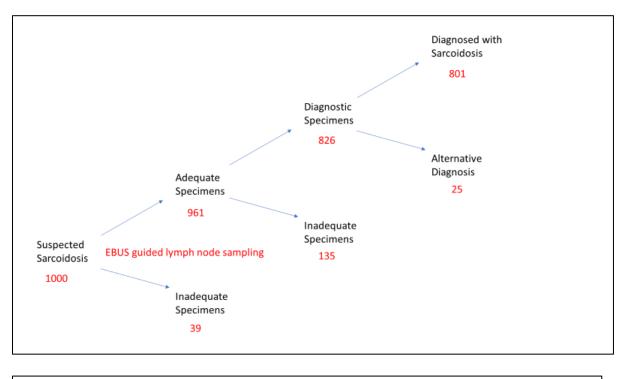
Mediastinosc	ору						EBUS-gu	ided samp	ling	
Study	Mortality	Major bleeding	Minor bleeding	Pneumo- thorax	Other	Study	Mortality	Major bleeding	Pneumo- thorax	Other
Pakhale 2006	NR	NR	NR	NR	NR	Adolfo Aragaki- Nakahodo 2017	0/36 (0%)	0/36 (0%)	NR	0/36 (0%)
Tucker 1970	NR	NR	NR	NR	NR	Balwan 2018	0/15 (0%)	0/15 (0%)	0/15 (0%)	0/15 (0%)
Carlens 1959	NR	NR	NR	NR	NR	Boujaoude 2012	0/78 (0%)	0/78 (0%)	0/78 (0%	0/78 (0%)
Nielsen 1966	NR	NR	NR	NR	NR	Garwood 2007	0/50 (0%)	0/50 (0%)	0/50 (0%)	1/50 (2%) stridor
Maassen 1967	NR	NR	NR	NR	NR	Hong 2013	0/33 (0%)	0/33 (0%)	NR	0/33 (0%)
Jepsen 1966	NR	NR	NR	NR	NR	Li 2014	0/31 (0%)	0/31 (0%)	0/31 (0%)	0/31 (0%)
Lofgren 1964	NR	NR	NR	NR	NR	Low 2014	0/15 (0%)	0/15 (0%)	0/15 (0%)	0/15 (0%)
Palva 1964	NR	NR	NR	NR	NR	Navasakulpong 2016	NR	NR	NR	NR

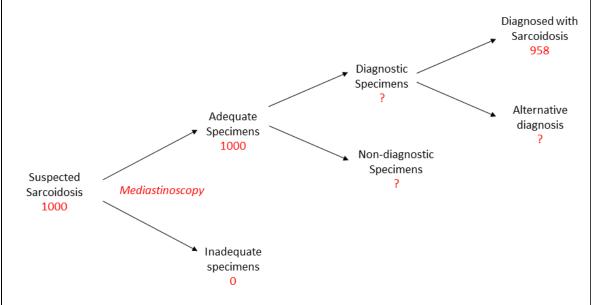
Patilia 1964	NR	NR	NR	NR	NR	Oki 2012	0/62 (0%)	0/62 (0%)	0/62 (0%)	0/62 (0%)
Mikhail 1971	NR	NR	NR	NR	NR	Raddaoui 2014	NR	NR	NR	NR
Berge 1964	NR	NR	NR	NR	NR	Ribeiro 2014	0/39 (0%)	0/39 (0%)	0/39 (0%)	0/39 (0%)
Friedel 1964	NR	NR	NR	NR	NR	Tremblay 2009	0/24 (0%)	0/24 (0%)	0/24 (0%)	0/24 (0%)
						Wong 2007	0/65 (0%)	0/65 (0%)	0/65 (0%)	0/65 (0%)
						Oki 2007	0/15 (0%)	0/15 (0%)	0/15 (0%)	0/15 (0%)
						Yanardag 2006	0/68 (0%)	0/68 (0%)	0/68 (0%)	0/68 (0%)
						Dziedzic 2017	0/653 (0%)	0/653 (0%)	0/653 (0%)	NR
						Oki 2018	0/109 (0%)	0/109 (0%)	0/109 (0%)	0/109 (0%)
Pooled (weighted)	Not estimable	Not estimable	Not estimable	Not estimable	Not estimable	Pooled (weighted)	Not estimable	Not estimable	Not estimable	Not estimable
Pooled (unweighted)	Not estimable	Not estimable	Not estimable	Not estimable	Not estimable	Pooled (unweighted)	0/1293 (0%) (95% CI 0- 0.3%)	0/1293 (0%) (95% CI 0- 0.3%)	0/1224 (0%) (95% CI 0-0.3%)	1/1293 (0.01%) (95% CI 0- 0.4%)
Median (range)	Not estimable	Not estimable	Not estimable	Not estimable	Not estimable	Median (range)	0% (0% to 0%)	0% (0% to 0%)	0% (0% to 0%)	0% (0% to 2%)

Forest plots

EBUS diagnostic samples among adequate specimens

Study or Subgroup	Diagnostic Samples	SE	Weight	IV, Random, 95% CI			
Balwan 2018	0.93	0.06	19.7%	0.93 [0.81, 1.05]			
Low 2014	0.69	0.13	4.9%	0.69 [0.44, 0.94]			
Navasakulpong 2016	0.82	0.06	19.7%	0.82 [0.70, 0.94]		-	-
Riberio 2014	0.82	0.06	19.7%	0.82 [0.70, 0.94]		-	-
Nong 2007	0.9	0.04	36.2%	0.90 [0.82, 0.98]			-
Fotal (95% CI)			100.0%	0.86 [0.81, 0.92]			•
Heterogeneity: Tau ² = 0	.00; Chi ² = 4.86, df = 4 (P = 0.3	30); I² = 18	% -			
Fest for overall effect: Z		0	50%	100%			


EBUS non-diagnostic samples among adequate specimens


Study or Subgroup	Non-diagnostic samples	SE	Weight	IV, Random, 95% CI		
Balwan 2018	0.07	0.06	19.8%	0.07 [-0.05, 0.19]	+	
Low 2014	0.31	0.12	6.0%	0.31 [0.07, 0.55]		
Navasakulpong 2016	0.18	0.06	19.8%	0.18 [0.06, 0.30]		
Riberio 2014	0.18	0.06	19.8%	0.18 [0.06, 0.30]		
Nong 2007	0.1	0.04	34.7%	0.10 [0.02, 0.18]	-	
Total (95% CI)			100.0%	0.14 [0.08, 0.20]	•	
Heterogeneity: Tau ² = 0.0	00; Chi² = 5.19, df = 4 (P = 0).27); P	²= 23%	17		

EBUS diagnostic yield

Study or Subgroup	Diagnostic Yield	SE	Weight	Diagnostic Yield IV, Random, 95% Cl	
Balwan 2018	0.93		5.1%	0.93 [0.81, 1.05]	
Boujaoude 2012	0.82		7.1%	0.82 [0.74, 0.90]	
Dziedzic 2017	0.84		9.9%	0.84 [0.82, 0.86]	•
Garwood 2007	0.84	0.05	6.1%	0.84 [0.74, 0.94]	
Hong 2013	0.92		7.1%	0.92 [0.84, 1.00]	-
Li 2014	0.97	0.03	8.2%	0.97 [0.91, 1.03]	-
Low 2014	0.6	0.13	1.8%	0.60 [0.35, 0.85]	
Navasakulpong 2016	0.8	0.06	5.1%	0.80 [0.68, 0.92]	
Oki 2007	0.87	0.09	3.2%	0.87 [0.69, 1.05]	
Oki 2012	0.85	0.04	7.1%	0.85 [0.77, 0.93]	
Oki 2018	0.83	0.04	7.1%	0.83 [0.75, 0.91]	
Raddaoui 2014	0.84	0.08	3.7%	0.84 [0.68, 1.00]	
Riberio 2014	0.79	0.06	5.1%	0.79 [0.67, 0.91]	_ _
Tremblay 2009	0.96	0.04	7.1%	0.96 [0.88, 1.04]	
Wong 2007	0.86		7.1%	0.86 [0.78, 0.94]	
Yanardag 2006	0.97	0.02	9.2%	0.97 [0.93, 1.01]	-
Total (95% CI)			100.0%	0.87 [0.84, 0.91]	♦
Heterogeneity: Tau ² = 0.	.00; Chi² = 63.55, dt	f= 15 ((P < 0.000	001); I² = 76%	<u>+</u> _++

Markov model

Evidence profile

Comparison: EBUS-guided lymph node sampling versus mediastinoscopy

Bibliography:

- 1. Pakhale SS et al. Has mediastinoscopy still a role in suspected stage I sarcoidosis? Sarcoidosis Vasculitis & Diffuse Lung Diseases. 2006;23(1)66-69.
- Tucker JA et al. Mediastinoscopy with special reference to the diagnosis of sarcoid. Annals of Otology, Rhinology & Laryngoscopy. 1970;79(5):937-943.
- 3. Carlens E. Mediastinoscopy; a method of inspection and tissue biopsy in the superior mediastinum. Dis Chest 1959; 36:343-352.
- 4. Nielsen EG and Olsen H. Mediastinoscopy. Danish Med Bull. 1966; 13:193
- 5. Maassen W. Ergebnisse und Bedutung der Mediastinoskopie . 1967.
- 6. Jepsen O. Mediastinoscopy. Einar Munkegaard Forlag. 1966.
- 7. Lofgren S and Snellman B. Principles and procedures for obtaining biopsies in sarcoidosis. Acta Med Scand Suppl. 1964-1965; 425-431:225-227.
- 8. Palva T. Mediastinal Sarcioidosis. Acta oto-laryngologica, Supplement. 1964;188:258.
- 9. Patilia Jr. Observations on the significance of mediastinoscopy in the diagnosis of sarcoidosis. Acta Med Scand Suppl. 1964-1965;425-431:239-240
- 10. Mikhail JR et al. Mediastinoscopy: a diagnostic procedure in hilar and paratracheal adenopathy. Postgraduate Medical Journal. 1971;47:698-704.
- 11. Bergh et al. Mediastinal exploration by the technique of Carlens. Diseases of the Chest. 1964;64:399.
- 12. Friedel H et al. The significance of bronchoscopy and mediastinoscopy for the diagnosis of sarcoidosis. Zeitschrift fur Tuberkulose und Erkrankungen der Thoraxorgane. 1964;121:152.
- 13. Adolfo Aragaki-Nakahodo, et al. The complimentary role of transbronchial lung cryobiopsy and endobronchial ultrasound fine needle aspiration in the diagnosis of sarcoidosis. Respiratory Medicine 2017;131:65-69.
- 14. Balwan A. Endobronchial ultrasound-guided transbronchial needle aspiration using 19-G needle for sarcoidosis. J Bronchol Intervent Pulmonol 2018; epub ahead of print.
- 15. Boujaoude Z, et al. Endobronchial ultrasound with transbronchial needle aspiration in the diagnosis of bilateral hilar and mediastinal lymphadenopathy. J Bronchology and Interv Pulmonology 2012; 19(1):19-23.
- 16. Garwood S, et al. Endobronchial ultrasound for the diagnosis of pulmonary sarcoidosis. CHEST 2007; 132(4):1298-1304.
- 17. Hong G. et al. Usefulness of Endobronchial Ultrasound guided transbronchial needle aspiration for diagnosis of sarcoidosis. Yonsei Med J 2013;5(4)6):1416-1421.
- Li K et al. A randomized controlled study of conventional TBNA versus EBUS-TBNA for diagnosis of suspected stage I and II sarcoidosis. Sarcoidosis, vasculitis, and diffuse lung diseases : official journal of WASOG. 2014;31(3):211-218.
- 19. Low et al. Use of endobronchial ultrasound guided transbronchial needle aspiration in the diagnosis of granulomatous mediastinal lymphadenopathy. Ann Acad Med Singapore 2014;43:250-4.
- 20. Navasakulpong A et al. Yield of EBUS-TBNA for the diagnosis of sarcoidosis: impact of operator and cytopathologist experience. BMJ open respiratory research. 2016;3(1).
- 21. Oki M et al. Prospective study of endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes versus transbronchial lung biopsy of lung tissue for diagnosis of sarcoidosis. Journal of Thoracic & Cardiovascular Surgery. 2012;143(6):1324-1329.
- 22. Raddaoui et al. Utility of endoscopic ultrasound guided transbronchial fine-needle cytology in the dianosis of sarcoidosis: A Saudi experience. Cytojournal. 2014;11
- 23. Ribeiro C et al. Diagnosis of sarcoidosis in the endobronchial ultrasound-guided transbronchial needle aspiration era. Revista Portuguesa de Pneumologia. 2014;20(5):237-241.
- 24. Tremblay A et al. A randomized controlled trial of standard vs endobronchial ultrasonography-guided transbronchial needle aspiration in patients with suspected sarcoidosis. Chest. 2009;136(2):340-346.
- 25. Wong M et al. Endobronchial ultrasound: new insight for the diagnosis of sarcoidosis. European Respiratory Journal. 2007;29(6):1182-1886.
- 26. Oki M. et al. Real-time endobronchial ultrasound guided transbronchial needle aspiration is useful for diagnosing sarcoidosis. Respirology. 2007;12(6):863-868.
- 27. Yanardag H et al. Clinical value of mediastinoscopy in the diagnosis of sarcoidosis: an analysis of 68 cases. Thoracic & Cardiovascular Surgeon. 2006;54(3):198-201.
- 28. Dziedzic DA et al. The role of EBUS-TBNA and standard bronchoscopic modalities in the diagnosis of sarcoidosis. The clinical respiratory journal. 2017;11(1):58-63.
- 29. Oki M et al. How many needle passes are needed for endobronchial ultrasound guided transbronchial needle aspiration for sarcoidosis? A prospective multicenter study. Respiration. 2018;95(4):251-257.

	Quality assessment						Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		•	
Diagnostic	yield (%)								
18'	Case series	Serious ²	Serious ³	None	None	None	EBUS: 87% (95% CI 84-91%) MED: 98% (95% CI 90-99.9%)	VERY LOW	TBD
Mortality, p	rocedural	(%)							
15*	Case series	Serious ²	None	None	None	None	EBUS: 0% (95% CI 0 – 0.3%) MED: Not reported	VERY LOW	TBD

Major bleed	ding (%)								
15 ⁴	Case series	Serious ²	None	None	None	None	EBUS: 0% (95% CI 0 – 0.3%) MED: Not reported	VERY LOW	TBD
Pneumothe	Pneumothorax (%)								
135	Case series	Serious ²	None	None	None	None	EBUS: 0% (95% CI 0 – 0.3%) MED: Not reported	VERY LOW	TBD

Footnotes:

¹ Of the 18 studies that measured diagnostic yield, 17 were for EBUS and only 1 was for mediastinoscopy.

² The retrospective design creates a risk of selection bias.

³ There was serious heterogeneity of the EBUS estimates per the I² statistic.

⁴ Of the 15 studies that measured procedural mortality, all were for EBUS.

⁵ Of the 13 studies that measured procedural mortality, all were for EBUS.

<u>QUESTION 3</u>: Should patients with sarcoidosis who do not have ocular symptoms undergo screening for ocular sarcoidosis with routine ophthalmological exams?

Search strategy

Searches

- 1 exp sarcoidosis/
- 2 sarcoidosis/
- 3 sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
- 4 sarcoid\$.mp.
- 5 (besnier adj boeck\$).tw.
- 6 (boeck\$ adj (disease or sarcoid)).tw.
- 7 (schaumann\$ adj (disease or syndrome)).tw.
- 8 uveoparoti\$.tw.
- 9 (benign\$ adj lymphogranuloma\$).tw.
- 10 ((junging or heerfordt or lofgren) adj syndrome).tw.
- 11 neurosarcoidosis.tw.
- 12 (lupus adj pernio).tw.
- 13 (idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
- 14 or/1-13 [all sarcoidosis]
- 15 exp Diagnostic Techniques, Ophthalmological/ [medline]
- 16 exp ophthalmological diagnostic device/ [embase]
- 17 eye examination/ [embase]

((eye\$ or vision or retina\$ or ocular or ophthalm\$) adj3 (technique\$ or exam\$ or

18 test\$)).mp.

19 15 or 16 or 17 or 18

20 14 and 19

Selected studies with outcomes

Study	Frequency abnormal eye exams c/w ocular sarcoidosis	Symptomatic patients among those with abnormal eye exams	Frequency of anterior uveitis as the abnormality
Ungprasert 2017	23/151 (15%)	21/23 (91%)	7/23 (30%)
Birnbaum 2015	1256/3364 (37%)	NR	1013/1256 (81%)
Sungur 2013	26/48 (53%)	NR	4/26 (15%)
Judson 2012	363/1582 (23%)	NR	NR
Baughman 2012	465/1587 (29%)	NR	NR
Sheu 2010	19/55 (35%)	13/19 (68%)	NR
Atmaca 2009	18/139 (13%)	NR	12/18 (67%)
Lee 2009	22/104 (21%)	14/22 (64%)	10/22 (45%)
Morimoto 2008	309/1001 (31%)	NR	404/994 (41%)
Khanna 2007	14/48 (29%)	12/14 (86%)	5/15 (33%)
Evans 2007	65/81 (80%)	NR	NR
Baughman 2001	87/736 (12%)	NR	NR
Drobecka 1999	6/33 (18%)	NR	NR
Jabs 1986	47/183 (26%)	NR	33/47 (70%)
Obenauf 1978	202/532 (38%)	NR	106/202 (52%)
Siltzbach 1974	354/1609 (22%)	NR	NR
Jackson 1970	12/82 (15%)	NR	NR
James 1964	123/442 (28%)	NR	89/123 (72%)
Pooled (weighted)	26% (95% CI 23-29%)	78% (95% CI 64- 91%)	53% (95% CI 41-64%)
Pooled (unweighted)	29% (95% CI 28-30%)	77% (95% CI 66-85%)	62% (95% CI 60-64%)
Median (range)	27% (12% to 80%)	77% (64% to 91%)	49% (15% to 81%)

NR= not reported.

Study	No therapy	Topical steroid therapy	Systemic steroid therapy ¹	Both therapies	Visual acuity
Ungprasert 2017	2/23 (9%)	5/23 (22%)	6/23 (26%)	10/23 (43%)	With Rx: Improved= 3/20 (15%) ² Stabilized= 8/20 (40%) Worse= 9/20 (45%)
					Without Rx: Improved= 1/1 (100%)

					Stabilized= none Worse= none
Judson ³ 2012	188/287 (66%)		99/287 (34%)		NR
Baughman ³ 2012	108/465 (23%)		357/465 (77%)		NR
Lee 2009	3/22 (14%)	4/22 (18%)	2/22 (9%)	13/22 (59%)	With Rx: Improved= 9/18 (50%) Stabilized= 4/18 (22%) Mixed= 4/18 (22%) Worse= 1/18 (6%) Without Rx: Improved= ½ (50%) Stabilized= ½ (50%)
Pooled (weighted)	17% ⁴ (95% CI 7-26%)		83% ⁴ (95% CI 74-93%)		Improvement or stabilization w/ treatment 64% (95% CI 47-81%)
Pooled (unweighted)	22% ⁴ (95% CI 19-26%)		78% ⁴ (95 CI 74-81%)		Improvement or stabilization w/ treatment 63% (95% CI 47-77%)
Median (range)	14% ⁴ (9-23%)		86% ⁴ (77-91%)		Improvement or stabilization w/ treatment 63% (55-72%)

NR= not reported.

¹ Systemic therapy was often initiated to treat concomitant non-ocular disease.
 ² Reported treatment and no treatment; didn't specify the type of treatment.
 ³ 7/8 (88%) of those stable with treatment had normal eyesight at baseline, suggesting early detection = preservation of eyesight.
 ⁴ Removed Judson, et al. as an outlier. As a result, l² for heterogeneity went from 98% to 67%. The reason for the outlying results are unknown.

