

advances.sciencemag.org/cgi/content/full/6/16/eaaz0356/DC1

Supplementary Materials for

PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis

Yongqiang Hou, Wei Liu, Xianfu Yi, Yang Yang, Dongxue Su, Wei Huang, Hefen Yu, Xu Teng, Ying Yang, Wei Feng, Tao Zhang, Jie Gao, Kai Zhang, Rongfang Qiu, Yan Wang*

*Corresponding author. Email: yanwang@tmu.edu.cn

Published 15 April 2020, *Sci. Adv.* **6**, eaaz0356 (2020) DOI: 10.1126/sciadv.aaz0356

This PDF file includes:

Supplementary Materials and Methods Tables S1 to S4 Figs. S1 to S6

Supplementary Materials and Methods

EdU assays

Briefly, breast cancer cells were incubated with EdU in medium (50 mM) for 2 h. Then, the cells were fixed in 4% paraformaldehyde for 10 min, permeabilized with 0.5% triton-X-100, and stained with Alexa Fluor® 488, according to the manufacturer's instructions of the Click-iT® EdU Alexa Fluor® 488 imaging Kit (Life Technologies). Then, cells were stained with DAPI (Sigma-Aldrich). Photographs of the cells were scanned independently using a multi-tracking mode with an OLYMPUS confocal microscope. EdU⁺ cells were identified by ImagePro Plus software.

Cell flow cytometry

MDA-MB-231 cells transfected with siRNA against PHF20L1 were synchronized using thymidine blockade for 12 h and then released for 12 h. After that, cells were blocked for another 12 h and released with 10% FBS for an appropriate period. Cells were then trypsinized, washed with PBS, and fixed in 70% ethanol at 4°C overnight. After washing with PBS, cells were incubated with RNase A (Sigma) in PBS for 30 min at 37°C and then stained with 50 mg/ml propidium iodide (PI). Cell cycle data were collected using FACS Calibur (Becton Dickinson) and analyzed with ModFit LT 3.0 (Verity Software House Inc., Topsham, ME).

FPLC chromatography

HEK293T cells or HEK293T cells stably expressing FLAG-tagged PHF20L1 were washed twice with cold PBS, scraped, and collected by centrifugation at $1500 \times g$ for 5 min. Nuclear and cytoplasmic proteins were extracted using a nuclear-cytosol extraction kit (Applygen Technologies Inc, Beijing, China). The supernatant (nuclear fraction) was collected by centrifugation at $13,000 \times g$ for 30 min at 4°C. The protein concentration was determined using a BCA Pierce protein assay kit (Thermo Scientific), and 6 mg of nuclear proteins or FLAG-tagged PHF20L1-coupled proteins were used for the FPLC assay. The proteins were concentrated to 1 ml using a Millipore Ultra free centrifugal filter apparatus (10 kDa nominal molecular mass limit), and then applied to an 850 x 20 mm Superose size 6 exclusion column (Amersham Biosciences) that had been equilibrated with buffer D containing 1 mM dithiothreitol and calibrated with protein standards (blue dextran, 2,000 kDa; thyroglobulin, 669 kDa; ferritin, 440 kDa; catalase, 232 kDa; bovine serum albumin, 67 kDa; and RNase A, 13.7 kDa, all from Amersham Biosciences). The column was eluted at a flow rate of 0.5 ml/min and fractions were collected for further western blotting analysis.

