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SUPPLEMENTAL METHODS 
 

Sequence alignment and variant calling 

Alignment and variant calling of the sequencing reads followed the latest Genome Analysis Toolkit 

(GATK) (1) Best Practices guidelines. Reads were aligned using BWA-mem (2) to the b37 human reference 

sequence with decoy sequences. Picard's MarkDuplicates tool was used to mark PCR duplicates 

(https://broadinstitute.github.io/picard/). In order to minimize downstream effects of differential coverage 

between two different capture platforms used in this study, a target bed file was created by taking the 

intersection of the EZExomeV2 and MedExome target regions. GATK was used to realign indels, recalibrate 

quality scores, and generate GVCF files for each sample using the HaplotypeCaller tool. All samples were 

called jointly using GATK's GenotypeGVCFs tool, variant score recalibration was applied to the called variants, 

and all variant call data was written to a VCF file. This pipeline uses GATK's Best Practices parameters and 

the default parameters for BWA and Picard. Only passing variants were used in downstream analyses. 

Variants were annotated against the RefSeq hg19 gene definitions and multiple external databases of variant 

population frequency, conservation scores, variation intolerance, mutation severity, and predicted functional 

effects using ANNOVAR (3). 

Quality control, de novo and inherited variant calling 

Relatedness statistics were calculated based on the method of Manichaikul et al. (4), implemented in 

VCFtools v0.1.14.10 (5). Trios were omitted if expected family relationships were not confirmed or if there were 

unexpected relationships within or between families. Trios were omitted if > 5 de novo variants were observed. 

PLINK/SEQ (6) (i-stats; https://psychgen.u.hpc.mssm.edu/plinkseq/stats.shtml), PicardTools, and GATK 

DepthOfCoverage tools were used to generate quality metrics (Table S1). To identify outliers that might 

confound our case-control analysis, we performed principal components analysis (PCA) using this data. A 

scree plot determined the number of principal components accounting for the greatest proportion of variance, 

and we removed trios with family members falling more than three standard deviations from the mean in any of 

these principal components. See Figure S1, Table S1, and below.  
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We used stringent thresholds for identifying de novo mutations because DNA from control subjects 

(from the Simons Simplex Collection) was not available for confirmation by Sanger sequencing. De novo 

variants were called using an in-house script that required the following: child is heterozygous for a variant with 

alternate allele frequency between 0.3 and 0.7 in the child and < 0.05 in the parents, sequencing depth (DP) ≥ 

20 in all family members at the variant position, alternate allele depth (AD) ≥ 5, observed allele frequency (AC) 

< 0.01 (1%) among all cases and controls, mapping quality (MQ) ≥ 30. False positive calls were removed by in 

silico visualization. We performed Sanger sequencing on the probands and parents for 149 putative de novo 

variants from this project; 147 were confirmed, resulting in 98.7% specificity. Confirmation status for each de 

novo variant is listed in Table S2.  

Inherited variant calling required a variant alternate allele frequency of at least 0.3 in the child, 

sequencing depth (DP) ≥ 20 in all family members at the variant position, alternate allele depth (AD) ≥ 5, 

observed allele frequency (AC) < 0.01 (1%) among all cases and controls, and mapping quality (MQ) ≥ 30. 

Principal component analysis (PCA) 

PCA was performed on all sequencing quality metrics (Table S1) in R using the following code: 

library(xlsx) 
library("FactoMineR") 
library("factoextra") 
library("corrplot") 
 
## Load Data from Table S1, first tab 
data1 <- read.delim("Table_S1.xlsx") 
# select only certain columns 
data1.temp <- data1[c(2,14:45)] 
# make first column the row names 
data1.active <- data.frame(data1.temp[,-1], row.names=data1.temp[,1]) 
 
## Load additional data for later use (non-numeric labels/groups) 
# select only certain columns 
data2.temp <- data1[c(4,3,1)] 
# make first column the row names 
data2.active <- data.frame(data2.temp[,-1], row.names=data2.temp[,1]) 
 
## Principal component analysis 
pdf("PCA_factor_maps.pdf") 
res.pca <- PCA(data1.active, scale.unit = TRUE, ncp = 10, graph = TRUE, axes = c(1,2)) 
dev.off() 
 
print(res.pca) 
 
## Export PCA coordinates to determine outliers (Table S1) 
indcoord<-res.pca$ind$coord 
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write.xlsx(indcoord, "Table_S1.xlsx") 
 
## Estimate the number of components in Principal Component Analysis (Factominer) 
sink("EstmateNumberPCs.txt") 
estim_ncp(data1.active, ncp.min=0, ncp.max=NULL, scale=TRUE, method="Smooth") 
sink() 
 
## Variances of the principal components 
eigenvalues <- res.pca$eig 
 
## Make scree plot using base graphics : A scree plot is a graph of the 
eigenvalues/variances associated with components (Figure S3.A). 
pdf("ScreePlot.pdf") 
barplot(eigenvalues[, 2], names.arg=1:nrow(eigenvalues),  
       main = "Variances", 
       xlab = "Principal Components", 
       ylab = "Percentage of Variance", 
       col ="steelblue") 
lines(x = 1:nrow(eigenvalues), eigenvalues[, 2],  
      type="b", pch=19, col = "red") 
dev.off() 
 
## Make cumulative variance graph (Figure S3.B) 
pdf("ScreePlot_cumulative.pdf") 
barplot(eigenvalues[, 3], names.arg=1:nrow(eigenvalues),  
        main = "Variances", 
        xlab = "Principal Components", 
        ylab = "Cumulative Percentage of Variance", 
        col ="steelblue") 
lines(x = 1:nrow(eigenvalues), eigenvalues[, 3],  
      type="b", pch=19, col = "red") 
dev.off() 
       
## GRAPHS OF VARIABLES 
pdf("PCA_factor_maps_variables.pdf") 
fviz_pca_var(res.pca, col.var="contrib") + scale_color_gradient2(low="white", mid="blue", 
high="red", midpoint=55)+theme_bw() 
dev.off() 
 
## GRAPHS OF INDIVIDUALS (Figure S3.C) 
pca = prcomp(data1.active, scale = TRUE) 
pdf("PCA_prcomp_factor_map_indiv.pdf") 
plot(pca$x, pch = 20, col = c(rep("red", 366), rep("blue", 1200))) 
dev.off() 
 

Minimizing variant calling bias 

 Exome capture was performed at the Yale Center for Genomic Analysis (YCGA) using the NimbleGen 

SeqCap EZExomeV2 (109 trios) or MedExome (113 trios) capture libraries (Roche NimbleGen, Madison, WI, 

USA). The EZExomeV2 platform captures 44 Mb of DNA, covering 97.4% of RefSeq transcripts. The 

MedExome platform captures 47 Mb of DNA, covering 99.8% of RefSeq transcripts. Furthermore, MedExome 

has improved read depth distribution and increased coverage with less sequencing, For example, MedExome 

at 3.9 GB of sequence has similar sensitivity (98.1%) and specificity (99.6%) for heterozygous calls as 
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EZExomeV2 at 5.1 GB of sequence (http://cnpg.comparenetworks.com/179181-Evaluation-of-Roche-

NimbleGen-exome-capture-products/).  To minimize potential variant calling bias that may occur due to 

differential coverage between capture platforms, we aligned our sequencing to a customized target bed file that 

is the intersection between regions captured by both platforms (see Methods); furthermore, our primary 

comparison between OCD and controls uses mutation rates within the “callable” exome (see Methods and 

below).  