Forest plots

Frequency of abnormal eye exams

Initial

Study or Subgroup	Frequency	SE	Weight	Frequency IV, Random, 95% Cl		
Atmaca 2009	0.13		5.8%	0.13 [0.07, 0.19]		
Baughman 2001	0.12	0.0119	6.2%		+	
Baughman 2012	0.29	0.0114	6.2%	0.29 [0.27, 0.31]	•	
Birnbaum 2015	0.37	0.0083	6.2%	0.37 [0.35, 0.39]	•	
Drobecka 1999	0.18	0.0669	4.4%	0.18 [0.05, 0.31]		
Evans 2007	0.8	0.0444	5.3%	0.80 [0.71, 0.89]		
Jabs 1986	0.26	0.0324	5.7%	0.26 [0.20, 0.32]		
Jackson 1970	0.15	0.0394	5.5%	0.15 [0.07, 0.23]		
James 1964	0.28	0.0214	6.0%	0.28 [0.24, 0.32]	-	
Judson 2012	0.23	0.0106	6.2%	0.23 [0.21, 0.25]	•	
Khanna 2007	0.29	0.0655	4.4%	0.29 [0.16, 0.42]	_ _	
Lee 2009	0.21	0.0399	5.4%	0.21 [0.13, 0.29]		
Morimoto 2008	0.31	0.0146	6.1%	0.31 [0.28, 0.34]	+	
Obenauf 1978	0.38	0.021	6.0%	0.38 [0.34, 0.42]	-	
Sheu 2010	0.35	0.0643	4.5%	0.35 [0.22, 0.48]	_ _	
Siltzbach 1974	0.22	0.0103	6.2%	0.22 [0.20, 0.24]	+	
Sungur 2013	0.53	0.072	4.2%	0.53 [0.39, 0.67]		
Ungprasert 2017	0.15	0.029	5.8%	0.15 [0.09, 0.21]	-	
Total (95% CI)			100.0%	0.29 [0.24, 0.34]	•	
Heterogeneity: Tau ²	= 0.01; Chi ² = 9	591.90, d	lf = 17 (P	< 0.00001); I ² = 97% -		
Test for overall effect					0 50%	100

After removal of outliers

				Frequency		
Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl		
Atmaca 2009	0.13	0.0285	0.0%	0.13 [0.07, 0.19]		-
Baughman 2001	0.12	0.0119	0.0%	0.12 [0.10, 0.14]		
Baughman 2012	0.29	0.0114	14.9%	0.29 [0.27, 0.31]	•	
Birnbaum 2015	0.37	0.0083	0.0%	0.37 [0.35, 0.39]		
Drobecka 1999	0.18	0.0669	3.8%	0.18 [0.05, 0.31]	—•—	
Evans 2007	0.8	0.0444	0.0%	0.80 [0.71, 0.89]		
Jabs 1986	0.26	0.0324	9.2%	0.26 [0.20, 0.32]		
Jackson 1970	0.15	0.0394	0.0%	0.15 [0.07, 0.23]		
James 1964	0.28	0.0214	12.2%	0.28 [0.24, 0.32]	-	
Judson 2012	0.23	0.0106	15.1%	0.23 [0.21, 0.25]	•	
Khanna 2007	0.29	0.0655	3.9%	0.29 [0.16, 0.42]	→	
Lee 2009	0.21	0.0399	7.5%	0.21 [0.13, 0.29]		
Morimoto 2008	0.31	0.0146	14.1%	0.31 [0.28, 0.34]	•	
Obenauf 1978	0.38	0.021	0.0%	0.38 [0.34, 0.42]		
Sheu 2010	0.35	0.0643	4.0%	0.35 [0.22, 0.48]	_ 	
Siltzbach 1974	0.22	0.0103	15.1%	0.22 [0.20, 0.24]	•	
Sungur 2013	0.53	0.072	0.0%	0.53 [0.39, 0.67]		
Ungprasert 2017	0.15	0.029	0.0%	0.15 [0.09, 0.21]		
Total (95% CI)			100.0%	0.26 [0.23, 0.29]	•	
Heterogeneity: Tau ² =	0.00; Chi ² = 4	7.10, df	= 9 (P < 0	0.00001); I ² = 81%	+	
Test for overall effect:	Z = 17.52 (P	< 0.0000	1)		0 50% 10	0%

Frequency of symptoms among those with abnormal eye exams

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% CI	
Khanna 2007	0.86	0.0927	22.2%	0.86 [0.68, 1.04]	
Lee 2009	0.64	0.1023	20.5%	0.64 [0.44, 0.84]	
Sheu 2010	0.68	0.0629	28.3%	0.68 [0.56, 0.80]	+
Ungprasert 2017	0.91	0.0597	29.0%	0.91 [0.79, 1.03]	+
Total (95% CI)			100.0%	0.78 [0.64, 0.91]	•

Frequency of anterior uveitis among abnormal eye exams

In	iti	al

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% CI	
Atmaca 2009	0.67	0.1108	9.1%	0.67 [0.45, 0.89]	
Birnbaum 2015	0.81	0.0111	10.9%	0.81 [0.79, 0.83]	•
Jabs 1986	0.7	0.0668	10.2%	0.70 [0.57, 0.83]	
James 1964	0.72	0.0405	10.6%	0.72 [0.64, 0.80]	
Khanna 2007	0.36	0.1239	8.7%	0.36 [0.12, 0.60]	
Lee 2009	0.45	0.1061	9.2%	0.45 [0.24, 0.66]	
Morimoto 2008	0.41	0.0156	10.9%	0.41 [0.38, 0.44]	+
Obenauf 1978	0.53	0.0351	10.7%	0.53 [0.46, 0.60]	
Sungur 2013	0.15	0.07	10.1%	0.15 [0.01, 0.29]	—
Ungprasert 2017	0.3	0.0956	9.5%	0.30 [0.11, 0.49]	
Total (95% CI)			100.0%	0.52 [0.36, 0.68]	-
Heterogeneity: Tau ² =	0.06; Chi ² = \$	532.58, d	f=9(P<	0.00001); I ² = 98% -	+1

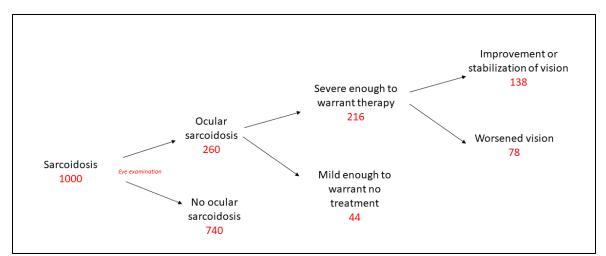
After removal of outliers

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl	
Atmaca 2009	0.67	0.1108	10.2%	0.67 [0.45, 0.89]	
Birnbaum 2015	0.81	0.0111	0.0%	0.81 [0.79, 0.83]	
Jabs 1986	0.7	0.0668	13.2%	0.70 [0.57, 0.83]	
James 1964	0.72	0.0405	14.8%	0.72 [0.64, 0.80]	-
Khanna 2007	0.36	0.1239	9.3%	0.36 [0.12, 0.60]	
Lee 2009	0.45	0.1061	10.5%	0.45 [0.24, 0.66]	_
Morimoto 2008	0.41	0.0156	15.8%	0.41 [0.38, 0.44]	+
Obenauf 1978	0.53	0.0351	15.1%	0.53 [0.46, 0.60]	-
Sungur 2013	0.15	0.07	0.0%	0.15 [0.01, 0.29]	
Ungprasert 2017	0.3	0.0956	11.2%	0.30 [0.11, 0.49]	
Total (95% CI)			100.0%	0.53 [0.41, 0.64]	•
Heterogeneity: Tau ² =	0.02; Chi ² = 1	74.91, df	= 7 (P < 0).00001); I ² = 91%	++

Frequency of treatment

Initial

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl	
Baughman 2012	0.77	0.0195	25.7%	0.77 [0.73, 0.81]	•
Judson 2012	0.34	0.028	25.5%	0.34 [0.29, 0.39]	•
Lee 2009	0.86	0.074	24.1%	0.86 [0.71, 1.01]	
Ungprasert 2017	0.91	0.0597	24.7%	0.91 [0.79, 1.03]	-
Total (95% CI)			100.0%	0.72 [0.44, 0.99]	-
Heterogeneity: Tau ² :	= 0.08; Chi ² = ⁻	187.24, d	f=3(P <	0.00001); I ² = 98%	0 100%


After removal of outliers

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl	
Baughman 2012	0.77	0.0195	47.0%	0.77 [0.73, 0.81]	
Judson 2012	0.34	0.028	0.0%	0.34 [0.29, 0.39]	
Lee 2009	0.86	0.074	23.8%	0.86 [0.71, 1.01]	+
Ungprasert 2017	0.91	0.0597	29.2%	0.91 [0.79, 1.03]	+
Total (95% CI)			100.0%	0.83 [0.74, 0.93]	•
Heterogeneity: Tau ² :	= 0.00; Chi ² =	5.97, df=	2 (P = 0.)	05); I ² = 67%	— <u> </u>

Frequency of improvement or stabilization of vision

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl	-		
Lee 2009	0.72	0.0957	52.8%	0.72 [0.53, 0.91]		-	
Ungprasert 2017	0.55	0.1037	47.2%	0.55 [0.35, 0.75]	· ·	-	
Total (95% CI)			100.0%	0.64 [0.47, 0.81]		•	
Heterogeneity: Tau ² :	= 0.00; Chi² = 1	1.45, df =	1 (P = 0.)	23); I² = 31% -			-
Test for overall effect	: Z = 7.54 (P <	0.00001)		0	100%	

Markov model

For every 1000 sarcoidosis patients who undergo routine eye exam, abnormalities consistent will ocular sarcoidosis will be found in roughly 260 patients, approximately 216 of whom will have ocular involvement severe enough to warrant treatment with topical or systemic corticosteroids and 138 will have their vision improved or remain stable.

Evidence profile

Comparison: Eye examination versus none

Bibliography:

- 1) Birnbaum AD, et al. Sarcoidosis in the National Veteran Population: Association of Ocular Inflammation and Mortality. Ophthalmology 2015; 122(5):934-938.
- Ungprasert P, et al. Clinical Characteristics of Ocular Sarcoidosis: A Population-based study 1976-2013. Ocul Immunol Inflamm 2017; Oct 12:1-7.
- 3) Lee SY, et al. Ocular Sarcoidosis in a Korean Population. J Korean Med Sci 2009; 24:413-419.
- 4) Evans M. Differences in Clinical Findings between Caucasians and African-Americans with Biopsy-Proven Sarcoidosis. Ophthalmology 2007; 114(2):325-333.
- 5) Drobecka E, et al. Ocular Manifestations in Sarcoidosis. Klin Oczna 1999; 101(3):201-204.
- 6) Atmaca LS, et al. Ocular Involvement in Sarcoidosis. Ocul Immunol Inflamm 2009; 17(2):91-94.
- 7) Baughman RP, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164:1885-1889.
- 8) Judson MA, et al. The clinical course of sarcoidosis: presentation, diagnosis, and treatment in a large white and black cohort in the United States. Sarc Vasc Diffuse Lung Dis 2012; 29:119-127.
- 9) Jabs DA. Ocular sarcoidosis and chronic sarcoidosis. Am J Ophthamol 1986; 102(3):297-301.
- 10) James DG, et al. Ocular sarcoidosis. Br J Ophthalmol 1964; 48:461-470.
- 11) Siltzbach LE, et al. Course and prognosis of sarcoidosis around the world. Am J Med 1974; 57:847-852.
- 12) Jackson H. Ocular sarcoidosis. Postgrad Med J 1970; 46:501-504.
- 13) Obenauf CD. Sarcoidosis and its ophthalmic manifestations. Am J Ophthalmol 1978; 86:648.
- 14) Khanna A, et al. Pattern of ocular sarcoidosis in patients with sarcoidosis in developing countries. Acta Ophthalmologica Scandinavia 2007; 85(6):609-612.
- 15) Sungar G, et al. Pattern of ocular findings in patients with biopsy-proven sarcoidosis in Turkey. Ocular Immunology and Inflammation 2013; 21(6):455-461.
- 16) Sheu SJ, et al. Ocular sarcoidosis in southern Taiwan. Ocular Immunol Inflamm 2010; 18(3):152-157.
- 17) Baughman, et al. Management of ocular sarcoidosis. Sarc Vasc Diff Lung Dis 2012; 29:26-33.
- 18) Morimoto T, et al. Epidemiology of sarcoidosis in Japan. Eur Respir J 2008; 31:371-379.

		Qua	lity assessmen	ıt		E	ffect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations			
Detectio	n of ocul	ar sarcoidosi	s (frequency o	f abnormal ey	e examination	s, %)	•		

18 ¹	Case series	serious ²	serious ³	serious ⁴	serious⁵	none	26% (95% CI 23-29%)	⊕OOO VERY LOW	TBD		
Initiation	of treatr	nent (%)									
4 ⁶	Case series	serious ²	none	serious ⁴	serious⁵	none	83% ⁷ (95% CI 74-93%)	⊕OOO VERY LOW	TBD		
Frequen	Frequency of improvement or stabilization treatment (%)										
2 ⁸	Case series	serious ²	none	serious ⁴	serious⁵	none	64% (95% CI 47-81%)	⊕OOO VERY LOW	TBD		

Footnotes:

¹All studies.

²Many were retrospective chart reviews; therefore, there was a risk of selection bias.

³When pooled by meta-analysis, the I² >90%; thus, the median (range) are the primary outcomes for these outcomes rather than the pooled analyses. Also, the range is wide.

⁴The PICO question asks about patients without ocular symptoms; however, all of the studies enrolled both symptomatic and asymptomatic patients. $^5\mathrm{A}$ large proportion of the studies are small, with <100 patients.

⁶Baughman, Judson, Lee, and Ungprasert.

⁷Judson was eliminated as an outlier, bringing the I^2 from 98% to 0%.

⁸Lee and Ungprasert.

QUESTION #4: Should patients with sarcoidosis who do not have renal symptoms undergo screening for renal sarcoidosis by routine serum creatinine testing?

Search strategy

Searches

- 1 exp sarcoidosis/
- 2 sarcoidosis/
- 3 sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
- 4 sarcoid\$.mp.
- 5 (besnier adj boeck\$).tw.
- 6 (boeck\$ adj (disease or sarcoid)).tw.
- 7 (schaumann\$ adj (disease or syndrome)).tw.
- 8 uveoparoti\$.tw.
- 9 (benign\$ adj lymphogranuloma\$).tw.
- 10 ((junging or heerfordt or lofgren) adj syndrome).tw.
- 11 neurosarcoidosis.tw.
- 12 (lupus adj pernio).tw.
- 13 (idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
- 14 or/1-13 [all sarcoidosis]
- 15 exp Kidney Function Tests/
- 16 Creatinine/
- 17 Urea/

- 18 (creatinine adj2 (test\$ or excret\$)).mp.
 - (((kidney\$ or renal or uremi\$ or urea or urin\$) adj2 (test\$ or
- 19 function\$)) or azotemi\$).mp.
- 20 (blood adj2 urea adj2 nitrogen).mp.
- 21 or/15-20
- 22 14 and 21

Selected studies with outcomes

Study	Test	Definition of abnormal test	Frequency of abnormal renal function	Biopsy results	Renal function outcomes
More recent stu	dies				
Baughman 2001	Serum Cr	Improvement of serum Cr post-immunosuppressant therapy	5/736 (0.7%)	NR	Cannot be determined because improvement is part of definition
Bergner 2003	Serum Cr + 24-hr urine	Serum Cr >1.2 mg/dL or urine protein >150 mg/24 hours			15 treated- 13/15 (87%) serum Cr improved [7 of which normalized] and 2/15 (13%) lost to follow- up; 8/15 (53%) proteinuria improved and 7/15 (47%) lost to follow-up.
Morimoto 2008	Urine calcium	Elevated urine calcium; threshold not defined 36/974 (3.7%) NR		NR	
Older studies					
Lebacq 1970	24-hr urine + urine sediment Proteinuria, urine calci >200mg/24 hours, abno sediment, CrCl <100 mL		N/R	25 performed- 10/25 (40%) granulomas, 9/25 (36%) hyaline deposits, 8/25 (32%) interstitial inflammation, 4/25 (16%) glomerular hypercellularity, 2/25 (8%) interstitial fibrosis, 2/25 (8%) pericapsular fibrosis and adhesions, 1/25 (4%) amyloid.	2/2 (100%) improved
Lofgren 1957	24-hr urine + urine sediment	Proteinuria, sediment with granular casts, CrCl <100 mL/min	11/16 (69%)	16 performed- 1/16 (16%) granular casts, 0/16/ (0%) nephrocalcinosis	NR
MacSearraigh 1978	Proteinuria urine calcium		9/90 (10%)	8 performed- 8/8 (100%) biopsies abnormal; 8/8 (100%) with more than one abnormality; 5/8 (63%) granulomas, 4/8 (50%) nephrocalcinosis; other	8/9 (89%) improved

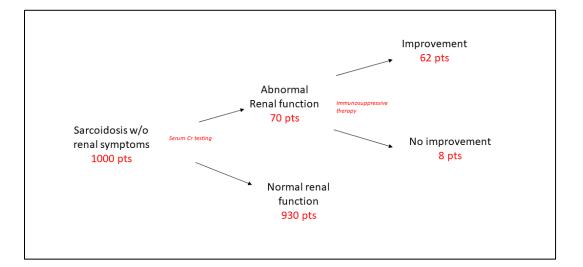
Richmond 1981	Urine sediment + renal biopsy	Any abnormality of sediment or histopathology	17/75 (23%)	17 performed- 8/17 (47%) abnormal sediment, 7/17 (41%) nephrocalcinosis, 1/17 (6%) membranous GN, 1/17 (1%) granulomatous interstitial nephritis	NR
Ricker 1949	Not specified	Not specified ("kidneys effected")	5/195 (3%)	Not confined to those with renal abnormalities	NR
Pooled (weighted)		7% ¹ (95% CI 3-11)			Not estimable
Pooled (unweighted)	N/A	N/A	5% ¹ (95 4-6.3%)	N/A	88% (95% CI 71-96%)
Median (range)			10% (0.7-69%)		89% (87%-100%)

NR= not reported, Cr= creatinine, CrCl= creatinine clearance, GN= glomerulonephritis. ¹ After outliers removed

Forest plots

Initial

				Frequency	
Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl	
Baughman 2001	0.007	0.0031	23.1%	0.01 [0.00, 0.01]	•
Bergner 2003	0.33	0.0693	6.0%	0.33 [0.19, 0.47]	
Lofgren 1957	0.69	0.1176	2.5%	0.69 [0.46, 0.92]	\longrightarrow
MacSearraigh 1978	0.1	0.0316	14.6%	0.10 [0.04, 0.16]	
Morimoto 2008	0.037	0.006	22.8%	0.04 [0.03, 0.05]	•
Richmond 1981	0.23	0.0486	9.6%	0.23 [0.13, 0.33]	_ _
Ricker 1949	0.03	0.0122	21.4%	0.03 [0.01, 0.05]	•
Total (95% CI)			100.0%	0.09 [0.05, 0.13]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 1	01.82, d	f=6(P <	0.00001); I ² = 94% ⁻	0 50% 100%
Test for overall effect:	Z = 4.58 (P <	0.00001))		0 50% 100%


After removal of outliers

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl	
Baughman 2001	0.007	0.0031	0.0%	0.01 [0.00, 0.01]	
Bergner 2003	0.33	0.0693	0.0%	0.33 [0.19, 0.47]	
Lofgren 1957	0.69	0.1176	0.0%	0.69 [0.46, 0.92]	
MacSearraigh 1978	0.1	0.0316	20.2%	0.10 [0.04, 0.16]	
Morimoto 2008	0.037	0.006	35.0%	0.04 [0.03, 0.05]	•
Richmond 1981	0.23	0.0486	12.6%	0.23 [0.13, 0.33]	
Ricker 1949	0.03	0.0122	32.2%	0.03 [0.01, 0.05]	•
Total (95% CI)			100.0%	0.07 [0.03, 0.11]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 1	9.81, df:	= 3 (P = 0	.0002); I ² = 85%	- <u>. t</u>

Treatment effect

Meta-analysis not possible

Markov Model

Evidence profile

Bibliography:

- 1) Baughman RP, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164:1885-1889.
- 2) Morimoto T, et al. Epidemiology of sarcoidosis in Japan. Eur Respir J 2008; 31:371-379.
- 3) Bergner R, et al. Frequency of kidney disease in chronic sarcoidosis. Sarc Vasc Diffuse Lung Dis 2003; 20(2):126.
- 4) Richmond JM, et al. Renal disease and sarcoidosis. Med J Aust 1981; 2(1):36-37.
- 5) Ricker W, et al. Sarcoidosis: A clinicopathologic review of 300 cases, including 22 autopsies. Am J Clin Pathol 1949; 19:725-749.
- 6) MacSearraigh ET, et al. Sarcoidosis with renal involvement. Postgrad Med J 1978; 56(634):528.
- 7) Lebacq E, et al. Renal involvement in sarcoidosis. Postgrad Med J 1970; 46(538):526.
- 8) Lofgren S, et al. Renal complications in sarcoidosis; functional and biopsy studies. Acta Med Scand 1957; 159(4):295.