Description	Score	Coverage	Proteins	Unique Peptides	Peptides	PSMs	AAs
PHF20L1	1229.50	38.64	7	3	39	337	1017
Mi-2β	905.69	25.88	8	47	55	334	1905
MTA2	645.63	52.99	2	28	33	226	668
GATAD2A	447.86	57.66	13	26	28	139	633
GATAD2B	369.55	53.79	1	28	30	115	593
MTA1	338.35	55.30	13	25	31	120	698
RBBP4	320.74	31.95	17	6	13	100	410
RBBP7	301.26	37.18	7	1	14	90	425
HDAC2	259.74	28.82	17	6	11	96	458
Mi-2a	255.28	13.15	6	17	25	114	2000
HDAC1	228.57	29.05	8	8	13	86	482
MTA3	195.26	37.16	8	11	19	70	514
MBD3	173.79	50.52	5	18	18	65	291
MTA2	44.66	11.23	2	5	7	21	668
EED	6.72	8.00	4	3	3	3	400
SUZ12	4.97	3.07	2	2	2	2	716
EZH2	2.12	1.46	5	1	1	1	707

Supplementary Table S1. Mass spectrometry results of PHF20L1-containing protein complex in HEK293T cell.

Descriptio	on Score	Coverage	Proteins	Unique Peptides	Peptides	PSMs	AAs
PHF20L1	441.45	52.21	7	3	55	211	1017
Mi-2β	79.38	25.20	5	24	31	42	1905
MTA2	68.74	32.49	2	14	18	44	668
GATAD2	A 60.62	41.45	13	13	15	33	633
GATAD2	B 96.41	53.63	1	17	19	46	593
MTA1	66.92	33.52	10	14	20	35	698
RBBP4	115.03	54.10	12	8	11	33	410
RBBP7	105.94	56.00	7	9	12	32	425
HDAC2	124.52	48.57	15	10	16	53	458
Mi-2a	16.16	9.30	6	7	12	14	2000
HDAC1	114.12	36.31	6	7	13	50	482
MTA3	31.68	27.24	8	6	12	22	514
MBD3	24.21	41.58	3	10	11	26	291
MTA2	68.74	32.49	2	14	18	44	668
EED	5.80	12.67	6	4	4	5	400
SUZ12	6.00	4.55	2	3	3	4	716
EZH2	6.09	2.31	10	2	2	3	707

Supplemental Table S2. Mass spectrometry results of PHF20L1-containing protein complex in MDA-MB-231 cell.

Supplemental Table S3. siRNA and shRNA sequences.

siRNA sequences			
PHF20L1#1	CUAUUACCCUGCCAAGAUU		
PHF20L1#2	UUGGACAGACUGUCGCUAU		
PHF20L1#3	GCAAGAAUCUUCAGUACCA		
SETDB1#1	CCCGAGGCUUUGCUCUUAA		
SETDB1#2	GCUGAGACACCAAACGUCA		
TDRKH#1	UUAGAGGUUCCCUGAUAUA		
TDRKH#2	GUACACAAAGGAUACGCAA		
FXR1#1	CGAGCUGAGUGAUUGGUCA		
FXR1#2	GAAACGGAAUCUGAGCGUA		
LBR#1	UGAUUGGAUGGGUGGUUAU		
LBR#2	AGCGUGUGCCCUACCGUAU		
KDM4C#1	GCUUGAAUCUCCCAAGAUA		
KDM4C#2	CAAAGUAUCUUGGAUCAAA		
SND1#1	GGUACCAUCCUUCAUCCAA		
SND1#2	GGACAAGGCCGGCAACUUU		
FMR1#1	GUUUGGAGAGAUUACAAAU		
FMR1#2	GCGUUUGGAGAGAUUACAA		
UHRF2#1	CGUCUCUUCUUCCAUUACA		
UHRF2#2	GUAAUGUGGCUUAUCAUAU		
PHF19#1	CUCGUGACUUUCGAAGAUA		
PHF19#2	CCUCGUGACUUUCGAAGAU		
MSL3#1	CAGUGAAAUAUUCGUGGAA		
MSL3#2	CCAGUCCGCCUUUGUUGAA		
KDM4A#1	GUUGAGGAUGGUCUUACCU		