Mutation rate analysis 

Within each cohort, we calculated the rates of de novo and inherited mutations per base pair. For 

accurate rate calculation, we first determined the number of “callable” base pairs per family using the GATK 

DepthOfCoverage tool. We considered only bases covered at ≥ 20x in all family members, with base quality ≥ 

20, and map quality ≥ 30; these thresholds match those required for GATK and de novo variant calling. We 

used mutation rates within the callable exome as our primary comparison to further minimize any potential bias 

for differential variant calling between the two cohorts. For each cohort, we summed the “callable” base pairs in 

every family and used this number as the denominator for de novo rate calculations. The resulting rate was 

divided by two to give haploid rates. Confidence intervals were calculated using the pois.conf.int (pois.exact) 

function from the epitools v0.5-9 package in R. We compared de novo mutation rates in cases versus controls 

(burden analysis) using a one-tailed rate ratio test in R (https://cran.r-project.org/package=rateratio.test), 

considering only those variants present with a frequency of <0.01 in the ExAC v0.3.1 database (7). We 

compared inherited mutation rates in a similar manner but considered only those variants seen once across all 

cases and controls, and not reported in ExAC.  

Calculating “callable” base pairs 

We calculated the rates of de novo and inherited mutations per base pair within each cohort. For 

accurate rate calculation, we first determined the number of “callable” base pairs per family using the GATK 

DepthOfCoverage tool. We considered only bases covered at ≥ 20x in all family members, with base quality ≥ 

20, and map quality ≥ 30; these thresholds match those required for GATK and de novo variant calling. The 

following command was used to calculate the callable base pairs in each trio:  
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java -jar GenomeAnalysisTK.jar -T DepthOfCoverage -R human_g1k_v37.fasta -o FamilyID -I 
FamilyID.list -L target_intersection.bed --minMappingQuality 30 --minBaseQuality 20 --
summaryCoverageThreshold 20 
 

FamilyID.list contains names and locations of the three trio bam files. The .bed file contains the 

genomic intervals over which to calculate the callable base pairs. To calculate the coding callable base pairs 

(used for coding mutation rates, e.g. synonymous, nonsynonymous, missense, etc., see Table 1, Table S2), 

we used a bed file with intervals spanning the intersection of both capture array target intervals and the RefSeq 

coding intervals (32,027,823 bp total). To calculate all callable base pairs (used for the total coding + 

noncoding mutation rate, see “All” in Table 1), we used a bed file with intervals spanning the intersection of 

both capture array target intervals (33,973,867 bp total). The number of coding and total callable base pairs for 

every family passing QC is listed in Table S1. 

Contribution of de novo mutations to OCD risk 

 For every proband and control subject passing QC (obtained from Table S1), we made a file containing 

the number of Mis-D, LGD, and damaging (Mis-D + LGD) variants (obtained from Table S2), then calculated 

the haploid mutation rate per subject for each variant type. Haploid mutation rates were calculated by dividing 

the number of mutations by the twice the number of callable coding bases (“CallableExomeCoding” in Table 

S1).   

The following R code was then used to calculate the percentage of cases with a mutation mediating risk 

and the percentage of mutations carrying risk, along with 95% confidence intervals for each. The number of de 

novo mutations per individual was calculated by multiplying the mutation rate by the size of the RefSeq hg19 

coding exome (33,828,798 bp). 

library(magrittr) 
library(dplyr) 
 
#### Load files containing haploid mutation rates 
caseVarFile="OCD_rates.txt" 
caseVarData <- read.table(caseVarFile, sep="\t", header=T) 
 
ctrlVarFile="SSC_rates.txt" 
ctrlVarData <- read.table(ctrlVarFile, sep="\t", header=T) 
 
#### Calculations for Mis-D variants 
MisD_contrib <- t.test(caseVarData$haploidRatesMisD, ctrlVarData$haploidRatesMisD, paired 
= F) 
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df_MisD_contrib <- data.frame(case.rate = MisD_contrib$estimate[1] * 33828798 * 2,  
                   ctrl.rate = MisD_contrib$estimate[2] * 33828798 * 2, 
                   diff.lower.ci = MisD_contrib$conf.int[1] * 33828798 * 2,  
                   diff.upper.ci = MisD_contrib$conf.int[2] * 33828798 * 2) 
df_MisD_contrib <- df_MisD_contrib %>% mutate(diff = case.rate - ctrl.rate, percent = 
diff / case.rate,  
                   percent.lower.ci = diff.lower.ci / case.rate,  
                   percent.upper.ci = diff.upper.ci / case.rate) 
 
#### Calculations for LGD variants 
LGD_contrib <- t.test(caseVarData$haploidRatesLGD, ctrlVarData$haploidRatesLGD, paired = 
F) 
df_LGD_contrib <- data.frame(case.rate = LGD_contrib$estimate[1] * 33828798 * 2,  
                   ctrl.rate = LGD_contrib$estimate[2] * 33828798 * 2, 
                   diff.lower.ci = LGD_contrib$conf.int[1] * 33828798 * 2,  
                   diff.upper.ci = LGD_contrib$conf.int[2] * 33828798 * 2) 
df_LGD_contrib <- df_LGD_contrib %>% mutate(diff = case.rate - ctrl.rate, percent = diff 
/ case.rate,  
               percent.lower.ci = diff.lower.ci / case.rate,  
               percent.upper.ci = diff.upper.ci / case.rate) 
 
#### Calculations for Damaging variants 
Damaging_contrib <- t.test(caseVarData$haploidRatesDamaging, 
ctrlVarData$haploidRatesDamaging, paired = F) 
df_Damaging_contrib <- data.frame(case.rate = Damaging_contrib$estimate[1] * 33828798 * 
2,  
               ctrl.rate = Damaging_contrib$estimate[2] * 33828798 * 2, 
               diff.lower.ci = Damaging_contrib$conf.int[1] * 33828798 * 2,  
               diff.upper.ci = Damaging_contrib$conf.int[2] * 33828798 * 2) 
df_Damaging_contrib <- df_Damaging_contrib %>% mutate(diff = case.rate - ctrl.rate, 
percent = diff / case.rate,  
               percent.lower.ci = diff.lower.ci / case.rate,  
               percent.upper.ci = diff.upper.ci / case.rate) 
 

Mutation rates for variant simulations 

To perform subsequent maximum likelihood estimation and TADA analyses, we used published per 

gene de novo mutation rates from unaffected parent-child trios (8). For the control samples in our dataset, we 

calculated the proportion of the overall coding mutation rate that comprised LGD and Mis-D mutations, and 

then used these proportions to calculate the expected LGD and Mis-D mutation rate per gene. 