			Effect	Quality	Importance							
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations						
Detection of	Detection of renal dysfunction (frequency of abnormal renal function testing, %)											
1.	Case series	serious ²	serious ³	none	serious ⁴	none	7% ⁵ (95% CI 3-11%)	⊕OOO VERY LOW	TBD			
Improvement	mprovement in renal dysfunction with treatment (frequency of improvement in renal function tests, %)											
.3°	Case series	serious ²	serious ³	none	serious ⁴	none	88% (95% CI 71-96%)	⊕OOO VERY LOW	TBD			

Footnotes:

³ The studies were judged too different in the test used and the definition of an abnormal test to pool.

⁴ Likely, since 6/8 studies had <100 patients.

⁵ After removal of outliers.

¹ All of the studies in the bibliography except Lebacq.

² Many were retrospective chart reviews; therefore, there was a risk of selection bias.

⁶ Bergner, Lebacq, and MacSerraigh

<u>QUESTION #5</u>: Should patients with sarcoidosis who do not have hepatic symptoms undergo screening for hepatic sarcoidosis by routine transaminase and alkaline phosphatase testing?

Search strategy

#	Searches
. 1	exp sarcoidosis/
2	sarcoidosis/
3	sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
4	sarcoid\$.mp.
5	(besnier adj boeck\$).tw.
6	(boeck\$ adj (disease or sarcoid)).tw.
7	(schaumann\$ adj (disease or syndrome)).tw.
8	uveoparoti\$.tw.
9	(benign\$ adj lymphogranuloma\$).tw.
10	((junging or heerfordt or lofgren) adj syndrome).tw.
11	neurosarcoidosis.tw.
12	(lupus adj pernio).tw.
13	(idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
14	or/1-13 [all sarcoidosis]
15	Liver Function Tests/
16	alkaline phosphatase/
17	exp Transaminases/
18	((hepati\$ or liver\$) adj (test\$ or function)).mp.
_	
19	(transmininase\$ or alkaline phosphatase or SGOP or SGPT).mp.
20	or/15-19
21	14 and 20

Selected studies with outcomes

Study	Freq. abnormal LFTs	Biopsy granulomas	Initiation of therapy	LFT response to treatment	Progression to liver failure
Cremers 2012	127/837 (15%)	21/22 (95%)	NR	NR	NR
Kahi 2006	340/1436 (24%)	34/34 (100%)	NR	NR	NR
Cowdell 1954	10/22 (45%) ¹	NR	NR	NR	NR
Morimoto 2008	56/995 (5.6%)	NR	NR	NR	NR
Baughman 2001	85/736 (11.5%)	NR	NR	NR	NR

(unweighted) Median (range)	(95% CI 15-17%) 20% (5% to 45%)	(95% CI 88- 99%) 95% (85% to 100%)	Did not assess	RR 1.06 (95% CI 0.75 to 1.51) 60% (48% to 83%) vs. 83% (53% to 100%)	RR 0.52 (95% CI 0.20 to 1.33) 10% (0% to 21%) vs. 31% (25% to 36%)
Pooled (weighted) Pooled	12% (95% CI 6-19%) 16%	Not estimable 96%	Did not assess Did not assess	38/59 (64%) versus 17/28 (61%) RR 1.09 (95% CI 0.76 to 1.57) 38/59 (64%) versus 17/28 (61%)	5/28 (18%) vs. 10/29 (34%) RR 0.54 (95% CI 0.22 to 1.33) 5/28 (18%) vs. 10/29 (34%)
Kennedy 2006	* ////3/(3/%) NR		39/41 (95%) ²	1/24 (5%) did not tolerate treatment w/o therapy ⁶ 3/3 (100%) resolution (12 not treated because cirrhotic) (10 not treated because diagnosis uncertain)	w/o therapy ⁶ 9/25 (36%) had cirrhosis at diagnosis
				w/therapy ⁶ 15/24 (62%) resolution, 5/24 (21%) improved, 3/24 (13%) no response,	w/therapy ⁶ 5/24 (21%) progressed to cirrhosis
2017	10/343 (370)	11/15 (65%)	4/10 (2370)	w/o therapy 4/6 (67%) improved, 1/6 (16%) worsened 1/6 lost to follow-up.	w/o therapy ⁵ 1/4 (25%) had cirrhosis at diagnosis
Ungprasert 16/345 (5%) ³ 11/13 (3		11/13 (85%)	$4/16(25\%)^2$	w/ therapy 6/10 (60%) improved, 4/10 (40%) mixed response ⁴ 0/10 (0%) worsened	w/therapy ⁵ 0/4 (0%) progressed to cirrhosis
Vatti 1997	44/125 (35%)	44/125 (35%) NR 25/44 (57%) ²		w/ therapy 12/25 (48%) improved, 13/25 (52%) unchanged 0/25 (0%) worsened w/o therapy 10/19 (53%) improved 9/19 – unreported course	NR

NR= not reported.

¹In Cowdell, et al., only alkaline phosphatase was measured.

 2 In Vatti, et al., it is implied that therapy was initiated for liver disease. In Ungprasert, et al., 4/16 (25%) had therapy initiated due to abnormal liver disease, while an additional 6/16 (38%) had therapy initiated for other organ systems; therefore, overall 10/16 (63%) received therapy. In Kennedy et al., 39/41 (95%) had therapy initiated, but the article is unclear if initiated due to liver disease, co-existing lung disease, or both. ³ Assumes that all patients enrolled had LFTs performed.

⁴ Mixed responses = some LFTs improved while others stayed the same or worsened.

⁵ Among treated for presumed hepatic sarcoidosis.

⁶Kennedy et al., included two cohorts. The first was 131 patients with sarcoidosis but mostly no symptoms, undergoing screening; this cohort was used to determine frequency of LFT abnormalities, frequency of positive biopsies, and frequency of new treatment. The second was 49 patients with presumed hepatic sarcoidosis; this cohort was used to determine effects of treatment on LFT abnormalities and progression to cirrhosis.

Forest plots

Frequency of abnormal LFTs

Initial

Study or Subgroup	Prevalence	SE	Weight	IV, Random, 95% Cl			
Baughman 2001	0.12	0.012	14.1%	0.12 [0.10, 0.14]	+		
Cowdell 1954	0.45	0.1061	5.7%	0.45 [0.24, 0.66]			→
Cremers 2012	0.15	0.0123	14.1%	0.15 [0.13, 0.17]	-	-	
Kahi 2006	0.24	0.0113	14.2%	0.24 [0.22, 0.26]		+	
Kennedy 2006	0.35	0.0404	11.8%	0.35 [0.27, 0.43]			_
Morimoto 2008	0.06	0.0076	14.3%	0.06 [0.05, 0.07]	+		
Ungprasert 2017	0.05	0.0117	14.2%	0.05 [0.03, 0.07]	-		
Vatti 1997	0.31	0.0427	11.6%	0.31 [0.23, 0.39]		-	
Total (95% CI)			100.0%	0.19 [0.13, 0.25]		•	
Heterogeneity: Tau ²	= 0.01; Chi ² = 2	78.33, df	= 7 (P <)	0.00001); I ² = 97%			
Test for overall effect			-		0	25%	50%

After removal of outliers

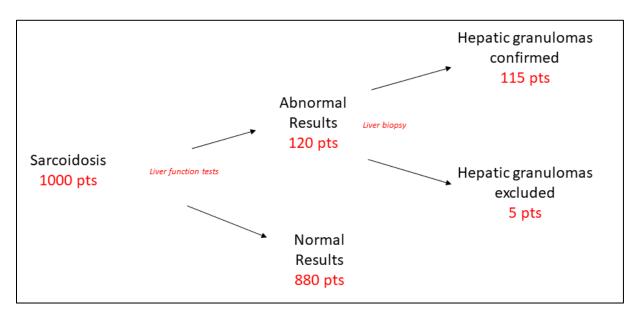
Study or Subgroup	Prevalence	SE	Weight	IV, Random, 95% Cl		
Baughman 2001	0.12	0.012	24.7%	0.12 [0.10, 0.14]	-	1
Cowdell 1954	0.45	0.1061	7.5%	0.45 [0.24, 0.66]		
Cremers 2012	0.15	0.0123	24.7%	0.15 [0.13, 0.17]		-
Kahi 2006	0.24	0.0113	24.8%	0.24 [0.22, 0.26]		+
Kennedy 2006	0.35	0.0404	0.0%	0.35 [0.27, 0.43]		
Morimoto 2008	0.06	0.0076	0.0%	0.06 [0.05, 0.07]		
Ungprasert 2017	0.05	0.0117	0.0%	0.05 [0.03, 0.07]		
Vatti 1997	0.31	0.0427	18.3%	0.31 [0.23, 0.39]		
Total (95% CI)			100.0%	0.22 [0.15, 0.28]		◆
Heterogeneity: Tau ² =	= 0.00; Chi ² = 7	4.77, df=	4 (P < 0.	.00001); I ² = 95%		

After removal of studies with N<300

				Prevalence			
Study or Subgroup	Prevalence	SE	Weight	IV, Random, 95% Cl			
Baughman 2001	0.12	0.012	19.9%	0.12 [0.10, 0.14]		F	
Cowdell 1954	0.45	0.1061	0.0%	0.45 [0.24, 0.66]			
Cremers 2012	0.15	0.0123	19.9%	0.15 [0.13, 0.17]		+	
Kahi 2006	0.24	0.0113	20.0%	0.24 [0.22, 0.26]		+	
Kennedy 2006	0.35	0.0404	0.0%	0.35 [0.27, 0.43]			
Morimoto 2008	0.06	0.0076	20.2%	0.06 [0.05, 0.07]	+		
Ungprasert 2017	0.05	0.0117	20.0%	0.05 [0.03, 0.07]	+		
Vatti 1997	0.31	0.0427	0.0%	0.31 [0.23, 0.39]			
Total (95% CI)			100.0%	0.12 [0.06, 0.19]			
Heterogeneity: Tau ² =	0.01; Chi ² = 2	13.15, df	= 4 (P < I	0.00001); I² = 98% —			
Test for overall effect:	Z = 3.55 (P = 0).0004)			0	25%	50%

Frequency of initiation of therapy

Study or Subgroup	Frequency of change of therapy	SE	Weight	IV, Fixed, 95% Cl			
Kennedy 2006	0.95	0.034	76.5%	0.95 [0.88, 1.02]			
Ungprasert 2017	0.25	0.1082	7.6%	0.25 [0.04, 0.46]			
Vatti 1997	0.57	0.0746	15.9%	0.57 [0.42, 0.72]			
Total (95% CI)			100.0%	0.84 [0.78, 0.89]			•
Heterogeneity: Chi ² =	53.29, df = 2 (P < 0.00001); l ² = 969	6		-			—
Test for overall effect	Z = 28.13 (P < 0.00001)				0	25%	50%


Effect of treatment on resolution or improvement of LFTs

	Treatme	ent	No trea	tment	t	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Kennedy 2006	3	3	20	24	27.6%	1.07 [0.71, 1.61]	
Ungprasert 2017	4	6	6	10	21.9%	1.11 [0.52, 2.37]	
Vatti 1997	10	19	12	25	50.5%	1.10 [0.61, 1.98]	
Total (95% CI)		28		59	100.0%	1.09 [0.76, 1.57]	
Total events	17		38				
Heterogeneity: Chi ² =	0.01, df = 1	2 (P = 0	.99); l ² = l	0%			
Test for overall effect:	-						0.02 0.1 1 10 5 Favors treatment Favors no treatment

Effect of treatment on progression to cirrhosis

	Treatme	ent	No treat	tment		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Kennedy 2006	5	24	9	25	85.5%	0.58 [0.23, 1.48]	—— — ——
Ungprasert 2017	0	4	1	4	14.5%	0.33 [0.02, 6.37]	
Total (95% CI)		28		29	100.0%	0.54 [0.22, 1.33]	-
Total events	5		10				
Heterogeneity: Chi ² =	0.12, df =	1 (P = 0	1.73); I ² = I	0%			
Test for overall effect	: Z=1.34 (F	P = 0.18	3)				0.01 0.1 1 10 100 Favors treatment Favors no treatment

Markov model

For every 1000 sarcoidosis patients without hepatic symptoms who undergo routine LFT testing, abnormalities will be found in roughly 120, 115 of whom will be confirmed to have hepatic granulomas and 5 of whom will not. Among treated patients, there is no difference in the rate of improvement of LFTs (64% vs. 61%, RR 1.09, 95% CI 0.76 - 1.57), but a trend toward less development of cirrhosis (18% vs. 34%, RR 0.54, 95% CI 0.22 - 1.33).

Evidence profile

Bibliography:

- Cremers J, Drent M, Driessen A, Nieman F, Wijnen P, Baughman R, Koek G.Liver-test abnormalities in sarcoidosis. Eur J Gastroenterol Hepatol. 2012; 24(1):17-24.
- Kahi CJ, Saxena R, Temkit M, Canlas K, Roberts S, Knox K, Wilkes D, Kwo PY.Hepatobiliary disease in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2006; 23(2):117-23.
- Vatti R, Sharma OP. Course of asymptomatic liver involvement in sarcoidosis: role of therapy in selected cases. Sarcoidosis Vasc Diffuse Lung Dis. 1997;14(1):73-6.
- Ungprasert P et al. Clinical characteristics and outcome of hepatic sarcoidosis: A population-based study 1976-2013. Am J Gastroenterol 2017; 112(10):1556-1563.
- 5) Kennedy PT, et al. Natural history of hepatic sarcoidosis and its response to treatment. Eur J Gastroenterol Hepatol 2006; 18(7):721-726.
- 6) Baughman RP, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164:1885-1889.
- 7) Morimoto T, et al. Epidemiology of sarcoidosis in Japan. Eur Respir J 2008; 31:371-379.
- 8) Cowdell RH. Sarcoidosis: a special reference to diagnosis and prognosis. Quart J Med 1954; 23:29.

			Quality asse		Effect	Quality	Importance		
No of studies	Design	Risk of bias	Inconsistency	Other considerations					
Detection o	f liver dys	function (frequency of al	onormal liver	function tes	ts, %)			
8'	Case series	serious ²	serious ³	serious ⁴	serious ⁵	none	12% (95% CI 6-19%)	⊕OOO VERY LOW	TBD
Initiation of	treatment	t (%)							

3 ⁶	Case series	serious ²	serious ³	serious ⁴	serious⁵	none	Did not assess ⁶	⊕OOO VERY LOW	TBD					
Improve	nprovement in liver dysfunction (frequency of improvement in liver function tests, %)													
3 ⁷	Case series serious ² none serious ⁴ serious ⁸ none RR 1.09 (95% CI 0.76 to 1.57) \bigoplus OOO VERY LOW TBD													
Progres	rogression to liver failure (frequency of development of cirrhosis, %)													
2 ⁹	Case series	serious ²	none	serious ⁴	serious ⁸	none	RR 0.52 (95% CI 0.20 to 1.33)	⊕OOO VERY LOW	TBD					
Liver tra	Insplantation	ı (%)												
0	-	-	-	-	-	-	-	-	TBD					
Mortality	/ (%)							• •						
0	-	-	-	-	-	-	-	-	TBD					
Footnote			•		•	•								

Footnotes:

¹ Cremers, Kahi, Vatti, Ungprasert, Kennedy, Baughman, Morimoto, and Cowdell.

² Many were retrospective chart reviews; therefore, there was a risk of selection bias.

³ When pooled by meta-analysis, the I² >90%; thus, eliminated outliers and small studies before reporting summary statistic.

⁴ The PICO question asks about patients without hepatic symptoms; however, only one statement explicitly stated that the patients

had no hepatic symptoms.

 5 The 95% CI for prevalence is >10%.

⁶ The results of the study were so disparate, that a summary statistic is not reported.

⁷ Vatti, Ungprasert, and Kennedy.

⁸ The conference intervals are wide; the ends will lead to opposite clinical decisions.

⁹ Unprasert and Kennedy.

<u>QUESTION #6</u>: Should patients with sarcoidosis who do not have symptoms or signs of hypercalcemia undergo screening for abnormal calcium metabolism by routine serum calcium and vitamin D testing?

Search strategy

- # Searches
 - 1 exp sarcoidosis/
 - 2 sarcoidosis/
 - 3 sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
 - 4 sarcoid\$.mp.
 - 5 (besnier adj boeck\$).tw.
 - 6 (boeck\$ adj (disease or sarcoid)).tw.
 - 7 (schaumann\$ adj (disease or syndrome)).tw.
 - 8 uveoparoti\$.tw.
 - 9 (benign\$ adj lymphogranuloma\$).tw.
- 10 ((junging or heerfordt or lofgren) adj syndrome).tw.
- 11 neurosarcoidosis.tw.
- 12 (lupus adj pernio).tw.
- 13 (idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.