siRNA sequences				
KDM4A#2	GGACUUAGCUUCAUAACUA			
SMNDC1#1	GCCAGGUAAAGAGGAGUAU			
SMNDC1#2	GAAAGUGAAAUGGCAACAA			
UHRF1#1	GGUCAAUGAGUACGUCGAU			
UHRF1#2	CUUUGAUUCGUUCCUUCUU			
TDRD6#1	GUUUAGGCAGCUACCAAUA			
TDRD6#2	AGUGCACCCUGGCUGAUAU			
ARID4B#1	AGAUAGAGGUACACCUAUU			
ARID4B#2	ACCUUAGGGUGGCUUUAAU			
MYC#1	ACUCGGUGCAGCCGUAUUU			
MYC#2	CCUGAGACAGAUCAGCAAC			
MYC#3	CAGGAACUAUGACCUCGAC			
MYC#4	CCCAAGGUAGUUAUCCUUA			
MTA1#1	UCACGGACAUUCAGCAAGA			
MTA1#2	GGACCAAACCGCAGUAACA			
EZH2#1	CGGCUCCUCUAACCAUGUU			
EZH2#2	CCCAACAUAGAUGGACCAA			
shRNA sequences				
shPHF20L1	CTATTACCCTGCCAAGATT			
shEZH2	GAGCTCCTCTGAAGCAAAT			
shMTA1	TCACGGACATTCAGCAAGA			

qRT-PCR primers					
Species	Genes	Forward Primer Sequences	Reverse Primer Sequences		
human	PHF20L1	GGGCAAGATGTTGGTCCATTT	TCTCAAGGGGTCGCAATCTAT		
human	ACTB	CATGTACGTTGCTATCCAGGC	CCTTATCAAGATGCGAACTCACA		
human	SETDB1	AGGAACTTCGGCATTTCATCG	TGTCCCGGTATTGTAGTCCCA		
human	TDRKH	TCTACTGAACGGACTTCTTGGA	CTGCTTTCCCTATACCTGCGG		
human	FXR1	GAGAAGACGGTATGGTTCCATTT	AGGCGTTCCATTCTTAGCTGT		
human	LBR	CGAGGGAGTCGATCAAGGTCA	CTTCAGAATCAGCGGAGTCAAT		
human	KDM4C	CATGGAGTCTAAAGGAGCCCA	TGTACTGAGTGAACAGTCCTGA		
human	SND1	CCTGAGCGGCAGATCAACC	AGGTAGATCATGCCATACTCTCG		
human	FMR1	TATGCAGCATGTGATGCAACT	TTGTGGCAGGTTTGTTGGGAT		
human	UHRF2	ATTGAGGACGTGTCTCGCAAA	GGTCTGGGCGAACTAGCAG		
human	PHF19	ACTCGGGACTCCTATGGTGC	CCTCCGTCAGTTTGGACATCA		
human	MSL3	AACAGGAGGAAACGGTTAGTGA	TGTGGCATAACGTGATGGTGA		
human	KDM4A	ATCCCAGTGCTAGGATAATGACC	ACTCTTTTGGAGGAACAACCTTG		
human	SMNDC1	AGCGGAGATTGAGGAGATAGATG	GGTTCAACAGTGGAGTCACTTC		
human	UHRF1	GCCATACCCTCTTCGACTACG	GCCCCAATTCCGTCTCATCC		
human	MTF2	GTCCACCTGGCCCATATACAA	CCGTGAAATCCACATCTGAGG		
human	TDRD6	GACGTGCATCCCGATGTGAT	AGCAGGAAGACACGGCTCT		
human	BRCA1	GAAACCGTGCCAAAAGACTTC	CCAAGGTTAGAGAGTTGGACAC		
human	RASSF1	AGGACGGTTCTTACACAGGCT	TGGGCAGGTAAAAGGAAGTGC		
human	FBXW7	GGCCAAAATGATTCCCAGCAA	ACTGGAGTTCGTGACACTGTTA		
human	KISS1	AGCAGCTAGAATCCCTGGG	AGGCCGAAGGAGTTCCAGT		
human	HIC1	GTCGTGCGACAAGAGCTACAA	CGTTGCTGTGCGAACTTGC		
human	LDHA	ATGGCAACTCTAAAGGATCAGC	CCAACCCCAACAACTGTAATCT		
human	PGK1	TGGACGTTAAAGGGAAGCGG	GCTCATAAGGACTACCGACTTGG		
human	SIRT1	TAGCCTTGTCAGATAAGGAAGGA	ACAGCTTCACAGTCAACTTTGT		
human	ENO1	AAAGCTGGTGCCGTTGAGAA	GGTTGTGGTAAACCTCTGCTC		
human	PKM	ATGTCGAAGCCCCATAGTGAA	TGGGTGGTGAATCAATGTCCA		
human	MYC	GGCTCCTGGCAAAAGGTCA	CTGCGTAGTTGTGCTGATGT		
human	MTA1	ACGCAACCCTGTCAGTCTG	GGGCAGGTCCACCATTTCC		