The following R code was used to generate the mutation rate tables:  

library(denovolyzeR) 
library(plyr) 
 
####################### 
#### Mutation type fractions from controls in OCD project 
####################### 
 
# fractions of overall coding mutation rate for each variant type in SSC controls (see 
Table 1) 
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fracLGD <- 0.0611 
fracMisD <- 0.2944 
 
####################### 
#### Get published de novo mutation rtaes 
####################### 
 
denovolyzer <- viewProbabilityTable() 
mutationProbs <- denovolyzer[ , c("geneName", "all")] 
mutationProbs <- rename(mutationProbs, c("geneName"="gene.name"))  #rename column 
mutationProbs <- rename(mutationProbs, c("all"="mut.rate"))  #rename column 
#save(mutationProbs, file = "denovolyzer_rates_all_unadjusted.RData") 
#write.table(mutationProbs, "denovolyzer_rates_all_unadjusted.txt", sep="\t") 
 
####################### 
#### Add LGD and Mis-D de novo mutation rates based on fractions seen in our study 
####################### 
 
mutationProbs$lgd <- mutationProbs$mut.rate * fracLGD 
mutationProbs$misD <- mutationProbs$mut.rate * fracMisD 
 
save(mutationProbs, file = "de_novo_mutation_rates.RData") 
write.table(mutationProbs, "de_novo_mutation_rates.RData", sep="\t") 
 

TADA analysis 

The enrichment of de novo LGD and Mis-D mutations in OCD raises the possibility that these classes 

of mutations target a set of genes that mediates OCD risk. We used the transmitted and de novo association 

(TADA) test to test this hypothesis. TADA is based on a Bayesian model that can combine data from families 

(de novo and inherited variants) with variants from case-control cohorts to significantly increase the power of 

gene discovery. In this study, we ran two versions of the TADA test, one that included both de novo and 

inherited variants (TADA), and one that included only de novo variants (TADA-Denovo). The code and 

documentation for this tool can be found here (TADA.v1.2.R; 

http://wpicr.wpic.pitt.edu/WPICCompGen/TADA/TADA_homepage.htm). 

TADA-Denovo analyzes two types of de novo variants, LGD and severe missense (“Mis-D”; Polyphen2 

HDIV score ≥0.957). Input for this test includes (a) the number of de novo LGD variants per gene, (b) the 

number of de novo Mis-D variants per gene, and (c) mutation rates for all human genes. We used mutation 

rates from Sanders et al. (9). TADA-Denovo analyzes LGD and Mis-D occurrences separately, then combines 

the evidence in a Bayesian fashion, weighing each type of mutation differently.  

TADA-Denovo computes the Bayes factors and p-values of all input genes using the following parameters:  
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 n.family: the number of OCD parent-child trios passing quality control (184) 

 The fold-enrichment (λ) for each mutational class is calculated as follows, where Xcase and Xctrl are the 

number of mutations in cases and controls, respectively; Scase and Sctrl are the number of synonymous 

mutations in case and controls, respectively:  λ = (Xcase / (Xctrl ⋅ (Scase/Sctrl))).  As shown in the code 

below, we used the estimated coding variants per individual (Table 1) and multiplied by the number of 

cases or controls. Fold-enrichment for LGD was calculated as 2.09, and fold-enrichment for Mis-D was 

1.46. 

 The fraction of causal genes (π) is the estimated number of OCD risk genes (335, calculated by MLE 

as detailed below) divided by the number of RefSeq genes with mutational rates included in the TADA-

Denovo algorithm. π = 335 / 19618 = 0.0171  

 gamma.mean.dn: The average relative risk (γ) is related to the fold-enrichment (λ) and the fraction of 

causal genes (π) by the following equation: π ⋅ (γ-1) = λ-1. Solving for γ gives LGD γ = 64.74, Mis-D γ = 

27.91). 

To calculate the p-value for each gene, TADA-Denovo uses each gene's specified mutation rate to 

simulate random mutation data and obtain a null distribution of Bayes factors. We used 1,000 samplings of de 

novo mutations in each gene to determine null distributions. Finally, an FDR q-value is calculated for each 

gene using a Bayesian "direct posterior approach." Lower q-values indicate stronger evidence for OCD 

association. Genes with FDR < 0.3 are considered probable risk genes, and those with FDR < 0.1 are high-

confidence risk genes. 

The following R code performed the TADA-Denovo analysis: 

source("TADA.v1.2.R") 
 
# set.seed(100) 
 
### read mutation rates and counts (see Table S3, second tab) 
tada.file="Table_S5.txt" 
tada.data=read.table(tada.file,header=T) 
 
### Number of mutations and TADA parameters 
 
numLgdMutations <- (0.15*184) 
lgdRate <- numLgdMutations/184 
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numControlLgdMutations <- (0.074*777) 
controlLgdRate <- numControlLgdMutations/777 
lgdRiskFraction <- (lgdRate - controlLgdRate) / lgdRate 
 
numMis3Mutations <- (0.51*184) 
mis3Rate <- numMis3Mutations/184 
numControlMis3Mutations <- (0.36*777) 
controlMis3Rate <- numControlMis3Mutations/777 
mis3RiskFraction <- (mis3Rate - controlMis3Rate) / mis3Rate 
 
numGenes <- 335  # from MLE analysis below 
 
nPerms <- 1000 
 
pi <- numGenes / nrow(tada.data) 
pi0 <- 1-pi 
 
numSilentMutations <- (0.33*184) 
numControlSilentMutations <- (0.34*777) 
 
dn.lof.lambda <- (numLgdMutations) / (numControlLgdMutations * 
(numSilentMutations/numControlSilentMutations))  
dn.lof.relativeRisk <- 1 + ((dn.lof.lambda-1) / pi) 
dn.mis3.lambda <- (numMis3Mutations) / (numControlMis3Mutations * 
(numSilentMutations/numControlSilentMutations)) # num Mis3 in ctrls, num silent in cases, 
num silent in ctrls 
dn.mis3.relativeRisk <- 1 + ((dn.mis3.lambda-1) / pi) 
 
n.family = 184 
n = data.frame(dn=n.family, ca=NA, cn=NA) 
sample.counts <- list(cls1=n, cls2=n) 
 