- 14 or/1-13 [all sarcoidosis]
- 15 calcium/
- 16 exp vitamin D/
- 17 (hypercalcem\$ or calcium or vitamin D).mp.
- 18 15 or 16 or 17
- 19 14 and 18

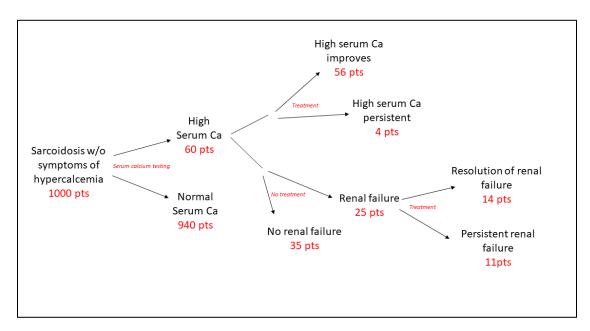
Selected studies with outcomes

Study	Frequency of hypercalcemia	Definition of hypercalcemia	Initiation of therapy	Course of calcium outcomes	Course of clinical outcomes
Baughman 2001	27/736 (3.7%)	Increased serum Ca w/o alternative cause	NR	NR	NR
Baughman 2013	97/1606 (6%)	Ca > 10.2 mg/dL	Implied 97/97 (100%)	81/86 (94%) improved 78/86 (91%) resolved 11/97 (6%) lost to f/u	41/97 (42%) developed renal failure 20/37 (54%) normalized renal failure with treatment
Morimoto 2008	62/842 (7.4%)	Not specified	NR	NR	NR
Bergner 2003	11/46 (24%)	Not specified	NR	"Decreased to normal range rapidly"	NR
Lebacq 1970	17/152 (11%)	Ca > 11 mg/dL	NR	NR	NR
Mayock 1963	18/97 (19%)	Ca > 11 mg/dL	NR	NR	NR
McCort 1947	5/16 (31%)	Ca > 11 mg/dL	NR	NR	NR
Longcope 1952	11/44 (25%)	Ca > 11 mg/dL	NR	NR	NR
James 1956	1/150 (0.8%)	Not specified	NR	NR	NR
Ferguson 1958	1/29 (3.4%)	Not specified	NR	NR	NR
Cummings 1959	40/113 (35%)	Ca > 11 mg/dL	NR	NR	NR
Pooled (weighted)	6% (95% CI 4-8%) Newer study subgroup	Not estimable	Did not assess	>90% resolution Single study	>40% renal failure >50% resolution Single study
subgroup6.1%Pooled(95% CI 5.3-7%)(unweighted)Newer studysubgroup		Not estimable	Did not assess	>90% resolution Single study	>40% renal failure >50% resolution Single study

Median (range)	6.7% (3.7% - 24%) Newer study subgroup	Not estimable	Did not assess	>90% resolution Single study	>40% renal failure >50% resolution Single study
-------------------	---	---------------	----------------	---------------------------------	---

Forest plots

Prevalence of hypercalcemia


T	•	•	1
In	11	10	11
		~~	~

				Prevalence	
Study or Subgroup	Prevalence	SE	Weight	IV, Random, 95% Cl	
1.2.1 Older studies					
Cummings 1959	0.35	0.0449	6.9%	0.35 [0.26, 0.44]	
Ferguson 1958	0.034	0.0337	8.9%	0.03 [-0.03, 0.10]	+
James 1956	0.008	0.0073	13.7%	0.01 [-0.01, 0.02]	+
Lebacq 1970	0.11	0.0254	10.6%	0.11 [0.06, 0.16]	+
Longcope 1952	0.25	0.0653	4.4%	0.25 [0.12, 0.38]	
Mayock 1963	0.19	0.0398	7.8%	0.19 [0.11, 0.27]	
McCort 1947	0.31	0.1156	1.8%	0.31 [0.08, 0.54]	
Subtotal (95% CI)			54.2%	0.16 [0.07, 0.26]	•
1.2.2 Newer studies Baughman 2001	0.037	0.007	13.8%	0.04 [0.02, 0.05]	
Baughman 2001 Baughman 2013	0.037		13.9%		- F.
Bergner 2003	0.00	*****			
Morimoto 2008 Subtotal (95% CI)	0.074				÷
Heterogeneity: Tau ² =	= 0.00; Chi ² = 2	0.34, df=	3 (P = 0.	0001); I ² = 85%	
Test for overall effect	Z = 4.99 (P < 0	0.00001)			
Total (95% CI)			100.0%	0.11 [0.07, 0.14]	•
Unterested and its Tou?	= 0.00; Chi ² = 1	32.77, df	= 10 (P <	: 0.00001); I ² = 92%	
Heterogeneity. Tau-=					
Test for overall effect	Z = 6.40 (P < 0).00001)			0 50% 100%

After removal of outliers

				Prevalence	
Study or Subgroup	Prevalence	SE	Weight	IV, Random, 95% CI	
1.2.1 Older studies					
Cummings 1959	0.35	0.0449	8.2%	0.35 [0.26, 0.44]	
Ferguson 1958	0.034	0.0337	10.7%	0.03 [-0.03, 0.10]	+-
James 1956	0.008	0.0073	0.0%	0.01 [-0.01, 0.02]	
Lebacq 1970	0.11	0.0254	12.9%	0.11 [0.06, 0.16]	+
Longcope 1952	0.25	0.0653	5.1%	0.25 [0.12, 0.38]	
Mayock 1963	0.19	0.0398	9.3%	0.19 [0.11, 0.27]	
McCort 1947	0.31	0.1156	2.0%		
Subtotal (95% CI)			48.3%	0.19 [0.10, 0.29]	▲
Heterogeneity: Tau ² :	= 0.01; Chi ² = 3	9.44, df=	5 (P < 0.	00001); I ² = 87%	
Test for overall effect	Z = 3.88 (P = 0	0.0001)			
1.2.2 Newer studies					
1.2.2 Newer studies Baughman 2001	0.037	0.007	17.3%	0.04 [0.02, 0.05]	
		0.007 0.006	17.3% 17.4%		1
Baughman 2001	0.037			0.06 [0.05, 0.07]	
Baughman 2001 Baughman 2013	0.037 0.06	0.006	17.4%	0.06 [0.05, 0.07] 0.24 [0.12, 0.36]	
Baughman 2001 Baughman 2013 Bergner 2003 Morimoto 2008	0.037 0.06 0.24	0.006	17.4% 0.0%	0.06 [0.05, 0.07] 0.24 [0.12, 0.36] 0.07 [0.06, 0.09]	
Baughman 2001 Baughman 2013 Bergner 2003	0.037 0.06 0.24 0.074	0.006 0.063 0.009	17.4% 0.0% 17.0% 51.7%	0.06 [0.05, 0.07] 0.24 [0.12, 0.36] 0.07 [0.06, 0.09] 0.06 [0.04, 0.08]	
Baughman 2001 Baughman 2013 Bergner 2003 Morimoto 2008 Subtotal (95% Cl)	0.037 0.06 0.24 0.074 = 0.00; Chi ² = 1	0.006 0.063 0.009 1.76, df=	17.4% 0.0% 17.0% 51.7%	0.06 [0.05, 0.07] 0.24 [0.12, 0.36] 0.07 [0.06, 0.09] 0.06 [0.04, 0.08]	
Baughman 2001 Baughman 2013 Bergner 2003 Morimoto 2008 Subtotal (95% Cl) Heterogeneity: Tau ² :	0.037 0.06 0.24 0.074 = 0.00; Chi ² = 1	0.006 0.063 0.009 1.76, df=	17.4% 0.0% 17.0% 51.7%	0.06 [0.05, 0.07] 0.24 [0.12, 0.36] 0.07 [0.06, 0.09] 0.06 [0.04, 0.08]	
3aughman 2001 3aughman 2013 3ergner 2003 Morimoto 2008 Subtotal (95% CI) Heterogeneity. Tau ² Fest for overall effect Fotal (95% CI)	0.037 0.06 0.24 0.074 = 0.00; Chi ² = 1 t Z = 5.57 (P < 0	0.006 0.063 0.009 1.76, df= 0.00001)	17.4% 0.0% 17.0% 51.7% 2 (P = 0.	0.06 [0.05, 0.07] 0.24 [0.12, 0.36] 0.07 [0.06, 0.09] 0.06 [0.04, 0.08] 003); I ^a = 83% 0.11 [0.08, 0.15]	
Baughman 2001 Baughman 2013 Bergner 2003 Morimoto 2008 Subtotal (95% CI) Heterogeneity: Tau ² : Test for overall effect	0.037 0.06 0.24 0.074 = 0.00; Chi ² = 1 : Z = 5.57 (P < 1 = 0.00; Chi ² = 8	0.006 0.063 0.009 1.76, df= 0.00001) 3.18, df=	17.4% 0.0% 17.0% 51.7% 2 (P = 0. 100.0% 8 (P < 0.	0.06 [0.05, 0.07] 0.24 [0.12, 0.36] 0.07 [0.06, 0.09] 0.06 [0.04, 0.08] 003); I ^a = 83% 0.11 [0.08, 0.15]	

Markov model

Evidence profile

Bibliography:

- 1) Baughman RP, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164:1885-1889.
- 2) Baughman RP, et al. Calcium and Vitamin D metabolism in sarcoidosis. Sarc Vasc Diffuse Lung Dis 2013; 30:113-120.
- 3) Morimoto T, et al. Epidemiology of sarcoidosis in Japan. Eur Respir J 2008; 31:371-379.
- 4) Bergner R, et al. Frequency of kidney disease in chronic sarcoidosis. Sarc Vasc Diffuse Lung Dis 2003; 20(2):126.
- 5) Lebacq E, et al. Renal involvement in sarcoidosis. Postgrad Med J 1970; 46(538):526.
- Mayock, et al. Manifestations of sarcoidosis: Analysis of 145 patients with a review of nine series selected from the literature. Am J Med 1963; 35:67-89.
- 7) McCort JJ, et al. A clinical and roentgenologic study of twenty-eight proved cases. Arch Intern Med 1947; 80:293.
- Longcope WT, et al. A study of sarcoidosis. Based on a combined investigation of one hundred sixty cases including thirty autopsies from JHH and MGH. Medicine 1952; 31:1.
- 9) James D. Diagnosis and treatment of sarcoidosis. BMJ 1956; 2:900.
- Ferguson RH, et al. Sarcoidosis study of twenty-nine cases, with a review of splenic, hepatic, mucus membrane, retinal, and joint manifestations. Arch Int Med 1958; 101:1065.
- 11) Cummings MM. Epidemiologic and clinical observations in sarcoidosis. Ann Int Med 1959; 50:879.

			Quality assess	sment			Effect	Quality	Importance				
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations							
Prevalence of	revalence of hypercalcemia (frequency of abnormal serum calcium tests, %)												
11 ¹	Case series	serious ²	serious ³	none	none	none	6% (95% CI 4-8%)	⊕OOO VERY LOW	TBD				
Incidence of	renal failu	re (frequend	cy of patients w	vho develop i	renal failure,	%)							
1 ⁴	Case series	serious ²	serious ³	none	none	none	41/97 (42%) (95% CI 33-52%)	⊕OOO VERY LOW	TBD				
Response to	o treatment	(% patients	whose serum	calcium imp	roved)								

14	Case series	serious ²	serious ³	none	none	none	81/86 (94%) (95% CI 87-97%)	⊕OOO VERY LOW	TBD			
Response to	Response to treatment (% patients whose renal failure resolved)											
14	Case series	serious ²	serious ³	none	none	none	20/37 (54%) (95% CI 38-69%)	⊕OOO VERY LOW	TBD			

Footnotes: ¹ All studies listed in the bibliography. ² Many were retrospective chart reviews; therefore, there was a risk of selection bias. ³ When pooled by meta-analysis, the I² >90%; thus, looked at subgroups and eliminated outliers before reporting summary statistic.

⁴Baughman 2013.

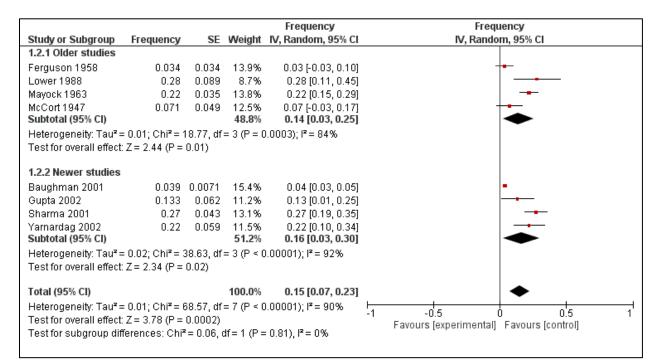
QUESTION #7: Should patients with sarcoidosis who do not have hematological symptoms undergo screening for bone marrow involvement by routine complete blood cell count testing?

Search strategy

#	Searches
1	exp bone marrow cells/
2	exp blood cells/
3	bone marrow.mp.
4	((Progenitor or Precursor or Hematopoietic) adj2 Cell\$).mp.
5	(Megakaryocyt\$ or Monocyt or Reticulocyt\$).mp.
6	(Blood Platelet\$ or Erythrocyt\$ or Hemocyt\$).mp.
7	(Granulocyt\$ or Basophil\$ or Eosinophil\$ or Neutrophil\$).mp.
8	(Lymphocyt\$ or Monocyt\$).mp.
9	(Leukocyt\$ or (Killer adj cell\$)).mp.
10	or/1-9
11	exp sarcoidosis/
12	sarcoidosis/
13	sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
14	sarcoid\$.mp.
15	(besnier adj boeck\$).tw.
16	(boeck\$ adj (disease or sarcoid)).tw.
17	(schaumann\$ adj (disease or syndrome)).tw.
18	uveoparoti\$.tw.
19	(benign\$ adj lymphogranuloma\$).tw.
20	((junging or heerfordt or lofgren) adj syndrome).tw.
21	neurosarcoidosis.tw.
22	(lupus adj pernio).tw.
23	(idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
24	or/11-23 [all sarcoidosis]
25	mass screening/

- 26 "Risk Assessment"/
- 27 (screen\$ or surveil\$ or follow-up\$).mp.
- 28 exp screening/
- 29 or/25-28
- 30 10 and 24 [Sarcoidosis and blood cells]
- 31 10 and 24 and 29 [Sarcoidosis and blood cells and screening]
- 32 30 not 31

Selected studies with outcomes


Study	Definition of anemia	Frequency of anemia	Definition of leukopenia	Frequency of leukopenia	Definition of lymphopenia	Frequency of lymphopenia
Yarnardag, et al. 2002	NR	11/50 (22%)	NR	NR	NR	NR
Gupta, et al. 2002	Hgb <11.5 g/dL	4/30 (13.3%)	<4000 /mm ³	1/30 (3.3%)	<1500 /mm ³	8/30 (27%)
Sharma, et al. 2001	Hgb <11.5 g/dL	29/106 (27%)	<4000 /mm ³	4/106 (4%)	<1500 /mm ³	NR
Baughman, et al. 2001	NR	29/736 (3.9%)	NR	NR	NR	NR
Lower, et al. 1988	NR	21/75 (28%)	NR	NR	NR	41/75 (55%)
Mayock, et al. 1963	Hgb <11.0 g %	31/144 (22%)	<5000 /mm ³	43/144 (30%)	NR	NR
Cummings, et al. 1959	NR	NR	<5000 /mm ³	51/175 (29%)	NR	NR
Ferguson, et al. 1958	Hgb <11.0 g/dL	1/29 (3.4%)	<5000 /mm ³	7/29 (24%)	NR	NR
Israel, et al. 1958	NR	NR	<5000 /mm ³	60/160 (38%)	NR	NR
McCort, et al. 1947	$RBC < 4x10^{6}$	2/28 (7.1%)	<4500 /mm ³	7/28 (25%)	NR	NR
Pooled result (weighted)	NR	15% 95% CI 7%-23%	NR	4% 95% CI 1-7% 4000 mm ³ subgroup	NR	42% (95% CI 14-69%)
Pooled result (unweighted)	NR	26% 95% CI 22%-30%	NR	4% 95% CI 3%-8% 4000 mm ³ subgroup	NR	47% (95% CI 37-56%)
Median (range)	NR	17% (3% to 28%)	NR	3.5% (3% to 4%) 4000 mm ³ subgroup	NR	41% (27% to 55%)

Study	Frequency of granulomas on bone marrow biopsy	Frequency of treatment being changed	Notes
Yarnardag, et al. 2002	3/11 (27%) of pts. with anemia had granulomas in bone marrow; 7/11 (65%) had iron deficiency anemia	NR	NR
Gupta, et al. 2002	NR	NR	4/30 (13.3%) sarcoid patients had anemia;3/30 (13.3%) healthy patients had anemia
Sharma, et al. 2001	NR	NR	NR

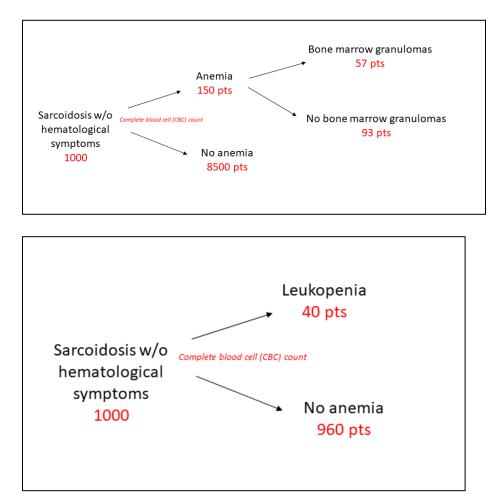
Baughman, et al. 2001	NR	NR	NR
Lower, et al. 1988	9/17 (53%) of pts. with anemia had granulomas in bone marrow; no alternative anemias	NR	NR
Mayock, et al. 1963	NR	NR	NR
Cummings, et al. 1959	NR	NR	NR
Ferguson, et al. 1958	NR	NR	Abnormalities occurred "on occasion"
Israel, et al. 1958	NR	NR	NR
McCort, et al. 1947	NR	NR	For most pts. the abnormality was seen on one measurement and didn't persist
Pooled result (weighted)	38% (95% CI 13-64%)	N/A	N/A
Pooled result (unweighted)	43% (95% CI 27-61)	N/A	N/A
Median (range)	40% (27% to 53%)	N/A	N/A

Forest plots

Frequency of anemia

Frequency of leukopenia

				Frequency			
Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl			
1.3.1 <5000 mm3							
Cummings 1959	0.29	0.0034	15.7%	0.29 [0.28, 0.30]		•	
Ferguson 1958	0.24	0.079	12.2%	0.24 [0.09, 0.39]	_ —•		
Israel 1958	0.38	0.038	14.8%	0.38 [0.31, 0.45]			
Mayock 1963	0.3	0.038	14.8%	0.30 [0.23, 0.37]		•	
McCort 1947	0.25	0.082	12.0%	0.25 [0.09, 0.41]	_ — •		
Subtotal (95% CI)			69.5%	0.30 [0.26, 0.34]		•	
Heterogeneity: Tau ²	= 0.00; Chi ² = 0	6.28, df =	4 (P = 0.1)	18); I ² = 36%			
Test for overall effect	t Z = 15.63 (P	< 0.0000	1)				
1.3.2 <4000 mm3							
	0.033	0.033	15.0%	0.03 [-0.03, 0.10]	-		
1.3.2 <4000 mm3 Gupta 2002 Sharma 2001	0.033 0.04	0.033 0.019		0.03 [-0.03, 0.10] 0.04 [0.00, 0.08]	+		
Gupta 2002					•		
Gupta 2002 Sharma 2001	0.04	0.019	15.5% 30.5%	0.04 [0.00, 0.08] 0.04 [0.01, 0.07]	•		
Gupta 2002 Sharma 2001 Subtotal (95% CI) Heterogeneity: Tau ²	0.04 = 0.00; Chi ² = (0.019 0.03, df=	15.5% 30.5%	0.04 [0.00, 0.08] 0.04 [0.01, 0.07]	•		
Gupta 2002 Sharma 2001 Subtotal (95% CI)	0.04 = 0.00; Chi ² = (0.019 0.03, df=	15.5% 30.5%	0.04 [0.00, 0.08] 0.04 [0.01, 0.07]		•	
Gupta 2002 Sharma 2001 Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect Total (95% CI)	0.04 = 0.00; Chi ² = 1 t Z = 2.32 (P =	0.019 0.03, df= 0.02)	15.5% 30.5% 1 (P = 0.9 100.0%	0.04 [0.00, 0.08] 0.04 [0.01, 0.07] 35); I ² = 0% 0.22 [0.10, 0.33]		•	
Gupta 2002 Sharma 2001 Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect	0.04 = 0.00; Chi ² = 0 t Z = 2.32 (P = = 0.02; Chi ² = 2	0.019 0.03, df= 0.02) 231.80, d	15.5% 30.5% 1 (P = 0.9 100.0%	0.04 [0.00, 0.08] 0.04 [0.01, 0.07] 35); I ² = 0% 0.22 [0.10, 0.33]	0	50%	100%


Frequency of lymphopenia

Study or Subgroup	Frequency	SE	Weight	Frequency IV, Random, 95% Cl			
Gupta 2002	0.27	0.081	47.9%	0.27 [0.11, 0.43]	—	-	
Lower 1988	0.55	0.057	52.1%	0.55 [0.44, 0.66]			
Total (95% CI)			100.0%	0.42 [0.14, 0.69]	-		
Heterogeneity: Tau ² :	= 0.03; Chi ² = 1	7.99, df	= 1 (P = (0.005); l² = 87% -		_ _	
Test for overall effect	-		-		0	50%	100%

Frequency of bone marrow granulomas among those with anemia

Study or Subgroup	Frequency	SE	Weight	Frequency IV, Random, 95% Cl			
Lower 1988	0.53	0.121	44.0%	0.53 (0.29, 0.77)			
Yanardag 2002	0.27	0.081	56.0%	0.27 [0.11, 0.43]	-		
Total (95% CI)			100.0%	0.38 [0.13, 0.64]			
Heterogeneity: Tau ² :	= 0.02; Chi ² = 3	0	50%				

Markov model

Evidence profile

Comparison: Complete blood cell count versus none

Bibliography:

- 1) Lower EE, et al. The anemia of sarcoidosis. Sarcoidosis 1988; 5(1):51-55.
- Yanardag H, et al. Bone marrow involvement in sarcoidosis: an analysis of 50 bone marrow samples. Haematologia (Budap) 2002; 32(4):419-425.
- 3) Gupta D, et al. Haematological abnormalities in patients of sarcoidosis. Indian J Chest Dis All Sci 2002; 44(4):233-236.
- Mayock, et al. Manifestations of Sarcoidosis: Analysis of 145 Patients with a Review of Nine Series Selected from the Literature. Am J Med 1963; 35:67-89.
- 5) Sharma SK, et al. Clinical characteristics, pulmonary function abnormalities, and outcome of prednisolone treatment in 106 patients with sarcoidosis. J Assoc Physicians India 2001; 49:697-704.
- 6) McCort JJ, et al. Sarcoidosis-- A clinical and roentogenographic study of 28 proved cases. Arch Intern Med 1947; 80:293.
- Ferguson RH, et al. Sarcoidosis. Study of 29 cases, with review of splenic, hepatic, mucous membrane, retinal, and joint manifestations. Arch Intern Med 1958; 101:1065.
- 8) Israel HL, et al. Sarcoidosis. Clinical observations on one hundren and sixty cases. Arch Intern Med 1958; 102:766.
- 9) Cummings MM, et al. Epidemiologic and clinical observations in sarcoidosis. Ann Intern Med 1959; 50:879.

