Supporting Information

Subunit Interaction Dynamics of the *E. coli* Class Ia Ribonucleotide Reductase: In Search of a Robust Assay

Kanchana Ravichandran,^a Lisa Olshansky,^{a,c} Daniel G. Nocera,^c JoAnne Stubbe^{a,b,*}

^a Department of Chemistry and ^b Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. ^c Department of Chemistry and Chemical Biology, 12 Oxford St., Harvard University, Cambridge, MA 02138

stubbe@mit.edu

Table of Contents

Index	Page
Figure S1. dCDP formation for inactive variants of α_2 and β_2	3
Figure S2. Turnover kinetics in the presence of TR/TRR/NADPH	4
Figure S3. Pre-steady state single turnover kinetics of dCDP formation	5
Figure S4. RNR assays in the presence of optimized endogenous reductants	6

Figure S1. dCDP formation for inactive variants: $Y_{356}F-\beta_2$ (•) and $Y_{731}F-\alpha_2$ (•). Reactions contained in a total volume of 170 µL, 2 µM each of α_2 and β_2 (or variants), 0.5 mM [5-³H]-CDP (7000 cpm/nmol), and 3 mM ATP in assay buffer.

Figure S2. Turnover kinetics of *E. coli* RNR in the presence of TR/TRR/NADPH. Figure reproduced from reference 14 in the text.

Figure S3. Pre-steady state single turnover kinetics of dCDP formation at 1:1 α_2 : β_2 with 1 μ M (•), and 10 μ M (•) of each subunit, respectively. Points and error bars represent the two independent trials. Traces represent fits to Eq. 1; $y = A_1(1 - e^{-k_1 t}) + A_2(1 - e^{-k_2 t})$ and produced rate constants and amplitudes listed in Table 1 of the main text.

Figure S4. RNR assays in the presence of optimized endogenous reductant with $\alpha:\beta$ (1:1) at increasing concentrations. (A) Activity assay of *S. sanguinis* NrdF and NrdE in the presence of 0.1 mM dATP, 10 µM NrdH (endogenous reductant), and 20 mM DTT. $V_{\text{max}} = 6000$ nmol min⁻¹ mg⁻¹ and $K_{\text{m}} = 6.4$ nM. Figure reproduced from reference 46. (B) Activity assay of *B. subtilis* NrdF2 and full length NrdE in the presence of 1 mM CDP, 3 mM ATP, and optimized concentrations of TrxA/TrxB/NADPH. $V_{\text{max}} = 1081 \pm 36$ nmol min⁻¹ mg⁻¹ and $K_{\text{m}} = 0.025 \pm 0.003$ µM. Figure reproduced from reference 47. (C) Activity assay of *M. tuberculosis* NrdF2 and NrdE using a 1:1 ratio of subunits, 1 mM CDP, 3 mM ATP 3 µM NrdH and 20 mM DTT in 50 mM Hepes pH 7.6, 15 mM MgSO₄ and 1 mM EDTA at 37°C. The error bars are for two measurements. The $V_{\text{max}} = 1545$ nmol min⁻¹ mg⁻¹ and $K_{\text{m}} = 0.10$ µM. When the enzyme was assayed in the presence of a five-fold excess of NrdF2, the activity increased to 2300 nmol min⁻¹ mg⁻¹.