### create the mutational data used by TADA-Denovo 
cls1.counts=data.frame(dn=tada.data$dn.cls1, ca=NA, cn=NA) 
rownames(cls1.counts)=tada.data$gene.id 
cls2.counts=data.frame(dn=tada.data$dn.cls2, ca=NA, cn=NA) 
rownames(cls2.counts)=tada.data$gene.id 
tada.counts=list(cls1=cls1.counts,cls2=cls2.counts) 
 
### set up mutation rates 
mu=data.frame(cls1=tada.data$mut.cls1,cls2=tada.data$mut.cls2) 
 
### specify de novo only analyses 
denovo.only=data.frame(cls1=TRUE,cls2=TRUE) 
 
### set up parameters -  
cls1= data.frame(gamma.mean.dn.=dn.lof.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta.CC=NA 
,rho1=NA,nu1=NA,rho0=NA,nu0=NA) 
cls2= 
data.frame(gamma.mean.dn=dn.mis3.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta.CC=NA,rho1=
NA,nu1=NA,rho0=NA,nu0=NA) 
hyperpar=list(cls1=cls1,cls2=cls2) 
 
### running TADA-Denovo 
re.TADA <- do.call(cbind.data.frame, TADA(tada.counts=tada.counts, 
sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, denovo.only=denovo.only)) 
 
### Bayesian FDR control 
re.TADA$qval=Bayesian.FDR(re.TADA$BF.total, pi0 = pi0) 
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### run permutation to get the null distributions to use for calculating p-values for 
TADA 
re.TADA.null=do.call(cbind.data.frame, TADAnull(tada.counts=tada.counts, 
sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, denovo.only=denovo.only, 
nrep=nPerms)) 
re.TADA$pval=bayesFactor.pvalue(re.TADA$BF.total,re.TADA.null$BFnull.total) 
 
### display top 10 genes based on BF.total 
re.TADA[order(-re.TADA$BF.total)[1:10],] 
 
### write all table to file - See Table S5 
write.table(re.TADA, "TADA_denovo_Results_.txt", sep="\t") 
save.image(file="TADA_denovo_Workspace.RData") 

 

The following R code performed the TADA (Denovo + Inherited) analysis: 

source("TADA.v.1.2.R") 
 
#set.seed(100) 
 
### read mutation rates and counts (see Table S5, fourth tab) 
tada.file="TableS5.txt" 
tada.data=read.table(tada.file,header=T) 
 
### Number of mutations and TADA parameters 
 
numLgdMutations <- (0.15*184) 
lgdRate <- numLgdMutations/184 
numControlLgdMutations <- (0.074*777) 
controlLgdRate <- numControlLgdMutations/777 
lgdRiskFraction <- (lgdRate - controlLgdRate) / lgdRate 
 
numMis3Mutations <- (0.51*184) 
mis3Rate <- numMis3Mutations/184 
numControlMis3Mutations <- (0.36*777) 
controlMis3Rate <- numControlMis3Mutations/777 
mis3RiskFraction <- (mis3Rate - controlMis3Rate) / mis3Rate 
 
numInherLgdMutations <- (3.79*184) 
InherLgdRate <- numInherLgdMutations/184 
numInherControlLgdMutations <- (3.59*777) 
InherControlLgdRate <- numInherControlLgdMutations/777 
InherLgdRiskFraction <- (InherLgdRate - InherControlLgdRate) / InherLgdRate 
 
numInherMis3Mutations <- (15.49*184) 
InherMis3Rate <- numInherMis3Mutations/184 
numInherControlMis3Mutations <- (15.83*777) 
InherControlMis3Rate <- numInherControlMis3Mutations/777 
InherMis3RiskFraction <- (InherMis3Rate - InherControlMis3Rate) / InherMis3Rate 
 
numGenes <- 335  # from MLE analysis below 
 
nPerms <- 100 
 
pi <- numGenes / nrow(tada.data) 
pi0 <- 1-pi 
 
numSilentMutations <- (0.33*184) 
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numControlSilentMutations <- (0.34*777) 
numInherSilentMutations <- (16.44*184) 
numInherControlSilentMutations <- (16.78*777) 
 
dn.lof.lambda <- (numLgdMutations) / (numControlLgdMutations * 
(numSilentMutations/numControlSilentMutations))  
dn.lof.relativeRisk <- 1 + ((dn.lof.lambda-1) / pi) 
dn.mis3.lambda <- (numMis3Mutations) / (numControlMis3Mutations * 
(numSilentMutations/numControlSilentMutations)) # num Mis3 in ctrls, num silent in cases, 
num silent in ctrls 
dn.mis3.relativeRisk <- 1 + ((dn.mis3.lambda-1) / pi) 
 
inher.lof.lambda <- (numInherLgdMutations) / (numInherControlLgdMutations * 
(numInherSilentMutations/numInherControlSilentMutations))  
inher.lof.relativeRisk <- 1 + ((inher.lof.lambda-1) / pi) 
inher.mis3.lambda <- (numInherMis3Mutations) / (numInherControlMis3Mutations * 
(numInherSilentMutations/numInherControlSilentMutations)) # num Mis3 in ctrls, num silent 
in cases, num silent in ctrls 
inher.mis3.relativeRisk <- 1 + ((inher.mis3.lambda-1) / pi) 
 
n.family = 184 
n.case = 0 
n.ctrl = 0 
n = data.frame(dn=n.family, ca=n.case+n.family, cn=n.ctrl+n.family) 
sample.counts <- list(cls1=n, cls2=n) 
 
### create the mutational data used by TADA 
cls1.counts=data.frame(dn=tada.data$dn.cls1, ca=tada.data$trans.cls1+tada.data$case.cls1, 
cn=tada.data$ntrans.cls1+tada.data$ctrl.cls1) 
rownames(cls1.counts)=tada.data$gene.id 
cls2.counts=data.frame(dn=tada.data$dn.cls2, ca=tada.data$trans.cls2+tada.data$case.cls2, 
cn=tada.data$ntrans.cls2+tada.data$ctrl.cls2) 
rownames(cls2.counts)=tada.data$gene.id 
tada.counts=list(cls1=cls1.counts,cls2=cls2.counts) 
 
### set up mutation rates 
mu=data.frame(cls1=tada.data$mut.cls1,cls2=tada.data$mut.cls2) 
 
### set up denovo only TRUE/FALSE, here we do not want to restrict ourselves to de novo 
only analyses 
denovo.only=data.frame(cls1=FALSE,cls2=FALSE) 
 