			Quality assess	ment			Effect	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations			

Detection of	anemia (fre	quency of a	nemia among C	CBCs, %)						
7 ¹	Case series	serious ²	serious ³	none	serious ⁴	none	15% 95% CI 7%-23%	⊕OOO VERY LOW	TBD	
Detection of	Detection of leukopenia (frequency of leukopenia among CBCs, %)									
7 ⁵	Case series	serious ²	serious ³	none	serious ⁴	none	4% 95% CI 1-7%	⊕OOO VERY LOW	TBD	
Detection of	lymphopen	ia (frequenc	y of lymphoper	nia among Cl	3Cs, %)					
24	Case series	serious ²	serious ³	none	serious ⁴	none	42% (95% CI 14-69%)	⊕OOO VERY LOW	TBD	
Detection of	bone marro	w granulom	as (frequency	of granuloma	is among bo	ne marrow biop	sies, %)			
2 ⁶	Case series	serious ²	serious ³	none	serious ⁴	none	38% 95% CI 13-64%	⊕OOO VERY LOW	TBD	
Treatment ch	ange (%)									
-	-	-	-	-	-	-	-	_	-	

Footnotes:

¹Ferguson, Gupta, Lower, Mayock, McCort, Sharma, and Yanardag.

²Many were retrospective chart reviews; therefore, there was a risk of selection bias. ³ When pooled by meta-analysis, the $I^2 > 50\%$. Also, the range is wide.

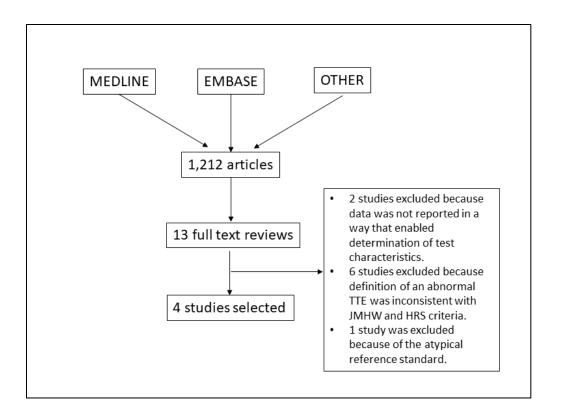
- ⁴ A large proportion of the studies are small with <100 patients.
 ⁵ Cummings, Ferguson, Gupta, Israel, Mayock, McCourt, and Sharma.

⁶ Gupta and Lower.
⁷ Yanardag and Lower.

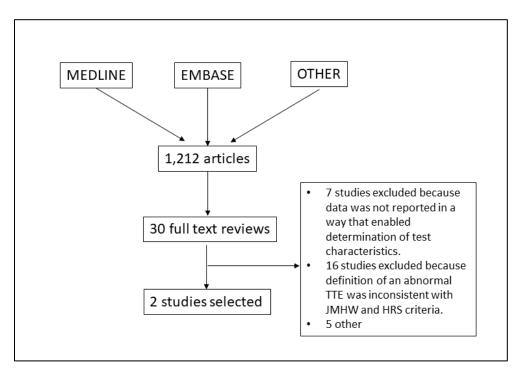
<u>QUESTION #8:</u> Should sarcoidosis patients who do not have cardiac symptoms or signs be routinely screened for cardiac sarcoidosis using ECG, TTE, or Holter?

Search strategy for ECG, TTE, and Holter combined

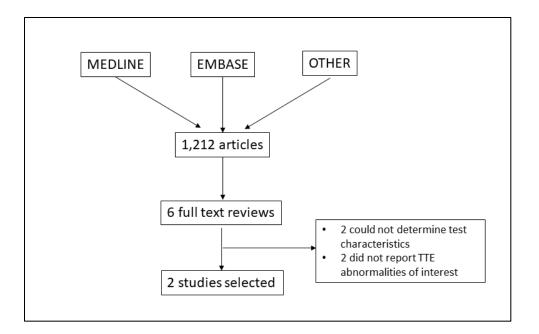
#		Searches
	1	exp Echocardiography/
	2	(echocardiogra\$ or echo cardiogra\$ or ((heart or cardi\$) adj echogra\$)).mp.
	3	1 or 2
	4	Electrocardiography/ or electrocardiograph/ (electromyocardiograph\$ or electrocardiogra\$ or electro cardiograph\$ or
	5	polycardiograph\$ or ECG or EKG).mp.
	6	4 or 5
	7	Electrocardiography, Ambulatory/ or ambulatory electrocardiography/
	8	Holter monitoring/ or Holter monitor/ (((event or holter) adj2 (monitor\$ or record\$ or ecg or electrocardiogra\$)) or (electrocardiogra\$ adj (record\$ or monitor\$)) or (electrocardiogra\$ adj (record\$ or
	9	monitor\$)) or ((ambulatory or dynamic) adj2 electrocardiogra\$)).mp.


10	7 or 8 or 9
11	3 or 6 or 10
12	exp sarcoidosis/
13	sarcoidosis/
14	sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
15	sarcoid\$.mp.
16	(besnier adj boeck\$).tw.
17	(boeck\$ adj (disease or sarcoid)).tw.
18	(schaumann\$ adj (disease or syndrome)).tw.
19	uveoparoti\$.tw.
20	(benign\$ adj lymphogranuloma\$).tw.
21	((junging or heerfordt or lofgren) adj syndrome).tw.
22	neurosarcoidosis.tw.
23	(lupus adj pernio).tw.
24	(idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
25	or/12-24 [all sarcoidosis]
26	11 and 25
27	limit 26 to English language

Study selection criteria


1	Randomized trials that enrolled patients with extracardiac sarcoidosis and no cardiac symptoms, compared
	performing the diagnostic test to not performing the diagnostic test, and measured patient-important
	outcomes. If none found, then next step.
2	Observational studies that enrolled patients with extracardiac sarcoidosis and no cardiac symptoms,
	compared performing the diagnostic test to not performing the diagnostic test, and measured patient-
	important outcomes. If none found, then next step.
3	Accuracy studies that enrolled patients with extracardiac sarcoidosis and no cardiac symptoms, and either
	reported test characteristics (true positive, false positive, true negative, false negative) or reported data that
	enabled the calculation of test characteristics. If none found, then "no recommendation", "research
	recommendation", or next step.
4	Case series that enrolled patients with extracardiac sarcoidosis and no cardiac symptoms and reported the
	frequency of abnormal diagnostic tests and related outcomes.

Flow of information diagrams


Flow of information for ECG

Flow of information for TTE

Flow of information for Holter

Selected studies with outcomes

			Electrocardiograms (ECGs)		
Study	N	Patients	Definition of abnormal ECG	Frequency of abnormal ECG Sarcoidosis (%)	Frequency of abnormal ECG Healthy (%)
Mehta 2008	62	Non-cardiac sarcoidosis. 21% sx, 79% asx	RBBB, LBBB, Left Anterior Fascicular block, left posterior fascicular block, AV block	3/62 (5%)	N/A
Nagao 2015	227	Non-cardiac sarcoidosis. Sx and asx not reported	Prolonged PR int, RBBB, LAFB, and LBBB (the study included others too, but we extracted data only for these abnormalities for consistency with JMHW and HRS criteria).	23/227 (10%)	N/A
Langer 1995	244	Non-cardiac sarcoidosis. Sx and asx not reported	Incomplete RBBB, RBBB, AVB, ventricular extrasystole, ST depressions (the study included others too, but we extracted data only for these abnormalities for consistency with JMHW and HRS criteria).	18/244 (7%)	N/A
Suzuki 1994	99	38 w/ non-cardiac sarcoidosis, sx and asx not reported; 58 healthy controls.	Left axis deviation, RBBB, LBBB, AV block (the study included others too, but we extracted data only for these abnormalities for consistency with JMHW and HRS criteria).	18/38 (47%)	5/58 (9%)
			Weighted (%, 95% Cl)	7% [*] (95% Cl 4-11%)	N/A
	Sur	nmary estimates	Unweighted (%, 95% Cl)	8% * (95% Cl 6-11%)	9% (95% CI 4-19%)
			Median (Range)	7% [*] (5-10%)	N/A

^{*} Includes Langer, Mehta, and Nagao (patients presented to medical pulmonary clinic) but not Suzuki (patients presented to cardiology clinic) because results are heterogeneous and the former more closely reflect the patients of interest.

		[Diagnos	is of ca	rdiac sa	arcoid				(AV block, VT, dysfunction)		All-cause N	Iortality
Study	Diagnosis standard	ТР	FP	τN	FN	Se	Sp	Abn ECG	Norm ECG	Abnormal vs. normal	Abn ECG	Norm ECG	Abnormal vs. normal
Mehta 2008	+cMRI or +PET scan	2	1	38	21	9% 95% Cl 1-27%	97% 95% Cl 86-100%	NR	NR	NR	NR	NR	NR
Nagao 2015	N/A	NR	NR	NR	NR	N/A	N/A	NR	NR	HR 11.27 (95% CI 3.29-38.64)	NR	NR	NR

	immary timates	T	oo diffe			may reflect standards	different		HR 1 (95% CI 3.	1.27 29-38.64)		44% vs. RR 1. (95% CI 0.8	40
Suzuki 1994	a) myocardial granulomas, b) +PET, c) +ECG, AND d) no alternative explanation for heart disease.	11	7	19	1	92% 95% Cl 65-99%	73% 95% Cl 54-86%	NR	NR	NR	NR	NR	NR
Langer 1995	N/A	NR	NR	NR	NR	N/A	N/A	NR	NR	NR	8/18 * (44%)	21/59 * (36%)	RR 1.4 (95% CI 0.80-2.42)

* Determined over a median 27-years (range 0-36 years) of follow-up.

			Echocardiograms (TTEs)		
Study	N	Patients	Definition of abnormal TTE	Abnormal TTE sarcoidosis (%)	Abnormal TTE healthy (%)
Mehta 2008	62	Non-cardiac sarcoidosis. 21% sx, 79% asx	LV EF <45%, SWMA, diastolic dysfunction, or RV systolic dysfunction without PH	5/62 (8%)	N/A
Burstow 1989	88	Non-cardiac sarcoidosis. Sx and asx not reported	EF <50% and/or SWMA not attributable to CAD	12/88 (14%)	N/A
			Weighted (%, 95% CI)	11% 95% CI 5-17%	N/A
		mmary timates	Unweighted (%, 95% Cl)	11% 95% CI 7-17%	N/A
			Median (Range)	11% (8% - 14%)	N/A

				Diagnosis	of cardiac	sarcoid		Conduct	tion system	abnormalities
Study	Diagnosis standard	ТР	FP	TN	FN	Se	Sp	Abnormal TTE	Normal TTE	Abnormal vs. normal
Mehta 2008	+cMRI or +PET	6	2	36	18	25% 95% Cl 10-47%	97% 95% Cl 86-99%	NR	NR	NR
Burstow 1989	+cMRI	NR	NR	NR	NR	N/A	N/A	7/12 (58%)	17/76 (22%)	RR 2.6 95% Cl 1.38-4.92
Summary Estimates				25%, 9 Sj	ensitivity 05% CI 10- pecificity 05% CI 83-				58% vs RR 2. 95% CI 1.3	6

			Co	ntinuous a	mbulato	ry electrocardiogra	phy (I	Holte	r)			
			Defn	Abnl	Abnl		Dia	agnosis	of car	diac sa	rcoid	
Study	N	Patients	Abni Holter	Holter sarcoid (%)	Holter Hlthy (%)	Diagnosis standard	ТР	FP	ΤN	FN	Se	Sp
Mehta 2008	62	Non-cardiac sarcoidosis. 21% sx, 79% asx	RBBB, LBBB, AV block, PVC, VT, SVTs	3/62 (5%)	N/A	+cMRI or +PET	12	1	37	12	50% 95% Cl 29-71%	97% 95% Cl 86- 100%
Suzuki 1994	99	38 w/ non- cardiac sarcoidosis; 58 healthy controls.	PVCs	15/38 (39%)	12/58 (21%)	a) myocardial granulomas, b) +PET, c) +ECG, AND d) no alternative explanation for heart disease.	8	2	24	4	67% 95% Cl 39-86%	92% 95% Cl 76-98%

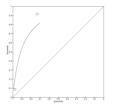
	Weighted (%, 95% Cl)	N/A	N/A	Sensitivity
Summary Estimates	Unweighted (%, 95% CI)	5% * 95% CI 1-9%	N/A*	56%, 95% CI 40-70% Specificity 95%, 95% CI 87-98%
	Median (Range)	N/A	N/A	

* Includes Mehta only (patients presented to medical pulmonary clinic) but not Suzuki (patients presented to cardiology clinic) because results are heterogeneous and the former more closely reflect the patients of interest.

Side-by-side comparisons of diagnostic test characteristics

	ECG	TTE	Holter
Mehta study (only selected study that compared modalities in same population)	Sensitivity= 9%, 95% Cl 1-27% Specificity= 97%, 95% Cl 86-100%	Sensitivity= 25%, 95% Cl 10-47% Specificity= 95%, 95% Cl 83-99%	Sensitivity= 50%, 95% Cl 29-71% Specificity= 97%, 95% Cl 86-100%
Evidence base	2 studies that can't be pooled: Sensitivity= 9%, 95% Cl 1-27% Specificity= 97%, 95% Cl 86-100% Sensitivity= 92%, 95% Cl 62-100% Specificity= 73%, 95% Cl 52-88%	1 study Sensitivity= 25%, 95% Cl 10-47% Specificity= 97%, 95% Cl 86-99%	2 studies Sensitivity= 56%, 95% Cl 40-70% Specificity= 95%, 95% Cl 87-98%

*One additional study was encountered that evaluated all three modalities in the same population. The study was not selected for our systematic review because it defined an abnormal test based upon any abnormalities, not just those considered important by the JMHW and HRS. This will tend to overestimate the sensitivity and underestimate the specificity. It found the following: ECG- Se 39%, Sp 90%; TTE- Se 70%, Sp 58%; and, Holter- Se 39%, Sp 85%.


Forest plots

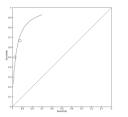
ECG- prevalence of abnormal electrocardiography

				Frequency		
Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl		
1.5.1 Med or pulm cl	linic					
Langer 1995	0.074	0.0332	26.1%	0.07 [0.01, 0.14]	.	
Mehta 2008	0.048	0.0142	30.4%	0.05 [0.02, 0.08]	•	
Nagao 2015	0.1	0.0192	29.5%	0.10 [0.06, 0.14]	+	
Subtotal (95% CI)			86.0%	0.07 [0.04, 0.11]	•	
Heterogeneity: Tau ² :	= 0.00; Chi ² = /	4.79, df=	2 (P = 0.0	09); I² = 58%		
Test for overall effect				-		
1.5.2 Cardiol clinic						
Suzuki 1994	0.47	0.081	14.0%	0.47 (0.31, 0.63)		
Suzuki 1994 Subtotal (95% CI)	0.47	0.081	14.0% 14.0%	0.47 [0.31, 0.63] 0.47 [0.31, 0.63]	•	
Subtotal (95% CI)		0.081			•	
	pplicable		14.0%		•	
Subtotal (95% CI) Heterogeneity: Not a	pplicable		14.0%		•	
Subtotal (95% CI) Heterogeneity: Not a Test for overall effect Total (95% CI)	pplicable t: Z = 5.80 (P <	0.00001	14.0%) 100.0%	0.47 (0.31, 0.63)	•	1
Subtotal (95% CI) Heterogeneity: Not a Test for overall effect	pplicable t: Z = 5.80 (P < = 0.01; Chi² = 3	0.00001) 29.09, df	14.0%) 100.0%	0.47 (0.31, 0.63)	0 50%	

ECG- diagnostic accuracy

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Mehta 2008	2	1	21	38	0.09 [0.01, 0.28]	0.97 [0.87, 1.00]	-	
Suzuki 1994	11	7	1	19	0.92 [0.62, 1.00]	0.73 [0.52, 0.88]		

TTE- prevalence of abnormal TTE


Study or Subgroup	Frequency	SE	Weight	Frequency IV, Random, 95% Cl			
Burstow 1989	0.14	0.037	48.0%	0.14 [0.07, 0.21]	-		
Mehta 2008	0.08	0.035	52.0%	0.08 [0.01, 0.15]	-		
Total (95% CI)			100.0%	0.11 [0.05, 0.17]	•		
Heterogeneity: Tau ² =	= 0.00; Chi ² = 1	1.39, df	= 1 (P = 0	.24); I ² = 28% -		50%	

Holter- prevalence of abnormal Holter

Study or Subgroup	Frequency	SE	Weight	Frequency IV, Fixed, 95% Cl			
1.6.1 Med or pulm cl	inic						
Mehta 2008 Subtotal (95% CI)	0.048	0.0217	93.0% 93.0%	0.05 [0.01, 0.09] 0.05 [0.01, 0.09]	•		
Heterogeneity: Not ap	oplicable						
Test for overall effect	Z = 2.21 (P =	0.03)					
1.6.2 Cardiol clinic							
Suzuki 1994	0.395	0.0793	7.0%	0.40 [0.24, 0.55]			
Subtotal (95% CI)			7.0%	0.40 [0.24, 0.55]			
Heterogeneity: Not ap	oplicable						
Test for overall effect	Z= 4.98 (P <	0.00001)				
Total (95% CI)			100.0%	0.07 [0.03, 0.11]	•		
Heterogeneity: Chi ² =	17.81, df = 1	(P < 0.00	101); I ² = 9	34%			
Test for overall effect					0	50%	100%
Test for subgroup dif	ferences: Chi ^a	= 17.81	df = 1 (P	< 0.0001), I ² = 94.4%			

Holter- diagnosis of cardiac sarcoid

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Mehta 2008	12	1	12	37	0.50 [0.29, 0.71]	0.97 [0.86, 1.00]		
Suzuki 1994	8	2	4	24	0.67 [0.35, 0.90]	0.92 [0.75, 0.99]		

Evidence profiles

ECG-related profile

Bibliography:

1. Nagao, et al. Electrocardiographic abnormalities and risk of developing cardiac events in extracardiac sarcoidosis. Int J Cardiol 2015; 189:1-5.