Supplemental Table S4. The primers used in qRT-PCR and qChIP.

qRT-PCR primers					
Species	Genes	Forward Primer Sequences	Reverse Primer Sequences		
human	EZH2	AATCAGAGTACATGCGACTGAGA	GCTGTATCCTTCGCTGTTTCC		
human	TUBB	TGGACTCTGTTCGCTCAGGT	TGCCTCCTTCCGTACCACAT		
mouse	Phf2011	CGTCCTGGAATCACTTTTGAGA	TTGCTGTCCCAGTAAATCCAC		
mouse	Ldha	CAAAGACTACTGTGTAACTGCGA	TGGACTGTACTTGACAATGTTGG		
mouse	Pgk1	ATGTCGCTTTCCAACAAGCTG	GCTCCATTGTCCAAGCAGAAT		
mouse	Gapdh	AGGTCGGTGTGAACGGATTTG	GGGGTCGTTGATGGCAACA		
mouse	Eno1	TGCGTCCACTGGCATCTAC	CAGAGCAGGCGCAATAGTTTTA		
mouse	Hk2	ATGATCGCCTGCTTATTCACG	CGCCTAGAAATCTCCAGAAGGG		
mouse	Sirt1	TGATTGGCACCGATCCTCG	CCACAGCGTCATATCATCCAG		
mouse	Pkm	CGCCTGGACATTGACTCTG	GAAATTCAGCCGAGCCACATT		
qChIP primers					
Species	Genes	Forward Primer Sequences	Reverse Primer Sequences		
human	PHF20L1#1	CAAGTGTCATTATTGGAAGACC	CAGTATTCAAGTTTCTGATGGT		
human	PHF20L1#2	GAGGCTAGAACTTTAGCTGCAA	CTATGGAGATTTGGGTGCTGGA		
human	PHF20L1#3	ACCTGGATGGTAGAGCAG	TAAAATGTAATTAGAAGTGAGA		
human	PHF20L1#4	TGCTCAGTCTAGCTCAGTAGCT	TTTTCTCTTGGTTTCCACTGTA		
human	PHF20L1#5	GTTTGGGAGGGTAGGTAT	TATTACTAAGATGTGTGTACGC		
human	PHF20L1#6	AGTTTGCCAAGGGTCCTG	GGTTACTGGAGGAAAGAACG		
human	BRCA1	GGGGATTGGGACCTCTTC	TCTACCTGAGTTTGCCATAAAG		
human	GATA2	CAATTACCGACTGTCAATCCCG	TCCTCCAGCCCTCTTCCCT		
human	GSTM2	TGAATCCCTGAGCACCAA	CCGCTGCACTCTAGGTTAG		
human	HIC1	GGGCAGGACTTTTCCGAACT	CCTACCCGCAGGTTCGCC		
human	KISS1	ACATTTCACACTGACACTTCT	GGACTTTCTCCTTCTTACCG		
human	STMN3	CAGACCTGGACCCTGTTGG	AGATGAGCCCCCATTCCCCA		
human	VILL	AAGTGCCAAGACATAACAA	GTTCAAGTGATCTTCCCGCT		
human	ZNF512B	GGATGCGGCGGAATCAGGT	CGCTGGCCTGTGGTTCCC		
human	ACTB	CCAGCACCCCAAGGCG	GGCTTCGCCGCACAGT		