### set up parameters -  
***Seed – yes, perm 1000 
cls1= 
data.frame(gamma.mean.dn.=dn.lof.relativeRisk,beta.dn=1,gamma.mean.CC=inher.lof.relativeR
isk,beta.CC=10 ,rho1=0.1,nu1=10,rho0=0.1,nu0=10) 
cls2= 
data.frame(gamma.mean.dn=dn.mis3.relativeRisk,beta.dn=1,gamma.mean.CC=inher.mis3.relative
Risk,beta.CC=10,rho1=0.1,nu1=10,rho0=0.1,nu0=10) 
hyperpar=list(cls1=cls1,cls2=cls2) 
 
### running TADA-Denovo 
re.TADA <- do.call(cbind.data.frame, TADA(tada.counts=tada.counts, 
sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, denovo.only=denovo.only)) 
 
### Bayesian FDR control 
re.TADA$qval=Bayesian.FDR(re.TADA$BF.total, pi0 = pi0) 
 
### run permutation to get the null distributions to use for calculating p-values for 
TADA 
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re.TADA.null=do.call(cbind.data.frame, TADAnull(tada.counts=tada.counts, 
sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, denovo.only=denovo.only, 
nrep=nPerms)) 
re.TADA$pval=bayesFactor.pvalue(re.TADA$BF.total,re.TADA.null$BFnull.total) 
 
### display top 10 genes based on BF.total 
re.TADA[order(-re.TADA$BF.total)[1:10],] 
 
### write all table to file - See Table S5 
write.table(re.TADA, "TADA_Results.txt", sep="\t") 
save.image(file="TADA_Workspace.RData") 
 

Applying this model to 184 OCD parent-child trios passing QC identifies two high confidence OCD risk 

genes (q<0.1). See Table 2 and Table S5.  

 

Maximum likelihood estimation (MLE) method for estimating the number of OCD risk genes 

We first used a maximum likelihood estimation (MLE) method to estimate the number of genes 

contributing risk to OCD, based on vulnerability to de novo damaging variants (10). For every number of risk 

genes from 1 to 2,500, we simulated 95 variants (the number of damaging de novo variants observed in 

probands in our case-control burden analysis). Variant simulations were performed 100,000 times at each 

number of risk genes. Following each simulation, a percentage of variants was randomly assigned to the risk 

genes. The percentage of variants assigned to risk genes was determined by the fraction of de novo damaging 

variants estimated to carry OCD risk, and variant simulations were weighted by gene size and GC content (11). 

We then counted the number of risk and non-risk genes containing two variants and the number containing 

three or more variants. The frequency of concordance between our simulated and observed data was 

calculated. A curve was plotted to show the concordance frequency (y-axis) at each assumed number of risk 

genes (x-axis), and the peak was taken as the estimate of the most likely number of risk genes (10). See 

Figure S2. 

The following R code was used to perform these calculations: 

library(ggplot2) 
library(parallel) 
library(data.table) 
 
plotDir <- getwd() 
load("de_novo_mutation_rates.RData") # see Table S5, first tab 
mutationProbs <- as.data.table(mutationProbs) 
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K <- 95  # total OCD de novo damaging mutations (Mis-D+LGD) 
R2 <- 2 # number of above mutations hitting same gene twice 
R3 <- 1 # number of above mutations hitting sane gene three times 
M1 <- 95/184  # observed rate of de novo damaging mutations in OCD 
M2 <- 236/777 # observed rate of de novo damaging mutations in controls 
E <- (M1-M2)/M1 # estimating fraction of de novo damaging variants carrying risk 
nPerms <- 100000 # number of permutations to perform at each assumed number of risk genes 
maxGenes <- 2500 # perform permutations from 1 to this number 
 
# get number of cores available 
numCores <- max(1, detectCores() - 1) 
 
############################################################################# 
# FUNCTIONS 
############################################################################# 
getRecurrence <- function(G, mutationProbs, K, E, R2, R3, nPerms){ 
    permutationVector <- lapply(1:nPerms, function(x) {  
        riskGeneIndex <- sample(1:nrow(mutationProbs), G, replace = F) 
        riskGenes <- mutationProbs[riskGeneIndex,] 
        nonRiskGenes <- mutationProbs[-riskGeneIndex,] 
         
        C1 <- rbinom(1,K,E) 
        C2 <- K-C1 
         
        C1geneMutations <- sample(riskGenes$gene.name, C1, replace = T, prob = 
riskGenes$damaging) 
        C2geneMutations <- sample(nonRiskGenes$gene.name, C2, replace = T, prob = 
nonRiskGenes$damaging) 
         
        allGeneMutations <- c(C1geneMutations, C2geneMutations) 
        length(which(table(allGeneMutations)==2))==R2 & 
length(which(table(allGeneMutations)>=3))==R3 
    }) 
    proportionMatchingObserved <- length(which(unlist(permutationVector)))/nPerms 
     
} 
############################################################################# 
# RUN 
############################################################################# 
RNGkind("L'Ecuyer-CMRG") 
set.seed(1) 
mc.reset.stream() 
 
permutationTest <- mclapply(1:maxGenes,  
                   function(x) getRecurrence(x, mutationProbs, K, E, R2, R3, nPerms),  
                   mc.cores = numCores, mc.set.seed = T ) 
 
save(permutationTest, file = paste("UpTo", maxGenes, "genes", nPerms, "perms", 
"MaxLikelihoodPermutation.RData", sep="_")) 
 
toPlot <- data.frame(likelihood = unlist(permutationTest), nGenes = 
1:length(unlist(permutationTest))) 
 
save(toPlot, file = paste("UpTo", maxGenes, "genes", nPerms, "perms", 
"MaxLikelihoodPermutationToPlot.RData", sep="_")) 
 
p <- ggplot(toPlot, aes(x=nGenes, y=likelihood)) 
p <- p + geom_line() + geom_smooth()  
ggsave(file.path(plotDir, paste("UpTo", maxGenes, "genes", nPerms, "perms", 
"MaxLikelihood.pdf", sep="_") ), p) 
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save.image(file = paste("Workspace", nPerms, "perms.RData", sep="_")) 
 

"Unseen species" method for estimating the number of OCD risk genes 

Following a method used previously in estimating the number of risk genes for autism spectrum 

disorder (9), we used the following R code to obtain a second estimate of the number of risk genes (C) in OCD 

and 95% confidence intervals. This method uses the frequency and number of observed variant types (or 

species) to infer how many species are present in the population. 