2. Mehta, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 2008; 133(6):1426-1435.

3. Langer, et al. Electrocardiographic changes in patients with intrathoracic sarcoidosis: influence on prognosis. Sarcoidosis 1995; 12(1):42-45.

4. Suzuki, et al. Holter Monitoring as a Noninvasive Indicator of Cardiac Involvement in Sarcoidosis. Chest 1994; 106:1021-24

			Quality assess	ment			Summai	ry of findin _{ຂຶ}	ţs	Quality	Importance	
No of		Risk of					Patients		Effects			
studies	Design	bias	Inconsistency	Indirectness	Imprecision	Other	Abnl. ECG	Nml. ECG	Relative	Absolute		
Frequen	icy of abnorma	al ECG	•	,	•	•			•	•		
4 ¹	case series	serious ²	serious ³	serious ⁴	none	none	7% 95% Cl 4-11%	-	-	-	⊕OOO VERY LOW	TBD
Diagnos	is of cardiac sa	arcoidosis			-							
25	accuracy	serious ⁶	serious ⁷	serious ⁴	serious ⁸	none		sitivity= 9	tudy 1 9%, 95% Cl 1 %, 95% Cl 8		⊕000	TBD
2	study	Serious	3611003	senous	3611003	none	Study 2 Sensitivity= 92%, 95% CI 62-100% Specificity= 73%, 95% CI 52-88%				VERY LOW	100
Mortali	t y	•	•		•	•						
1 ⁸	observational study	serious ¹⁰	none	serious ⁴	serious ⁸	none	8/18 (44%)	21/59 (36%)	RR 1.4 (95% Cl 0.80-2.42)	89 more per 1000 (from 148 less to 333 more)	⊕OOO VERY LOW	TBD
Cardiac	events											
111	observational study	serious ¹⁰	none	serious ⁴	none	none	-	-	HR 11.27 (95% Cl 3.29- 38.64)	N/A	⊕OOO VERY LOW	TBD

Footnotes:

¹ All studies.

- ² Two of four studies didn't enroll consecutive patients; therefore, there was a risk of selection bias. Can't exclude confounding bias.
- ³ Studies were heterogenous but resolved with subgroups. Reporting results of the more relevant subgroup (med and pulm clinic).
- ⁴ The question is about patients without cardiac symptoms, but the studies included patients with and without cardiac symptoms.
- ⁵ Mehta and Suzuki.
- ⁶ There is no universally accepted reference standard.
- ⁷ The studies are too different to pool; need to be reported separately
- ⁸ Low Optimal Information Size, OIS (studies with <200 patients).
- 9 Langer.

¹⁰ Study didn't enroll consecutive patients. Can't exclude confounding bias.

¹¹Nagao.

Echocardiography profile

Bibliography:

- 1. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, Machac J, Teirstein A, 2008. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 133: 1426-1435.
- 2. Burstow, et al. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol 1989; 63(7):478-482.

			Quality assess	ment			Summar	y of finding	S	Quality	Importance	
No of	Design	Risk of	Inconsistency	Indirectness	Imprecision	Other	Patients		Effects			
studies	Design	bias	inconsistency	munectness	Imprecision	Other	Abnl. TTE	Nml. TTE	Relative	Absolute		
Frequen	cy of abnorma	al echocar	diography (%)	•								
21	case series	serious ²	serious ³	serious ⁴	serious⁵	none	11% 95% Cl 5-17%	-	-	-	⊕OOO VERY LOW	TBD
Diagnos	is of cardiac sa	arcoidosis										
15	accuracy study	none	none	serious ⁴	serious⁵	none			95% CI 1 %, 95% CI 8		⊕OOO VERY LOW	TBD
Develop	ment of cond	uction abr	ormalities									
11	observational study	serious ²	none	serious ⁴	serious⁵	none	7/12 (58%)	17/76 (22%)	RR 2.6 95% Cl 1.38-4.92	360 more per 1000 (from 76 more to 597 more)	⊕OOO VERY LOW	TBD

Footnotes:

¹ All studies.

² Can't exclude confounding bias.

³ High I² statistic.

⁴ The question is about patients without cardiac symptoms, but the studies included patients with and without cardiac symptoms.

⁵ Low optimum information size (<200 patients) and wide confidence intervals.

⁶ Mehta.

⁷ Burstow.

Holter-related profile Bibliography:

1. Mehta, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 2008; 33(6):1426-1435.

2. Suzuki, et al. Holter Monitoring as a Noninvasive Indicator of Cardiac Involvement in Sarcoidosis. Chest 1994; 106:1021-24

	Quality asse	essment			Summar	ry of findings	Quality	Importance
Design	Inconsistency	Indirectness	Imprecision	Other	Patients	Effects		

No of studies		Risk of bias					Abnl. Holter	Nml. Holter	Relative	Absolute		
Frequen	Frequency of abnormal Holter (%)											
2	case series	serious ¹	serious ²	serious ³	serious ⁴	none	5% 95% CI 1-9%	-	-	-	⊕OOO VERY LOW	TBD
Diagnos	is of cardi	iac sarcoid	osis									
2	accuracy study	serious⁵	none	serious ³	serious ⁴	none			6%, 95% CI 4 9%, 95% CI 8		⊕OOO VERY LOW	TBD

Footnotes:

¹ Can't rule confounding bias.

² Studies were heterogenous, arguably too different to pool. Reporting results of only one study (med and pulm clinic).

³ The question is about patients without cardiac symptoms, but the studies included patients with and without cardiac symptoms.

⁴ Low optimum information size (<200 patients).

⁵ There is no universally accepted reference standard.

<u>QUESTION #9</u>: Should patients who are suspected of having cardiac sarcoidosis undergo cardiac MRI for diagnosis rather than TTE or PET?

Search strategy for MRI, PET, and TTE combined

Searches

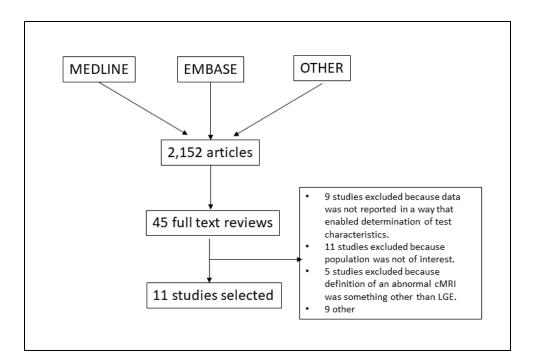
- 1 exp sarcoidosis/
- 2 sarcoidosis/
- 3 sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
- 4 sarcoid\$.mp.
- 5 (besnier adj boeck\$).tw.
- 6 (boeck\$ adj (disease or sarcoid)).tw.
- 7 (schaumann\$ adj (disease or syndrome)).tw.
- 8 uveoparoti\$.tw.
- 9 (benign\$ adj lymphogranuloma\$).tw.
- 10 ((junging or heerfordt or lofgren) adj syndrome).tw.
- 11 neurosarcoidosis.tw.
- 12 (lupus adj pernio).tw.
- 13 (idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.

14 or/1-13 [all sarcoidosis]

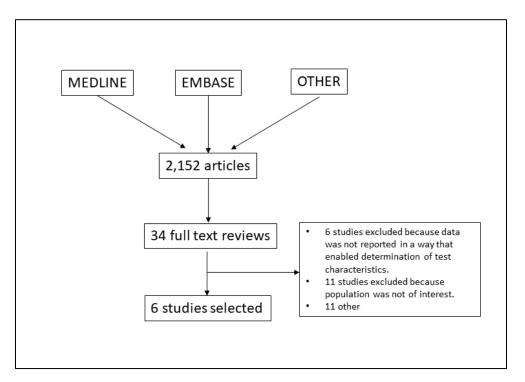
- 15 exp magnetic resonance imaging/
- 16 (MRI or MRIs or (magnetic adj2 resonance adj2 imag\$)).mp.
- 17 (echo adj2 spin adj2 imag\$).mp.
- 18 15 or 16 or 17 [MRI]
- 19 exp Positron-Emission Tomography/

((positron adj2 emission adj2 tomogra\$) or (PET adj2 (scan\$ or

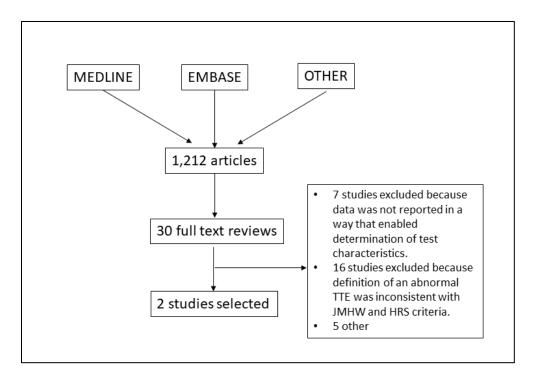
- 20 tomogra\$))).mp.
- 21 19 or 20 [PET]
- 22 exp Echocardiography/


- (echocardiogra\$ or echo cardiogra\$ or ((heart or cardi\$) adj
- 23 echogra\$)).mp.
- 24 22 or 23 [TTE]
- exp Cardiovascular System/ or exp Cardiovascular Diseases/ or
- 25 Heart/
- 26 (cardi\$ or myocardi\$ or coronary or heart).mp.
- 27 25 or 26 [cardiac]
- 28 14 and 18
- 29 14 and 18 [Sarcoidosis and MRI]
- 30 14 and 21 [Sarcoidosis and PET]
- 31 14 and 24 [Sarcoidosis and TTE]
- 32 29 or 30 or 31 [Sarcoidosis and MRI or PET or TTE]
- 33 27 and 32 [with cardiac]
- 34 limit 33 to english language

Study selection criteria


1	Randomized trials that enrolled patients with known extracardiac sarcoidosis and suspected cardiac
	involvement, compared performing the diagnostic test to not performing the diagnostic test, and measured
	patient-important outcomes. If none found, then next step.
2	Observational studies that enrolled patients with known extracardiac sarcoidosis and suspected cardiac
	involvement, compared performing the diagnostic test to not performing the diagnostic test, and measured
	patient-important outcomes. If none found, then next step.
3	Accuracy studies that enrolled patients with known extracardiac sarcoidosis and suspected cardiac
	involvement, and either reported test characteristics (true positive, false positive, true negative, false
	negative) or reported data that enabled the calculation of test characteristics. If none found, then "no
	recommendation", "research recommendation", or next step.
4	Case series that enrolled patients with known extracardiac sarcoidosis and suspected cardiac involvement,
	and reported the frequency of abnormal diagnostic tests and related outcomes.

Flow of information diagrams


Flow of information for cMRI

Flow of information for PET

Flow of information for TTE

Selected studies with outcomes

		Cardiac Mag	netic Resonance Imaging (cMF	RI)	
Study	N	Patients	Definition of abnormal	Abnormal cMRI sarcoidosis (%)	Abnormal cMRI healthy (%)
Smedema 2005	101	Pulmonary sarcoidosis; 19 symptomatic 82 asymptomatic	Late gadolinium enhancement	10/14 (71%)	N/A
Ohira 2008	21	"Suspected cardiac sarcoidosis" (i.e., abnormal ECG or TTE); Did not specify sx versus asx	Late gadolinium enhancement	8/20 (40%)	N/A
Patel 2009	81	Non-cardiac sarcoidosis; 17 symptomatic 64 asymptomatic	Late gadolinium enhancement	21/81 (26%)	N/A
Patel 2011	152	Non-cardiac sarcoidosis; Did not specify sx versus asx	Late gadolinium enhancement	29/152 (19%)	N/A
Greulich 2013	155	"Suspected cardiac sarcoidosis" (abnormal sxs, ECG or TTE)	Late gadolinium enhancement	39/153 (25%)	N/A
Cain 2014	135	Non-cardiac sarcoidosis; Did not specify sx versus asx	Late gadolinium enhancement	44/135 (33%)	N/A
Kournas 2017	321	"Suspected cardiac sarcoidosis" (i.e., abnormal sx, ECG, or TTE); Mixture of sx versus asx	Late gadolinium enhancement	93/321 (29%)	N/A
Stanton 2017	46	Pulmonary sarcoidosis; At least 39% symptomatic	Late gadolinium enhancement	10/46 (22%)	N/A
Bravo 2017	56	"Suspected cardiac sarcoidosis"; Did not specify sx versus asx	Late gadolinium enhancement	31/56 (55%)	N/A
Nadel 2015	106	Non-cardiac sarcoidosis (n=74), non-cardiac and cardiac sarcoidosis (n=26), cardiac sarcoidosis only (n=6)	Late gadolinium enhancement	32/106 (30%)	N/A

Wicks 2018	51	"Suspected cardiac (n=44), known car (n=7)		Late gadolinium enhancement	32/51 (63%)	N/A	
	6			Weighted	27%, 95% CI 23-31% *		
Summary estimates				Unweighted	27%, 95%	CI 25-30% *	
				Median	27%, rang	e 19-40% *	

*Bravo, Smedema, and Wick removed as outliers.

Study			Diagnos	sis of ca	diac sare	coid			Mortality	
	Diagnosis standard for CS	ТР	FP	TN	FN	Se	Sp	Abnormal cMRI	Normal cMRI	Abnormal vs. normal
Smedema 2005	+ modified JMHW criteria	9	1	2	2	82% 95% Cl 48-98%	67% 95% CI 9-99%	NR	NR	NR
Ohira 2008	+ JMHW criteria	5	3	10	2	71% 95% CI 29-96%	77% 95% Cl 46-95%	NR	NR	NR
Patel 2009	+ JMHW criteria	8	13	58	2	80% 95% Cl 44-97%	82% 95% Cl 71-90%	Cardiac 4/21 (19%)	Cardiac 1/60 (2%)	Cardiac RR 11.42 95% Cl 1.35-96.57
Patel 2011	+ JMHW criteria	14	13	102	21	40% 95% Cl 24-58%	89% 95% Cl 81-94%	NR	NR	NR
Greulich 2013	NR	NR	NR	NR	NR	NR	NR	Overall 3/39 (7.7%)	Overall 1/114 (0.8%)	Overall RR 8.76 95% Cl 0.94-81.86
Cain 2014	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Kournas 2017	+ HRS criteria	93	0	225	3	97% 95% Cl 91-99%	100% 95% Cl 98-100%	NR	NR	NR
Stanton 2017	+ JMHW criteria	2	8	36	0	100% 95% Cl 16-100%	82% 95% Cl 67-92%	NR	NR	NR
Bravo	+ HRS criteria	14	22	16	2	90% 95% Cl 68-99%	100% 95% Cl 98-100%	NR	NR	NR
2017	+ JMHW criteria	18	18	16	2	88% 95% CI 62-98%	42% 95% Cl 26-59%	INIX		NK
Nadel	NR	NR	NR	NR	NR	NR	NR	Overall 4/32 (12%)	Overall 8/74 (10%)	Overall RR 1.19 95% Cl 0.38-3.66
2015								Cardiac 3/32 (9%)	Cardiac 1/74 (1.4%)	Cardiac RR 7.13 95% Cl 0.77-65.94
Wicks 2018	+ JMHW criteria	26	6	13	7	79% 95% Cl 61-91%	68% 95% Cl 43-87%	NR	NR	NR
Summary Estimates			pecificity PPV- 5	- 73% (9 8% (95%	V * 195 CI 72- 15% CI 67 5 CI 49-67 5 CI 84-94	7-79%) 7%)		F	Overall mortalit 9.9% versus 4.8 RR 2.51, 95% CI 0.36 Cardiac mortalit	, % -17.47
					; 95 CI 90- 95% CI 89			F	13.2% versus 1.5 RR 9.00, 95% CI 1.93	5%

	PPV- 47% (95% CI 40-53%)	
	NPV- 98% (95% CI 95-99%)	

*Removed Patel 2011 as an outlier.

	Ventricular	arrhythmias (VT a	nd/or NSVT)		Other or	utcomes	
Study	Abnormal cMRI	Normal cMRI	Abnormal vs. normal	Outcome	Abnormal cMRI	Normal cMRI	Abnormal vs. normal
Smedema 2005	NR	NR	NR	N/A	NR	NR	NR
Ohira 2008	NR	NR	NR	N/A	NR	NR	NR
Patel 2009	NR	NR	NR	N/A	NR	NR	NR
Patel 2011	5/15 (33%)	4/67 (6%)	RR 5.58 95% CI 1.70-18.34	Diastolic heart failure	18/27 (67%)	41/123 (33%)	RR 2.0 95% Cl 1.39-2.88
Greulich 2013	20/39 (51%)	0/114 (0%)	Not estimable	Aborted sudden cardiac death	11/39 (28%)	0/114 (0%)	Not estimable
Cain 2014	12/44 (27%)	3/91 (3.3%)	RR 8.27 95% CI 2.46-27.82	Atrial arrhythmias	16/44 (36%)	11/91 (12%)	RR 3.01 95% CI 1.53-5.93
Kournas 2017	NR	NR	NR	NR	NR	NR	NR
Stanton 2017	NR	NR	NR	Any arrhythmia (incl. heart block)	6/10 (60%)	5/36 (14%)	RR 4.32 95% Cl 1.66-11.26
Bravo 2017	NR	NR	NR	Major adverse cardiac event (VT, VF, AICD shock, all-cause death)	15/36 (42%)	1/20 (5%)	RR 8.33 95% Cl 1.18-58.51
				Complete heart block	4/32 (12%)	1/76 (1.4%)	RR 9.5 95% Cl 1.10-81.76
Nadel				Heart failure	15/32 (47%)	3/76 (4%)	RR 11.88 95% Cl 3.69-38.21
2015	NR	NR	NR	Major adverse cardiac event (VT, VF, cardiac death)	NR	NR	RR 12.5 95% Cl 1.35-116.18
				Pulmonary hypertension	8/32 (25%)	6/76 (8%)	RR 3.17 95% Cl 11.19-8.39
Wicks 2018	NR	NR	NR	Major adverse cardiac event (PPM, VT, cardiac hospitalization, aborted sudden cardiac death, sudden cardiac death)	NR	NR	HR 10.63 95% Cl 1.4-80.78
					Aborted sudder 28% ver RR not e	rsus 0%	
Summary Estimates		ntricular arrhythm 38% versus 3.6% 1.71, 95% CI 2.59-			Diastolic h 67% ver RR 2.0, 95%	sus 33%	
					Other hed 47% ve RR 11.88, 95%	rsus 4%	

Atrial arrhythmias 36% versus 12% RR 3.01, 95% CI 1.53-5.93
Complete heart block 12% versus 1.4% RR 9.5, 95% Cl 1.10-81.72
Any arrhythmia including heart block 60% versus 14% RR 4.32, 95% Cl 1.66-11.26
Pulmonary hypertension 25% versus 8%
RR 3.17, 95% Cl 1.19-8.39 Major adverse cardiac events Unable to pool due to variation of reporting
1. 42% versus 5%, RR 8.33, 95% Cl 1.18-58.51 2. RR 12.5, 95% Cl 1.35-116.18 3. HR 10.63, 95% Cl 1.4-80.78

		Positro	on Emission Tomography (PET)		
Study	N	Patients	Definition of abnormal	Abnormal PET sarcoidosis (%)	Abnormal PET healthy (%)
Ohira 2008	21	"Suspected cardiac sarcoidosis" (abnormal ECG or TTE); Did not specify sx versus asx	Focal uptake alone or focal on diffuse uptake	15/21 (71%)	N/A
Yokoyama 2015	92	"Suspected cardiac sarcoidosis" (abnormal ECG or TTE); Did not specify sx versus asx	Focal uptake alone or focal on diffuse uptake	47/92 (51%)	N/A
Bravo 2017	56	"High clinical suspicious of cardiac sarcoidosis" 66% had known extra- cardiac sarcoidosis	Focal uptake alone	20/56 (36%)	N/A
Sperry 2018	203	"Suspected cardiac sarcoidosis" (VT, HB, HF, or other sx); 35% hx of immunosuppression	Focal uptake ± myocardial perfusion	109/203 (53%)	N/A
Sgard 2018	80	"Suspected cardiac sarcoidosis" (abnormal ECG, Holter, or TTE); Did not specify sx versus asx; 58% hx of immunosuppression	Focal or multifocal uptake	11/80 (14%)	N/A
Wicks 2018	51	All patients had extra-cardiac sarcoidosis; 14% had known cardiac involvement and 86% had suspected cardiac involvement	Focal uptake alone, or focal on diffuse uptake	28/51 (54%)	N/A
			Weighted	52%, 95%	CI 43-60% *
		Summary	Unweighted	54%, 95%	CI 50-59% *
		estimates	Median	53%, rang	e 36-71% *

*Eliminated Sgard as an outlier.