Fig. S1. PHF20L1 is critical for breast cancer cell proliferation. (A) Schematic representation of TDRDs and the TUDOR ligand involved. (B) The knockdown efficiency are measured by qRT-PCR in MDA-MB-231 cells. (C) Growth curve assays were performed in MDA-MB-231 cells transfected with siRNAs against the indicated TDRDs. The cell number was measured by Operetta CLSTM for biological triplicate experiments. Data represent the mean \pm SD. Two-tailed unpaired t test, *p < 0.05, **p < 0.01 at the final day. (D and E) EdU assays were performed in TDRDs-deficient MDA-MB-231 or Hs 578T cells. Representative images are shown. Scale bar, 50 µm. (F) Statistical analysis of EdU assays in TDRDs-deficient MDA-MB-231 cells (upper panel) or Hs 578T cells (lower panel) are shown. Data represent the mean \pm SD. Two-tailed unpaired t test, *p < 0.05, **p < 0.01 (B and F).

fig. S2

Fig. S2. PHF20L1 is a transcriptional repressor that interacts with PRC2 and the NuRD complex. (A) Column-bound proteins were analyzed using western blotting with antibodies against the indicated proteins, related to Fig. 3A. (B) Co-fractionation of PHF20L1, PRC2, and the NuRD complex by fast protein liquid chromatography. Nuclear extracts of HEK293T cells were fractionated on Superose 6 size exclusion columns. Chromatographic elution profiles and western blotting analysis of the chromatographic fractions are shown. (C) Co-fractionation of PHF20L1, PRC2, and the NuRD complex by fast protein liquid chromatography. FLAG-PHF20L1 multiprotein complexes were fractionated on Superose 6 size exclusion columns. Chromatographic elution profiles and western blotting analysis of the chromatographic fractions are shown. (D) Co-IP analysis of the molecular interaction between PRC2, NuRD and PHF20L1 with cellular lysates from HEK293T cells expressing FLAG-tagged full-length or deletions of PHF20L1. The conserved domains of PHF20L1 were divided into the MBT, TUDOR, PNID, PHD, and C-terminal domain. (E) Co-IP analysis of the molecular interaction between PNID domain and PRC2 or NuRD with cellular lysates from HEK293T cells expressing FLAG-tagged deletions of PHF20L1. The PNID domain of PHF20L1 were divided into P1, P2 (NID), P3, P4, and P5 (PID). (F-K) GST/His fused proteins purified from BL21 Escherichia coli. used in Fig. 3. (L) The PNID domain is responsible for the transcriptional repression activity of PHF20L1. HEK293T cells were transfected with the indicated Gal4-deletions and the Gal4 luciferase reporter activity was measured. (M) Effect of GSK126 and TSA treatment on PHF20L1 repressive activity. HEK293T cells were transfected as indicated constructs along with treatment of inhibitor against EZH2 or MTA1, and Gal4 luciferase reporter activity was measured. Data shown are mean \pm SD. Two-tailed unpaired t test. *p < 0.05, **p < 0.01 (L and M).

Fig. S3. PHF20L1 loss-of-function impairs the deposition of PRC2 and the NuRD complex. (A and B) qChIP analysis using anti-PHF20L1, anti-EZH2, anti-MTA1, anti-H3K27me2, anti-H3K27me3, anti-H3K27ac, and anti-H3 antibodies in control, PHF20L1 KD, EZH2 KD and MTA1 KD MDA-MB-231 cells. (C) The knockdown of PHF20L1 could not affect the expression of EZH2 and MTA1 in MDA-MB-231 cells. Data shown are mean \pm SD. Two-tailed unpaired t test, *p < 0.05, **p < 0.01 (A-C).