The following R code was used to perform these calculations: 

library(epitools) 
# total OCD de novo damaging mutations (Mis-D+LGD) 
damaging <- 95 
# scale the observed number of damaging mutations in controls to get expected number in 
cases 
expectedDamaging <- ceiling( (236) * 184/777 ) 
# calculate the number of risk associated mutations 
d <- damaging - expectedDamaging  
nRecurrent <-  3 
expectedNumRecurrent <- 2 # there were 8 in 777 controls, so (8*184/777) 
# total number of observed risk genes 
c <- d - (nRecurrent + 2) 
# number of genes mutated once 
c1 <- c - nRecurrent 
# probability that newly added mutation hits a previously mutated gene 
u = 1 - c1/d 
#Estimate the number of risk genes 
( C <-  c/u + 1*d*(1-u)/u ) 
# 316.875 
 
## calculating 95% confidence interval for number of risk genes 
# import tab delimited file with number of damaging mutations per control sample 
ctrlDamagingFile="SSC_damaging.txt" 
ctrlDamagingData <- read.table(ctrlDamagingFile, sep="\t", header=T) 
# calculate upper and lower number of damaging mutations per control sample 
ci_pois <- pois.exact(sum(ctrlDamagingData$NumDamaging), pt = nrow(ctrlDamagingData), 
conf.level = 0.95) 
 
# repeat above risk gene calculations using lower value - gives upper estimate 
expectedDamaging_low <- ceiling((ci_pois$lower*777) * 184/777 ) 
d_low <- damaging - expectedDamaging_low  
c_low <- d_low - (nRecurrent + 2) 
c1_low <- c_low - nRecurrent 
u_low = 1 - c1_low/d_low 
( C_low <-  c_low/u_low + 1*d_low*(1-u_low)/u_low ) 
# 454.25 
 
# repeat above risk gene calculations using upper value - gives lower estimate 
expectedDamaging_hi <- ceiling((ci_pois$upper*777) * 184/777 ) 
d_hi <- damaging - expectedDamaging_hi  
c_hi <- d_hi - (nRecurrent + 2) 



16 
 

c1_hi <- c_hi - nRecurrent 
u_hi = 1 - c1_hi/d_hi 
( C_hi <-  c_hi/u_hi + 1*d_hi*(1-u_hi)/u_hi ) 
# 189.875 
   

Predicting the number of risk genes identified by cohort size 

Fixing the gene number at 335 (from MLE estimate above), we varied the cohort size (from 25 to 3000, 

in increments of 25). At each cohort size, we simulated a number of variants matching the observed mutation 

rate in OCD probands. Simulated variants were randomly assigned to the risk genes. The percentage of 

variants assigned to risk genes was determined by the fraction of de novo damaging variants estimated to 

carry OCD risk, and variant simulations were weighted by gene size and GC content (11). At each cohort size, 

10,000 simulations were performed. LGD and Mis-D variants were generated separately. Simulated variants 

were then combined and given as input to the TADA-Denovo algorithm, using the same parameters described 

above for the observed data. The number of high confidence (q<0.1) and probable (q<0.3) risk genes were 

recorded and plotted using polynomial regression fitting; this regression model allows prediction of the number 

of genes identified at a specified cohort size. See Figure S3. 

The following R code was used to perform these calculations: 

 
library(ggplot2) 
library(parallel) 
library(reshape2) 
 
plotDir <- getwd() 
source(file = "TADA.v1.1.R") 
 
load("de_novo_mutation_rates.RData") 
 
numLgdMutations <- (0.15*184) 
lgdRate <- numLgdMutations/184 
numControlLgdMutations <- (0.074*777) 
controlLgdRate <- numControlLgdMutations/777 
lgdRiskFraction <- (lgdRate - controlLgdRate) / lgdRate 
 
numMis3Mutations <- (0.51*184) 
mis3Rate <- numMis3Mutations/184 
numControlMis3Mutations <- (0.36*777) 
controlMis3Rate <- numControlMis3Mutations/777 
mis3RiskFraction <- (mis3Rate - controlMis3Rate) / mis3Rate 
 
numGenes <- 335 
nPerms <- 10000 
 
# get number of cores available 
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numCores <- max(1, detectCores() - 1) 
 
pi <- 0.01707615 
pi0 <- 1-pi 
 
numSilentMutations <- (0.33*184) 
numControlSilentMutations <- (0.34*777) 
 
dn.lof.lambda <- (numLgdMutations) / (numControlLgdMutations * 
(numSilentMutations/numControlSilentMutations))  
dn.lof.relativeRisk <- 1 + ((dn.lof.lambda-1) / pi) 
dn.mis3.lambda <- (numMis3Mutations) / (numControlMis3Mutations * 
(numSilentMutations/numControlSilentMutations)) # num Mis3 in ctrls, num silent in cases, 
num silent in ctrls 
dn.mis3.relativeRisk <- 1 + ((dn.mis3.lambda-1) / pi) 
 
 
############################################################################ 
# FUNCTIONS 
############################################################################ 
 
getGenes <- function(numGenes_f=numGenes, mutationProbs_f, cohortSize_f, mutationRate_f, 
riskFraction_f, probability_f=c("lgd", "mis3")[1]){ 
        numMutations <- ceiling(cohortSize_f * mutationRate_f) 
        riskGeneIndex <- sample(1:nrow(mutationProbs_f), numGenes_f, replace = F) 
        riskGenes <- mutationProbs_f[riskGeneIndex,] 
        nonRiskGenes <- mutationProbs_f[-riskGeneIndex,] 
         
        C1 <- rbinom(1, numMutations, riskFraction_f) 
        C2 <- numMutations - C1 
         
        C1geneMutations <- sample(riskGenes$gene.name, C1, replace = T, prob = 
riskGenes$probability) 
        C2geneMutations <- sample(nonRiskGenes$gene.name, C2, replace = T, prob = 
nonRiskGenes$probability) 
         
        allGeneMutations <- c(C1geneMutations, C2geneMutations) 
} 
 
runIteration <- function(numGenes_f=numGenes, mutationProbs_f, cohortSize_f, 
lgdMutationRate_f, mis3MutationRate_f, lgdRiskFraction_f, mis3RiskFraction_f, nTadaRep_f 
= 100){ 
    lgdMutations <- getGenes(numGenes, mutationProbs_f, cohortSize_f, lgdMutationRate_f, 
lgdRiskFraction_f, "lgd") 
    lgdMutations_df <- data.frame(gene=lgdMutations, lof=1, mis3=0, stringsAsFactors = F) 
    mis3Mutations <- getGenes(numGenes, mutationProbs_f, cohortSize_f, 
mis3MutationRate_f, mis3RiskFraction_f, "lgd") 
    mis3Mutations_df <- data.frame(gene=mis3Mutations, lof=0, mis3=1, stringsAsFactors = 
F) 
    combinedMutations <- rbind(lgdMutations_df, mis3Mutations_df) 
    combinedMutations <- aggregate(combinedMutations[,c("lof", "mis3")], 
by=list(combinedMutations$gene), sum) 
    colnames(combinedMutations) <- c("gene.id", "dn.lof", "dn.mis3") 
    tadaResults <- runTada(cohortSize_f = cohortSize_f, mutationTable_f = 
combinedMutations, mutationProbs_f = mutationProbs_f, nTadaRep_f = nTadaRep_f) 
    return(tadaResults) 
} 
 