Study			Dia	gnosis	of card	iac sarcoid	Other outcomes				
	Definition of cardiac sarcoid	ТР	FP	ΤN	FN	Se	Sp	Outcome	Abnormal PET	Normal PET	Abnormal vs. normal
Ohira 2008	+JMHW criteria	7	8	5	1	88% 95% Cl 47-100%	38% 95% Cl 14-68%	NR	NR	NR	NR
Yokoyama 2015	+JMHW criteria	37	10	45	0	100% 95% Cl 91-100%	82% 95% Cl 69-91%	NR	NR	NR	NR

estimates			Specij PP	ficity- 7 V- 69%	8% (95 (95% (5 CI 60-78%) % CI 71-84%) CI 60-77%) CI 72-85%)	Major adverse cardiac events * Unable to pool due to variation of reporting 1. HR 3.30, 95% CI 1.1-10 2. HR 2.29, 95% CI 0.72-7.33 3. RR 2.0, 95% CI 1.26-3.17				
Summary					мнж				Overall HR 1.33, 95	mortality % CI 0.68-2.	62
Wicks 2018	+JMHW criteria	20	8	10	13	61% 95% Cl 42-77%	43% 95% Cl 18-71%	Major adverse cardiac event (sudden cardiac death, aborted sudden cardiac death, symptomatic VT, symptomatic bradycardia req. PPM, or cardiac hospitalization)	NR	NR	HR 2.29 95% Cl, 0.72-7.33
2018	+HRS criteria	11	0	42	27	29% 95% Cl 15-46%	100% 95% Cl 92-100%	(sVT, VF, AICD shock, all-cause death)	(0%)	(6%)	Not estimable
Sgard	+JMHW criteria	6	5	53	16	27% 95% Cl 11-50%	91% 95% Cl 81-97%	Major adverse cardiac event	0/11	4/69	
Sperry 2018	N/A	NR	NR	NR	NR	NR	NR	Major adverse cardiac events (VT or VF req defib, heart transplant, or all-cause death)	NR	NR	RR 2.0 95% Cl, 1.26-3.17
								Overall mortality	NR	NR	HR 1.33 95% CI, 0.68-2.62
Bravo 2017	N/A	NR	NR	NR	NR	NR	NR	Major adverse cardiac event (sVT, VF, AICD shock, all-cause death)	NR	NR	HR 3.3 95% Cl, 1.1-10.0

*Eliminated Sgard as outlier.

			Echocardiograms (TTEs)		
Study	N	Patients	Definition of abnormal TTE	Abnormal TTE sarcoidosis (%)	Abnormal TTE healthy (%)
Mehta 2008	62	Non-cardiac sarcoidosis. 21% sx, 79% asx	LV EF <45%, SWMA, diastolic dysfunction, or RV systolic dysfunction without PH	5/62 (8%)	N/A
Burstow 1989	88	Non-cardiac sarcoidosis. Sx and asx not reported	FE < 50% and/or SW/MA not attributable to CAD		N/A
			Weighted (%, 95% CI)	11% 95% CI 5-17%	N/A
		mmary timates	Unweighted (%, 95% CI)	11% 95% CI 7-17%	N/A
			Median (Range)	11% (8% - 14%)	N/A

				Conduction system abnormalities						
Study	Diagnosis standard	ТР	FP	TN	FN	Se	Sp	Abnormal TTE	Normal TTE	Abnormal vs. normal

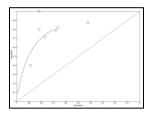
Summary Estimates				58% vs RR 2. 95% CI 1.3	6					
Burstow 1989	+cMRI	NR	NR	NR	NR	N/A	N/A	7/12 (58%)	17/76 (22%)	RR 2.6 95% Cl 1.38-4.92
Mehta 2008	+cMRI or +PET	6	2	36	18	25% 95% CI 10-47%	97% 95% Cl 86-99%	NR	NR	NR

Comparison

	PET	cMRI	TTE
Reference standard	JMHW criteria	JMHW criteria	+MRI or +PET
Diagnosis of cardiac sarcoidosis	Sensitivity 70% (95 Cl 60-78%) Specificity 78% (95% Cl 71-84%) PPV 69% (95% Cl 60-77%) NPV 79% (95% Cl 72-85%)	Sensitivity 82% (95 Cl 72-89%) Specificity 73% (95% Cl 67-79%) PPV 58% (95% Cl 49-67%) NPV 90% (95% Cl 84-94%)	Sensitivity 25%, 95% Cl 10-47% Specificity 97%, 95% Cl 86-99% PPV 75%, 95% Cl 41-93% NPV 67%, 95% Cl 53-78%

Forest plots

cMRI- prevalence of abnormal cMRI (outliers included)

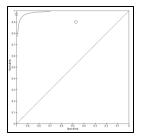

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl			
Bravo 2017	0.64	0.0641	8.8%	0.64 (0.51, 0.77)			
Cain 2014	0.33	0.0405	10.2%	0.33 [0.25, 0.41]	-		
Greulich 2013	0.25	0.0348	10.5%	0.25 [0.18, 0.32]			
Koumas 2017	0.29	0.0253	10.9%	0.29 [0.24, 0.34]			
Nadel 2015	0.3	0.0445	10.0%	0.30 [0.21, 0.39]	-		
Ohira 2008	0.4	0.1095	6.1%	0.40 [0.19, 0.61]	· · · ·		
Patel 2009	0.26	0.0487	9.7%	0.26 [0.16, 0.36]			
Patel 2011	0.19	0.0318	10.6%	0.19 [0.13, 0.25]			
Smedema 2005	0.71	0.1213	5.5%	0.71 [0.47, 0.95]			
Stanton 2017	0.22	0.0611	9.0%	0.22 [0.10, 0.34]			
Wick 2018	0.61	0.0683	8.5%	0.61 [0.48, 0.74]			
Total (95% CI)			100.0%	0.36 [0.28, 0.44]	•	•	
Heterogeneity: Tau ² =	= 0.01; Chi ² = 1	78.12, df	= 10 (P <	0.00001); I ² = 87%			
Test for overall effect		-			0	50%	100%

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% CI			
Bravo 2017	0.64	0.0641	0.0%	0.64 [0.51, 0.77]			
Cain 2014	0.33	0.0405	13.3%	0.33 [0.25, 0.41]			
Greulich 2013	0.25	0.0348	15.8%	0.25 [0.18, 0.32]	-	•	
Koumas 2017	0.29	0.0253	20.8%	0.29 [0.24, 0.34]			
Nadel 2015	0.3	0.0445	11.9%	0.30 [0.21, 0.39]	· ·		
Ohira 2008	0.4	0.1095	2.8%	0.40 [0.19, 0.61]	-		
Patel 2009	0.26	0.0487	10.6%	0.26 [0.16, 0.36]	-	•	
Patel 2011	0.19	0.0318	17.2%	0.19 [0.13, 0.25]		-	
Smedema 2005	0.71	0.1213	0.0%	0.71 [0.47, 0.95]			
Stanton 2017	0.22	0.0611	7.6%	0.22 [0.10, 0.34]			
Wick 2018	0.61	0.0683	0.0%	0.61 [0.48, 0.74]			
Total (95% CI)			100.0%	0.27 [0.23, 0.31]		♦	
Heterogeneity: Tau ² =	= 0.00; Chi ² = 1	11.98, df	= 7 (P = 0	l.10); I ² = 42%			
Test for overall effect					0	50%	100%

cMRI- Diagnosis of cardiac sarcoidosis


w/ outliers - JMHW

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bravo 2017 - JMHW	14	22	2	16	0.88 [0.62, 0.98]	0.42 [0.26, 0.59]	_	
Ohira 2008	5	3	2	10	0.71 [0.29, 0.96]	0.77 [0.46, 0.95]	_	_
Patel 2009	8	13	2	58	0.80 [0.44, 0.97]	0.82 [0.71, 0.90]	_	
Patel 2011	14	13	21	102	0.40 [0.24, 0.58]	0.89 [0.81, 0.94]		
Smedema 2005	9	1	2	2	0.82 [0.48, 0.98]	0.67 [0.09, 0.99]	·	
Stanton 2017	2	8	0	36	1.00 [0.16, 1.00]	0.82 [0.67, 0.92]		
Wick 2018	26	6	7	13	0.79 [0.61, 0.91]	0.68 [0.43, 0.87]		


w/o outliers - JMHW

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bravo 2017 - JMHW	14	22	2	16	0.88 [0.62, 0.98]	0.42 [0.26, 0.59]		
Ohira 2008	5	3	2	10	0.71 [0.29, 0.96]	0.77 [0.46, 0.95]		
Patel 2009	8	13	2	58	0.80 [0.44, 0.97]	0.82 [0.71, 0.90]		
Smedema 2005	9	1	2	2	0.82 [0.48, 0.98]	0.67 [0.09, 0.99]		
Stanton 2017	2	8	0	36	1.00 [0.16, 1.00]	0.82 [0.67, 0.92]		
Wick 2018	26	6	7	13	0.79 [0.61, 0.91]	0.68 [0.43, 0.87]		

HRS

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)		s	ensitivit	y (95% C	I)		S	pecificit	y (95% C	:1)	
Bravo 2017 - HRS	18	18	2	16	0.90 [0.68, 0.99]	0.47 [0.30, 0.65]				-			-	-			
Kournas 2017	93	0	3	225	0.97 (0.91, 0.99)	1.00 (0.98, 1.00)	0	0.2	0.4	0.6	0.8	 0	0.2	0.4	0.6	0.8	1

cMRI- Overall mortality

	cMRI pos	sitive	cMRI ne	gative		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Greulich 2013	3	39	1	114	38.3%	8.77 [0.94, 81.86]	
Nadel 2015	4	32	8	74	61.7%	1.16 [0.37, 3.57]	
Total (95% CI)		71		188	100.0%	2.51 [0.36, 17.47]	
Total events	7		9				
Heterogeneity: Tau ² :	= 1.26; Chi ²	= 2.54,	df = 1 (P	= 0.11)	; i² = 61%	5	0.01 0.1 1 10 100
Test for overall effect	: Z = 0.93 (F	P = 0.35	i)				cMRI negative cMRI positive

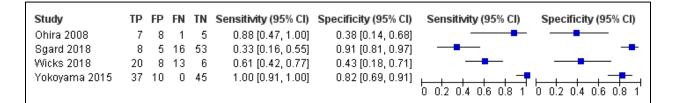
cMRI- Cardiac mortality

	cMRI po	sitive	cMRI n	egativ	•	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Nadel 2015	3	32	1	74	47.9%	6.94 [0.75, 64.19]	
Patel 2009	4	21	1	60	52.1%	11.43 [1.35, 96.58]	
Total (95% CI)		53		134	100.0%	9.00 [1.93, 41.97]	
Total events	7		2				
Heterogeneity: Tau ² =	= 0.00; Chi ²	^e = 0.10,	df = 1 (P	= 0.75)	; I² = 0%		0.01 0.1 1 10 100
Test for overall effect	: Z = 2.80 (F	P = 0.00	5)				
							cMRI negative cMRI positive

cMRI- Ventricular arrhythmias (outliers included)

	cMRI pos	sitive	cMRI ne	egative		Risk Ratio	Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	om, 95% Cl
Cain 2014	12	44	3	91	40.3%	8.27 [2.46, 27.82]		_
Greulich 2013	20	39	0	114	19.1%	117.88 [7.30, 1904.29]		
Patel 2011	5	15	4	67	40.7%	5.58 [1.70, 18.35]		
Total (95% CI)		98		272	100.0%	11.71 [2.59, 52.92]		
Total events	37		7					
Heterogeneity: Tau ² =	= 1.09; Chi ²	= 5.64,	df = 2 (P	= 0.06)); l² = 65%	b		
Test for overall effect	: Z = 3.20 (F	P = 0.00	1)				0.01 0.1 cMRI negative	1 10 10 cMRIpositive

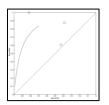
PET- Prevalence of abnormal PET scans (outliers included)


Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl			
Bravo 2017	0.36	0.0626	16.6%	0.36 [0.24, 0.48]	-	+	_
Ohira 2008	0.71	0.099	14.6%	0.71 [0.52, 0.90]			
Sgard 2018	0.14	0.0388	17.6%	0.14 [0.06, 0.22]			
Sperry 2018	0.53	0.035	17.7%	0.53 [0.46, 0.60]		-	
Wicks 2018	0.54	0.0697	16.3%	0.54 [0.40, 0.68]			
Yokoyama 2015	0.51	0.0521	17.1%	0.51 [0.41, 0.61]			
Total (95% CI)			100.0%	0.46 [0.29, 0.62]		◆	
Heterogeneity: Tau ²	= 0.04; Chi ² =	77.16, df	= 5 (P < 0).00001); I ² = 94%			
Test for overall effect	t: Z = 5.41 (P <	0.00001)		0	50% 100	0%


PET- Prevalence of abnormal PET scans (outliers excluded)

Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl		
Bravo 2017	0.36	0.0626	19.7%	0.36 [0.24, 0.48]	•	
Ohira 2008	0.71	0.099	11.9%	0.71 [0.52, 0.90]		
Sgard 2018	0.14	0.0388	0.0%	0.14 [0.06, 0.22]		
Sperry 2018	0.53	0.035	27.9%	0.53 [0.46, 0.60]		
Wicks 2018	0.54	0.0697	17.8%	0.54 [0.40, 0.68]		
Yokoyama 2015	0.51	0.0521	22.7%	0.51 [0.41, 0.61]		
Total (95% CI)			100.0%	0.52 [0.43, 0.60]	•	
Heterogeneity: Tau ²	² = 0.01; Chi ² = ²	10.32. df	= 4 (P = 0).04); ² = 61%	 	

PET- Diagnosis of cardiac sarcoidosis


w/ outliers - JMHW

w/o outliers - JMHW

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Ohira 2008	7	8	1	5	0.88 [0.47, 1.00]	0.38 [0.14, 0.68]		
Wicks 2018	20	8	13	6	0.61 [0.42, 0.77]	0.43 [0.18, 0.71]		
Yokoyama 2015	37	10	0	45	1.00 [0.91, 1.00]	0.82 [0.69, 0.91]		

TTE- prevalence of abnormal TTE

Study or Subgroup	Frequency	SE	Weight	Frequency IV, Random, 95% Cl			
Burstow 1989	0.14	0.037	48.0%	0.14 [0.07, 0.21]	-		
Mehta 2008	0.08	0.035	52.0%	0.08 [0.01, 0.15]	-		
Total (95% CI)			100.0%	0.11 [0.05, 0.17]	•		
Heterogeneity: Tau ²	= 0.00; Chi ² = 1	1.39, df	= 1 (P = 0	0.24); I² = 28%	0	50%	100%

Evidence profiles

cMRI evidence profile

Bibliography:

- 1. Smedema et al. Cardiac involvement in patients with pulmonary sarcoidosis assessed at two university medical centers in the Netherlands. Chest 2005; 128: 30-5.
- 2. Ohira et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nuc Med and Mol Imag 2008; 35: 933-41.
- 3. Patel et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009. 120: 1969-77.
- 4. Patel et al. Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail 2011; 13: 1231-7.
- 5. Greulich et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. ACC Cardiovasc Imaging 2013; 6L 501-11.
- 6. Cain et al. Cardiac sarcoidosis detected by late gadolinium enhancement and prevalence of atrial arrhythmias. Am J Cardiol 2014; 113: 1556-60.
- 7. Kournas et al. Complementary Role of CMR to Conventional Screening in the Diagnosis and Prognosis of Cardiac Sarcoidosis. JACC Cardiovasc Imaging 2017; 10: 1437-1447.
- 8. Stanton et al. The Utility of Cardiac Magnetic Resonance Imaging in the Diagnosis of Cardiac Sarcoidosis. Heart Lung Circ 2017; 26: 1191-1199.
- 9. Bravo, P. E et al. Risk assessment of patients with clinical manifestations of cardiac sarcoidosis with positron emission tomography and magnetic resonance imaging. Int J Cardiol 2017; 241: 457–462.
- 10. Nadel et al. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovasc Imaging 2015; 16: 634-41.
- 11. Wicks et al. Diagnostic accuracy and prognostic value of simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging 2018. 19: 757-767.