fig. S4

Fig. S4. PHF20L1 acts in concert with its associated corepressor complexes to promote breast cancer carcinogenesis. (A) Western blotting analysis of the expression of PHF20L1, PRC2, and NuRD subunits at different cell cycle stages (left panel). Propidium iodide FACS analysis of the cell cycle following PHF20L1 depletion in MDA-MB-231 cells are shown (right panel). (B) Colony formation assays were performed in control, PHF20L1 KD and PHF20L1 KD MDA-MB-231 or Hs 578T cells stably expressing shRNA-resistant PHF20L1 (WTres). (C) Transwell invasion assays were performed in cells as in (B). (D) Western blotting analysis of PHF20L1 in cells as in (B and C). (E) The growth curves were measured in MDA-MB-231 cells stably expressing vector, full-length PHF20L1 or deletion mutations of the MBT, TUDOR, PNID, PHD, and C-terminal domains. Data shown are mean \pm SD. Two-tailed unpaired t test, *p < 0.05, **p < 0.01 at the final minute. (F) Transwell invasion assays were performed in MDA-MB-231 cells as in (E). (G) MDA-MB-231 cells infected with lentiviruses carrying shControl, shPHF20L1, shControl + EZH2, shControl + MTA1, shPHF20L1 + EZH2, shPHF20L1 + MTA1, then colony formation assays were performed. (H) Transwell invasion assays were performed in cells as in (G). (I) Western blotting analysis of PHF20L1, EZH2 and MTA1 in cells as in (G and H). (J and K) The expression of the indicated tumor suppressor genes and glycolysis related genes were measured by qRT-PCR (J) and western blotting analysis (K) in control, PHF20L1 KD, EZH2 KD and MTA1 KD MDA-MB-231 cells. TUBB served as an irrelevant control gene. The mRNA levels were normalized to those of ACTB. β -actin served as loading control. All error bars represent mean \pm SD. Two-tailed unpaired t test. *p < 0.05, **p <0.01 (B, C, F, G, H, and J).

fig. S5

Relative PHF20L1 mRNA level

Fig. S5. Clinical relevance of the MYC/HIF1 α -(PHF20L1-EZH2-MTA1)-HIC1/KISS1 axis in cancers. (A) Analysis of public datasets (GSE21653 and GSE27562) from breast cancer for the correlation of *MTA1*, *EZH2*, *SIRT1*, *LDHA*, and *PHF20L1*, related to Fig. 5K. (B) Kaplan-Meier survival analysis for the relationship between survival time and expression levels of PHF20L1, EZH2, MTA1, and HIC1 in breast cancer using the online tool (http://kmplot.com/analysis/). (C) Immunohistochemical staining of PHF20L1 in paired samples of multiple carcinomas versus adjacent normal tissues and values for the stainings were determined by ImagePro Plus software and are presented with statistical histogram. Representative images of 200-fold magnifications of each type of paired tumor section are presented. Data shown are mean ± SD. Two-tailed unpaired t test. *p < 0.05, **p < 0.01. (D) Analysis of two published clinical datasets (GSE132929 and GSE51062) from lymphoma and glioma for the correlation of MYC, HIF1A, MTA1, EZH2, HIC1, KISS1, SIRT1, LDHA, and PHF20L1.

Fig. S6. Phf2011 deletion induces growth retardation and delay of mammary ductal outgrowth in vivo. (A) Schematic of the depletion of the *Phf2011* gene using the CRISPR/Cas9 system. (B) Bodyweights of *Phf2011* KO and wild-type mice. n=15. (C) The expression profiles of glycolysis-related genes of various major organs in 4-week-old Phf2011-null mice or littermate wild-type mice. The expression levels of the indicated genes were measured by qRT-PCR. (D) Mammary ductal developmental defects in *Phf2011* knockout mice at about 8-week-old. (E) Strategy for the generation of $Phf2011^{flox/flox}$; MMTV-Cre mice. All error bars represent mean \pm SD. Two-tailed unpaired t test, *p < 0.05, **p < 0.01, ***p < 0.001 (B-D).