runTada <- function(cohortSize_f, mutationTable_f, mutationProbs_f, nTadaRep_f = 100){ 
    tada.data <- merge(mutationTable_f, mutationProbs_f[,c("gene.name", "lgd", "mis3")], 
by.x="gene.id", by.y="gene.name") 
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    names(tada.data)[which(names(tada.data)=="lgd")] <- "mut.lof" 
    names(tada.data)[which(names(tada.data)=="mis3")] <- "mut.mis3" 
     
    n.family = cohortSize_f 
    n = data.frame(dn=n.family, ca=NA, cn=NA) 
    sample.counts <- list(cls1=n, cls2=n) 
     
    cls1.counts=data.frame(dn=tada.data$dn.lof, ca=NA, cn=NA) 
    rownames(cls1.counts)=tada.data$gene.id 
    cls2.counts=data.frame(dn=tada.data$dn.mis3, ca=NA, cn=NA) 
    rownames(cls2.counts)=tada.data$gene.id 
    tada.counts=list(cls1=cls1.counts,cls2=cls2.counts) 
     
    mu=data.frame(cls1=tada.data$mut.lof,cls2=tada.data$mut.mis3) 
     
    denovo.only=data.frame(cls1=TRUE,cls2=TRUE) 
     
    cls1= 
data.frame(gamma.mean.dn=dn.lof.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta.CC=NA 
,rho1=NA,nu1=NA,rho0=NA,nu0=NA) 
    cls2= data.frame(gamma.mean.dn= 
dn.mis3.relativeRisk,beta.dn=1,gamma.mean.CC=NA,beta.CC=NA,rho1=NA,nu1=NA,rho0=NA,nu0=NA) 
    hyperpar=list(cls1=cls1,cls2=cls2) 
     
     
    re.TADA <- do.call(cbind.data.frame, TADA(tada.counts=tada.counts, 
sample.counts=sample.counts, mu=mu, hyperpar=hyperpar, denovo.only=denovo.only)) 
    re.TADA$qval=Bayesian.FDR(re.TADA$BF.total, pi0 = pi0) 
     
    tadaResults <- re.TADA[order(re.TADA$qval, decreasing = F), ] 
     
    probableGenes <- length(which(tadaResults$qval<0.3)) 
    highConfidenceGenes <- length(which(tadaResults$qval<0.1)) 
    return(data.frame(probable = probableGenes, highConfidence = highConfidenceGenes)) 
} 
 
############################################################################ 
# RUN 
############################################################################ 
 
RNGkind("L'Ecuyer-CMRG") 
set.seed(1) 
mc.reset.stream() 
 
tadaSimulations <- mclapply(seq(from=25, to=3000, by=25), function(x)  
    lapply(1:nPerms, function(y) runIteration(numGenes_f = numGenes, mutationProbs_f = 
mutationProbs, cohortSize_f = x, lgdMutationRate_f = lgdRate, mis3MutationRate_f = 
mis3Rate, lgdRiskFraction_f = lgdRiskFraction, mis3RiskFraction_f = mis3RiskFraction)), 
    mc.cores = numCores, mc.set.seed = T) 
 
save(tadaSimulations, file = paste("tadaSimulations", nPerms, "perms", 
"forGeneDiscoveryEstimate_noPval.RData", sep="_")) 
 
resultsByCohortSize <- lapply(tadaSimulations, function(x) do.call(rbind, x)) 
 
averageGeneDiscoveryByCohortSize <- lapply(resultsByCohortSize, function(x) apply(x, 2, 
mean)) 
 
averageGeneDiscoveryByCohortSize_DF <- as.data.frame(do.call("rbind", 
averageGeneDiscoveryByCohortSize)) 
averageGeneDiscoveryByCohortSize_DF$cohortSize <- seq(from=25, to=3000, by=25) 
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save(averageGeneDiscoveryByCohortSize_DF, file = 
paste("averageGeneDiscoveryByCohortSize", nPerms, "perms", ".RData", sep="_")) 
 
toPlot <- melt(averageGeneDiscoveryByCohortSize_DF, measure.vars=c("probable", 
"highConfidence"),  
               variable.name = "confidenceThreshold", value.name = "numGenes") 
 
save(toPlot, file = paste("averageGeneDiscoveryByCohortSizetoPlot", nPerms, "perms", 
".RData", sep="_")) 
 
p <- ggplot(toPlot, aes(x=cohortSize, y=numGenes, col=confidenceThreshold)) 
p <- p + geom_line() 
 
ggsave(p, file=file.path(plotDir, paste("averageGeneDiscoveryByCohortSize", nPerms, 
"perms.pdf", sep="_"))) 
 
 
 

Gene set overlap using DNENRICH 

We used DNENRICH (6) (https://psychgen.u.hpc.mssm.edu/dnenrich/) to test whether OCD genes 

harboring de novo damaging mutations (89 genes; excluding two genes, TTN and CACNA1E, found to harbor 

de novo damaging variants in control subjects) were significantly enriched among previously reported genes 

identified in autism (ASD), schizophrenia (SCZ), developmental disorders (DD), Tourette’s disorder (TD), and 

intellectual disability (ID). Gene lists were obtained from a recent cross-disorder study (12) that included de 

novo single nucleotide and indel variants from multiple exome sequencing studies in ASD (13-17), SCZ (6, 18-

21), and ID (22-25). Three of these studies also included de novo variants present in unaffected siblings (13, 

14, 19). DD (26) and TD (27) genes were obtained from recently published WES studies. Because our study 

included 42 trios that were also included in the TD study by Wang et al. (27), we performed enrichment 

analysis using a TD gene list of de novo mutations from probands in Wang et al. with TD only (no OCD, which 

is comorbid in 37% of the cohort), to avoid confounding our overlap analysis.  DNENRICH simulates random 

mutations while accounting for gene size, trinucleotide context, and mutational effect. We performed 100,000 

permutations, comparing the observed and expected overlap with each gene set. Empirical p-values were 

generated, based on a one-sided enrichment analysis under a binomial model of greater than expected hits 

per gene set. We tested for overlap between our OCD genes and those in ASD, SCZ, DD, TD, ID, and 

unaffected siblings that harbored de novo (LGD, nonsynonymous, synonymous) mutations. We also tested for 

overlap with ASD genes achieving q<0.01 in a recent meta-analysis (28) and DD genes achieving genome-
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wide statistical significance (26). Given that we identified CHD8 as an OCD risk gene in our study, we tested 

for overlap with lists of genes that are targets of CHD8 in human brain (29). Finally, to determine whether the 

observed overlap between OCD and TD is more likely due to pleiotropy than known comorbidity, we performed 

a secondary DNENRICH analysis, using only mutations from OCD subjects without known tics or Tourette’s 

Disorder. See Table 3, Table S6. 