			Quality assess	ment		Summary of findings			S	Quality	Importance	
No of		Risk of					Pati	ents	Effe	ects	ĺ	
studies	Design	bias	Inconsistency	Indirectness	Imprecision	Other	Abnl. cMRI	Nml. cMRI	Relative	Absolute		
Frequer	cy of abnorm	al cMRI (%	5)									
11 ¹	case series	serious ²	serious ³	serious ⁴	serious⁵	none	27% ⁶ , 95% Cl 23-31%	N/A	N/A	N/A	⊕OOO VERY LOW	TBD
Diagnos	is of cardiac s	arcoidosis										
	accuracy studies	serious ⁸	serious ³	serious ⁴	serious⁵	none			% (95 CI 59- % (95% CI 73		⊕OOO VERY LOW	TBD
Overall	mortality											
·)10	observational studies	serious ²	serious ³	serious ⁴	serious⁵	none	7/71 (9.9%)	9/190 (4.7%)	RR 2.54 95% Cl 0.38-17.16	51 more per 1000 (from 13 fewer to 145 more)	⊕OOO VERY LOW	TBD
Cardiac	mortality											
211	observational studies	serious ²	none	serious ⁴	serious⁵	none	7/53 (13%)	2/136 (1.5%)	RR 9.00 95% Cl 1.93-41.97	117 more per 1000 (from 41 more to 234 more)	⊕OOO VERY LOW	TBD
Aborted	sudden cardi	ac death										
112	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	11/39 (28%)	0/114 (0%)	Not estimable	282 more per 1000 (from 161 more to 438 more)	⊕OOO VERY LOW	TBD

Ventric	ular arrhythmia	as										
3 ¹³	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	37/98 (38%)	7/272 (3.6%)	RR 11.71 95% Cl 2.59-52.9	352 more per 1000 (from 259 more to 452 more)	⊕OOO VERY LOW	TBD
Major a	dverse cardiac	events (s	ustained VT, Ve	ntricular Fibrill	lation, AICD sl	hock, all-cau	se death)					
3 ¹⁴	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	_	-	HR 1 95% CI 1 95% CI 1.3 95% CI 1.3	.4-80.78 12.5 35-116.18 3.33	⊕OOO VERY LOW	TBD
Diastoli	c heart failure				ļ	ļ			95% CI 1.	18-58.51	ļl	
1 ¹⁵	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	18/27 (67%)	41/123 (33%)	RR 2.0 95% Cl 1.39-2.88	499 more per 1000 (from 126 more to 499 more)	⊕OOO VERY LOW	TBD
All hear	rt failure		•	I								
1 ¹⁶	observational studies	serious ⁸	none	serious ⁴	serious ⁵	none	15/32 (47%)	3/76 (4%)	RR 11.88 95% Cl 3.69-38.21	429 more per 1000 (from 254 more to 598 more)	⊕OOO VERY LOW	TBD
Suprave	entricular arrhy	/thmias										
117	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	16/44 (36%)	11/91 (12%)	RR 3.01 95% Cl 1.53-5.93	243 more per 1000 (from 92 more to 399 more)	⊕OOO VERY LOW	TBD
Comple	te heart block											
117	observational studies	serious ⁸	none	serious⁴	serious⁵	none	4/32 (12%)	1/76 (1.4%)	RR 9.5 95% Cl 1.10-81.72	112 more per 1000 (from 17 more to 268 more)	⊕OOO VERY LOW	TBD
Pulmon	ary hypertensi	on										
1 ¹⁶	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	8/32 (25%)	6/76 (8%)	RR 3.17 95% Cl 1.19-8.39	171 more per 1000 (from 27 more to 347 more)	⊕OOO VERY LOW	TBD

Footnotes:

¹ All studies.

² Many studies didn't enroll consecutive patients; therefore, there was a risk of selection bias. Can't eliminate confounding bias.

³ High I² statistic.

⁴ The question is about patients with suspected cardiac sarcoidosis, but many studies included patients with and without cardiac symptoms.
 ⁵ Low optimum information size (most studies had <200 patients) and wide confidence intervals.

⁶After removal of Smedema, Bravo, and Wick as outliers

⁷ Smedema, Ohira, Patel, Patel, Kouranos, Stanton, Bravo, and Wisk.

⁸ Can't eliminate confounding bias.
 ⁹ After removal of Patel as an outlier

¹⁰ Greulich and Nadel.

- ¹² Greulich.
 ¹³ Patel, Greulich, and Cain.
- ¹⁴ Bravo, Wicks, and Nadel.

¹⁵ Patel.

16 Nadel.

¹⁷ Cain.

PET evidence profile

Bibliography:

- 1. Yokoyama, R et al Quantitative analysis of myocardial 18F-fluorodeoxyglucose uptake by PET/CT for detection of cardiac sarcoidosis. Intl J Cardiol 2015 195: 180–187.
- 2. Bravo, P. E et al. Risk assessment of patients with clinical manifestations of cardiac sarcoidosis with positron emission tomography and magnetic resonance imaging. Int J Cardiol 2017; 241: 457–462.
- 3. Sperry, BW et al. Prognostic Impact of Extent, Severity, and Heterogeneity of Abnormalities on 18F-FDG PET Scans for Suspected Cardiac Sarcoidosis. JACC. Cardiovascular Imaging, 2018 11: 336–345.
- 4. Sgard, B et al. Evaluation of FDG PET combined with cardiac MRI for the diagnosis and therapeutic monitoring of cardiac sarcoidosis. Clin Radiol 2018; 1–10.
- 5. Wicks et al. Diagnostic accuracy and prognostic value of simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging 2018. 19: 757-767.
- 6. Ohira et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nuc Med and Mol Imag 2008; 35: 933-41.

			Quality assess	ment		Summary of findings				Quality	Importance	
No of		Risk of					Pati		Effe	ects		
studies	Design	bias	Inconsistency	Indirectness	Imprecision	Other	Abnl. cMRI	Nml. cMRI	Relative	Absolute		
Frequer	ncy of abnorma	al PET (%)										
6 ¹	case series	serious ²	serious ³	serious ⁴	serious⁵	none	53% ⁶ 95% Cl 46-61%	-	-	-	⊕OOO VERY LOW	TBD
Diagnos	is of cardiac s	arcoidosis										
5 ⁷	accuracy studies	serious ⁸	none	serious ⁴	serious⁵	none			%, 95% CI 7 %, 95% CI 5		⊕OOO VERY LOW	TBD
Overall	mortality											
19	observational studies	serious ⁸	none	serious ⁴	serious⁵	none	-	-	HR ∶ 95% CI C	1.33 .68-2.26	⊕OOO VERY LOW	TBD
Major a	dverse cardiad	events (s	ustained VT, Ve	ntricular Fibrill	ation, AICD sl	nock, all-cau	ise death)					
									HR 3 95% CI	.30 ¹¹ 1.1-10.0		
4 ¹⁰	observational studies	serious ²	none	serious ⁴	serious⁵	none	-	-	HR 2 95% CI C	.29 ¹² .72-7.33	⊕OOO VERY LOW	TBD
									RR 2 95% CI 1			

Footnotes:

¹ All studies.

² One study didn't enroll consecutive patients; therefore, there was a risk of selection bias. Can't eliminate confounding bias.

³ High I² statistic.

⁴ The question is about patients with suspected cardiac sarcoidosis, but many studies included patients with and without cardiac symptoms.

⁵ Low optimum information size (most studies had <200 patients) and wide confidence intervals.

⁶ Eliminated Sgard as an outlier.

⁷Ohira, Yokoyama, Sperry, Sgard, and Wicks.

⁸ Can't eliminate confounding bias.

⁹Sperry.

¹⁰ Bravo, Sperry, Wicks, and Sgard.

¹¹ Bravo.

12 Wicks.

Echocardiography profile

Bibliography:

- 3. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, Machac J, Teirstein A, 2008. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 133: 1426-1435.
- Burstow, et al. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol 1989; 63(7):478-482.

			Quality assess	ment		Summary of findings				Quality	Importance	
No of		Risk of					Pati	ents	Effe	ects		
studies	Design	bias	Inconsistency	Indirectness	Imprecision	Other	Abnl. TTE	Nml. TTE	Relative	Absolute		
Frequen	cy of abnorm	al echocar	diography (%)									
21	case series	serious ²	serious ³	serious ⁴	serious⁵	none	11% 95% Cl 5-17%	-	-	-	⊕OOO VERY LOW	TBD
Diagnos	is of cardiac s	arcoidosis						-				
10	accuracy study	none	none	serious ⁴	serious⁵	none		-	5%, 95% CI 1 7%, 95% CI 8		⊕OOO VERY LOW	TBD
Develop	ment of cond	uction ab	normalities									
17	observational study	serious ²	none	serious ⁴	serious⁵	none	7/12 (58%)	17/76 (22%)	RR 2.6 95% Cl 1.38-4.92	360 more per 1000 (from 76 more to 597 more)	⊕OOO VERY LOW	TBD

Footnotes:

¹ All studies.

² Can't exclude confounding bias.

³ High I² statistic.

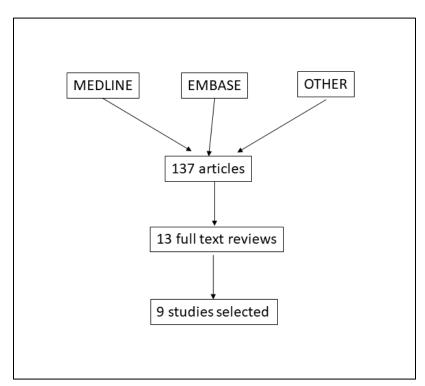
⁴ The question is about patients with suspected cardiac sarcoidosis, but many studies included patients with and without cardiac symptoms.

⁵ Low optimum information size (<200 patients) and wide confidence intervals.

⁶ Mehta.

⁷Burstow.

<u>QUESTION #10</u>: Should patients with sarcoidosis who are suspected of having pulmonary hypertension undergo transthoracic echocardiography?


Search strategy

Searches

- 1 exp sarcoidosis/
- 2 sarcoidosis/
- 3 sarcoidosis/ or sarcoidosis, pulmonary/ or uveoparotid fever/
- 4 sarcoid\$.mp.
- 5 (besnier adj boeck\$).tw.
- 6 (boeck\$ adj (disease or sarcoid)).tw.
- 7 (schaumann\$ adj (disease or syndrome)).tw.
- 8 uveoparoti\$.tw.
- 9 (benign\$ adj lymphogranuloma\$).tw.
- 10 ((junging or heerfordt or lofgren) adj syndrome).tw.

- 11 neurosarcoidosis.tw.
- 12 (lupus adj pernio).tw.
- 13 (idiopathic adj3 inflammat\$ adj3 granulomat\$).tw.
- 14 or/1-13 [all sarcoidosis]
- 15 pulmonary hypertension/
- 16 ((pulmonary or lung) adj3 hypertensi\$).mp.(pulmonary adj2 (heart or vascular or arter\$ or cardiac) adj2
- 17 disease\$).mp.
- 18 (corpulmonale or cor pulmonale).mp.
- 19 15 or 16 or 17 or 18 [PH]
- 20 14 and 19 [sarcoid and PH]
- 21 exp Echocardiography/
- 22 (echocardiogra\$ or echo cardiogra\$).mp.
- 23 ((heart or cardi\$) adj echogra\$).mp.
- 24 21 or 22 or 23 [echo]
- 25 19 and 24 [PH and echo]
- 26 20 and 24 [Sarcoidosis and PH and echo]
- 27 14 and 24 [sarcoid and echo]

Flow of information

Selected studies with outcomes

Study	Definition of PH	Frequency of echo	Confirmation by right	Severity of lung disease (FVC % predicted) (means ± SDs)			
Study		suggestive of PH	heart catheterization	РН	No PH		
Alhamad 2010	estimated RVSP \ge 40 mmHg	20/96 (21%)	5/5 (100%)	56.9 ± 21.3	79.5 ± 20.9		
Handa 2006	estimated sPAP ≥40 mmHg	12/212 (6%)	NR	88 ± 24	106 ± 18		
Joyce 2016	estimated RV global longitudinal peak systolic strain ≥ -19%	41/88 (47%)	NR	NR	NR		
Liu 2017	estimated sPAP ≥40 mmHg	34/72 (47%)	34/34 (100%)	NR	NR		
Maimon 2013	estimated RV SP ≥40 mmHg	36/127 (28%)	1/3 (33%)	90 ± 20	93±15		
Pabst 2013	estimated SPAP > 50 mmHg	23/211 (21%)	5/10 (50%)	NR	NR		
Patel 2016	estimated SPAP > 35 mmHg	8/50 (16%)	NR	NR	NR		
Rapti 2013	estimated sPAP ≥40 mmHg	37/313 (12%)	9/12 (75%)	79.3 ± 26.8	96.2 ±16.8		
Sulica 2005	estimated RVSP of at least 40 mm Hg,	54/106 (51%)	3/5 (60%)	54 ± 2.4	64 ± 2.8		
Pooled (weighted)		29% (95% CI 20% to 39%)	Not estimable	MD -16.5% (95% CI -22.4% to -10.6%)			
Pooled (unweighted)	Not applicable	21% (95% CI 19-23%)	78% (95% 67% to 86%)	Not estin	mable		
Median (range)		21% (6% to 51%)	68% (33% to 100%)	-16.9 (-3% to -	, .		

NR= not reported.

Forest plots

Frequency of echo suggestive of PH

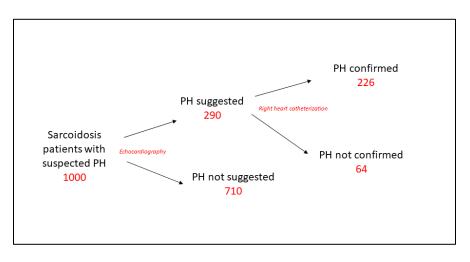
Initial

o				Frequency		
Study or Subgroup	Frequency	SE	Weight	IV, Random, 95% Cl		
Alhamad 2010	0.21	0.0416	11.1%	0.21 [0.13, 0.29]		
Handa 2006	0.06	0.0163	11.9%	0.06 [0.03, 0.09]	*	
Joyce 2016	0.47	0.0532	10.6%	0.47 [0.37, 0.57]		
Liu 2017	0.47	0.0588	10.3%	0.47 [0.35, 0.59]		
Maimon 2013	0.28	0.0398	11.2%	0.28 [0.20, 0.36]		
Pabst 2013	0.21	0.028	11.6%	0.21 [0.16, 0.26]	-	
Patel 2016	0.16	0.0518	10.6%	0.16 [0.06, 0.26]		
Rapti 2013	0.12	0.0183	11.9%	0.12 [0.08, 0.16]	+	
Sulica 2005	0.51	0.0486	10.8%	0.51 [0.41, 0.61]		
Total (95% CI)			100.0%	0.27 [0.18, 0.37]	•	
Heterogeneity: Tau ² =	= 0.02; Chi ² = 1	0.00001); I² = 95% 👘				
Test for overall effect:	Z = 5.55 (P <	0.00001)		0 50%	100%

After removal of outliers

Study or Subgroup	Frequency	SE	Weight	Frequency IV, Random, 95% Cl		
Alhamad 2010	0.21	0.0416	17.2%	0.21 [0.13, 0.29]		
Handa 2006	0.06	0.0163	0.0%	0.06 [0.03, 0.09]		
Joyce 2016	0.47	0.0532	15.9%	0.47 [0.37, 0.57]		
Liu 2017	0.47	0.0588	15.2%	0.47 [0.35, 0.59]	_ _	
Maimon 2013	0.28	0.0398	17.3%	0.28 [0.20, 0.36]		
Pabst 2013	0.21	0.028	18.5%	0.21 [0.16, 0.26]	-	
Patel 2016	0.16	0.0518	16.0%	0.16 [0.06, 0.26]		
Rapti 2013	0.12	0.0183	0.0%	0.12 [0.08, 0.16]		
Sulica 2005	0.51	0.0486	0.0%	0.51 [0.41, 0.61]		
Total (95% CI)			100.0%	0.29 [0.20, 0.39]	•	
Heterogeneity: Tau ²	= 0.01; Chi ² = 3	36.86, df	= 5 (P < 0	.00001); I ² = 86%		
Test for overall effec		-			0 50%	100%

Severity of lung disease among PH verus no PH


Initial

PH no PH							Mean Difference	Mean Differenc					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, F	Random, 95%	CI	
Alhamad 2010	56.9	21.3	96	79.5	20.9	96	17.5%	-22.60 [-28.57, -16.63]		-			
Handa 2006	88	24	212	106	18	212	19.9%	-18.00 [-22.04, -13.96]					
Maimon 2013	90	20	127	93	15	127	19.6%	-3.00 [-7.35, 1.35]					
Rapti 2013	79.3	26.8	313	96.2	16.8	313	20.5%	-16.90 [-20.40, -13.40]		-			
Sulica 2005	54	2.4	106	64	2.8	106	22.5%	-10.00 [-10.70, -9.30]			•		
Total (95% CI)			854			854	100.0%	-13.84 [-19.10, -8.59]		•	•		
Heterogeneity: Tau ² = 31.82; Chi ² = 55.21, df = 4 (P < 0.00001); l ² = 93%										15			
Test for overall effect	Z= 5.16	(P < 0	0.00001)					-50	-25	U PH No PH	25	50

After removal of outliers

PH no PH							Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	I IV, Random, 95% CI	
Alhamad 2010	56.9	21.3	96	79.5	20.9	96	21.8%	-22.60 [-28.57, -16.63]] ——	
Handa 2006	88	24	212	106	18	212	24.8%	-18.00 [-22.04, -13.96]] —	
Maimon 2013	90	20	127	93	15	127	0.0%	-3.00 [-7.35, 1.35]	1	
Rapti 2013	79.3	26.8	313	96.2	16.8	313	25.5%	-16.90 [-20.40, -13.40]] —	
Sulica 2005	54	2.4	106	64	2.8	106	27.9%	-10.00 [-10.70, -9.30]] •	
Total (95% CI)			727			727	100.0%	-16.49 [-22.42, -10.56]	▲	
Heterogeneity: Tau ² = Test for overall effect					< 0.01	0001); I	²= 93%		-50 -25 0 25 PH No PH	50

Markov model

For every 1000 sarcoidosis patients who are suspected of having PH and undergo echocardiography, abnormalities suggestive of PH will be found in roughly 290 patients, approximately 226 of whom will have PH confirmed by right heart catheterization.

Evidence profile

Bibliography:

- Alhamad EH, et al. Sarcoidosis-associated pulmonary hypertension: Clinical features and outcomes in Arab patients. Ann Thorac Med 2010; 1. 5(2):86-91.
- Handa T, et al. Incidence of pulmonary hypertension and its clinical relevance in patients with sarcoidosis. CHEST 2006; 129(5):1246-1252. 2.
- Joyce E, et al. Prevalence and correlates of early right ventricular dysfunction in sarcoidosis and its association with outcome. J Am Soc Echo 3 2016; 29(9):871-878.
- Liu L, et al. Interventional therapy in sarcoidosis-associated pulmonary arterial stenosis and pulmonary hypertension. Clin Respir J 2017; 4. 11(6):906-914.
- Maimon N, et al. Sarcoidosis-associated pulmonary hypertension in patients with near-normal lung function. Int J Tuberc Lung Dis 2013; 5. 17(3):406-411.
- Pabst S, et al. Pulmonary arterial hypertension in patients with sarcoidosis: the Pulsar single center experience. Adv Exp Med Biol 2013; 6. 755:299-305
- 7. Patel MB, et al. Right heart involvement in paitents with sarcoidosis. Echocardiogr 2016; 33(5):734-741.
- Rapti A, et al. Elevated pulmonary arterial systolic pressure in patients with sarcoidosis: prevalence and risk factors. Lung 2013; 191(1):61-67. 8. Sulica R, et al. Distinctive clinical, radiographic, and functional characteristics of patients with sarcoidosis-related pulmonary hypertension. 9.
 - CHEST 2005; 128(3):1483-1489. Quality assessment Effect Quality Importance No of **Risk of** Other Inconsistency Indirectness Imprecision Design studies bias considerations Frequency of echocardiography suggestive of PH (%) 29% ⊕000 case q1 serious² serious³ none⁴ serious⁵ TBD none (95% CI 20% VERY series to 39%) LOW Confirmation of PH by right heart catheterization (%) 78% ⊕000 case 6⁶ serious² serious³ none⁴ TBD serious⁷ (95% 67% to none VERY series 86%) LOW Initiation of anti-PH treatment (%)

0	-	-	-	-	-	-	-	-	TBD					
Mortality	Mortality													
0	-	-	-	-	-	-	-	-	TBD					
Exercise ca	Exercise capacity													
0	-	-	-	-	-	-	-	-	TBD					
Quality of I	Quality of life													
0	-	-	-	-	-	-	-	-	TBD					

Footnotes:

¹ All studies.

² Many were retrospective chart reviews; therefore, there was a risk of selection bias. ³ When pooled by meta-analysis, the $I^2 > 90\%$; thus, the median (range) are the primary outcomes for these outcomes rather than the pooled analyses. Also, the range is wide.

⁴ The questions asks about sarcoidosis patients with suspected PH, but most studies did not state whether or not PH is suspected. Did not downgrade because difference minor.
⁵ Four out of the nine studies are small, with <100 patients.</p>

⁶ Alhamad, Liu, Maimon, Pabst, Rapti, and Sulica.
 ⁷ All of the studies are small, with <100 patients.