The following Linux commands were used to run the DNENRICH analysis:   

dnenrich . 100000 alias.txt refseq_gene_sizes.txt gene_lists.set 
mutations_ocd_damaging.mut > results; 
 
csh extractDnenrichResults.csh results > results.txt 
 

Exploratory pathway and network analyses 

To determine whether all genes harboring de novo damaging variants in OCD are enriched for specific 

biological pathways, we used the same gene list from our gene set overlap analysis (n=89) to identify the most 

significant canonical pathways, biological processes, networks, and diseases suggested by MetaCore 

(Clarivate Analytics, version 6.37, build 69500, https://portal.genego.com/) and Ingenuity Pathway Analysis 

(IPA, build version 4866170M, content version 46901286, release date 2018-11-21; Qiagen Bioinformatics, 

http://www.ingenuity.com/). The following default settings were used for MetaCore: Analyze Single Experiment 

Tool, species Homo sapiens, threshold 0, p-value 1, signals both. The following default settings were used for 

IPA: Reference set: Ingenuity Knowledge Base (Genes Only); direct and indirect relationships; does not 

include endogenous chemicals; consider only relationships where species = human and confidence = 

experimentally observed. See Table S8. 

Using the GeNets algorithm (https://apps.broadinstitute.org/genets), we mapped all 89 genes harboring 

de novo damaging mutations in OCD onto the GeNets Metanetwork v1.0 to determine whether they are 

functionally connected. The GeNets Metanetwork contains integrated protein-protein interactions from InWeb3 

(30), ConcensusPathDB (http://consensuspathdb.org) (31), and 5,057 drug-target interactions (32); the total 

network size is 530,532 interactions. The GeNets algorithm determines the density of the mapped network 

(density = number of edges / number of possible edges) and compares this to computed densities for randomly 

sampled gene sets. An empirically determined p-value is generated. The network is determined to be 



21 
 

significantly more connected than random if the density is greater than 95% of the randomly sampled gene 

sets. Additionally, in the process of mapping our genes onto the Metanetwork, additional candidate genes are 

predicted, based on their connectivity to our input genes. An overall network connectivity p-value is generated, 

both with and without these additional predicted candidates. Also, as part of the GeNets analysis, gene 

“communities” were determined, defined as genes that are more connected to one another than they are to 

other groups of genes. See Figure S6 and Table S7. All GeNets results for this analysis are also available in 

interactive form here: https://www.broadinstitute.org/genets#/visualize/58d9425ea4e00291af652379. 
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SUPPLEMENTAL TABLES 
 

Table S1 – Phenotype, exome sequencing metrics, and principal components analysis. 

(see “TableS1.xlsx”) 

First tab contains individual-level sample information (columns A-K), including family ID, individual ID, 

phenotype, cohort, collection site, gender, capture platform, size of “callable exome”, and parental age (years) 

at birth, where available. Column L lists reasons for any sample exclusions by quality control methods; “0” 

indicates that the sample was not excluded and was included in subsequent analyses. Columns M-AH list 

individual sample sequencing metrics generated using PicardTools, and GATK DepthOfCoverage tools. 

Columns AI-AS list individual sample sequencing metrics generated using PLINK/SEQ (i-stats; 

https://psychgen.u.hpc.mssm.edu/plinkseq/stats.shtml). Columns B, M-AS were included in Principal 

Components Analysis (PCA). Third tab contains cohort-level metrics calculated using samples passing quality 

control. ±95% confidence intervals are given, when applicable. Fourth tab contains coordinates generated for 

each sample for the top 10 principal components following PCA. The code used to generate this data is 

included in Supplementary Methods. Using these coordinates, we removed trios with family members falling 

more than three standard deviations from the mean in any of the first five principal components; this 

information is contained in the fifth tab. 

 

Table S2 – Annotated de novo variants in OCD and controls.  

(see “TableS2.xlsx”) 

Detailed information on all high confidence de novo variants in cases and controls. These variants were 

annotated using Annovar, based on RefSeq hg19 gene definitions. Column descriptions are provided in a 

separate tab of this file.  A third tab provides the number of each de novo variant type per sample. 

 

Table S3 – Annotated inherited variants in OCD and controls.  
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(see “TableS3.xlsx”) 

Detailed information on all high confidence inherited variants in cases and controls. These variants were 

annotated using Annovar, based on RefSeq hg19 gene definitions. Column descriptions are provided in a 

separate tab of this file.  A third tab provides the number of each inherited variant type per sample. 
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Table S4 – Distribution of inherited coding variants in OCD cases and controls 

Inherited variant typea 

Variant counts 
Mutation rate (x10‐7) per bp 

(95% CI)i 
Estimated coding variants per 

individual (95% CI)j 
Rate ratio 
(95% CI) 

p‐valuek 

OCD 
(N=184) 

Control 
(N=777) 

OCD 
(N=184) 

Control 
(N=777) 

OCD 
(N=184) 

Control 
(N=777)     

Codingb  8320  31422 
8.55 

(8.37‐8.74) 
8.57 

(8.47‐8.66) 
57.85 

(56.63‐59.13) 
57.98 

(57.31‐58.59) 
1.00 

(0.97‐1.02) 
0.92 

Synonymous SNV  2362  9087 
2.43 

(2.33‐2.53) 
2.48 

(2.43‐2.53) 
16.44 

(15.76‐17.12) 
16.78 

(16.44‐17.12) 
0.98 

(0.75‐1.31) 
0.34 

Nonsynonymousc  5774  21752 
5.94 

(5.78‐6.09) 
5.93 

(5.85‐6.01) 
40.19 

(39.11‐41.2) 
40.12 

(39.58‐40.66) 
1.00 

(1.02‐1.40) 
0.97 

All Missense (Mis)  5230  19816 
5.38 

(5.23‐5.53) 
5.40 

(5.33‐5.48) 
36.40 

(35.38‐37.41) 
36.54 

(36.06‐37.08) 
1.00 

(0.97‐1.03) 
0.78 

Mis‐Dd  2228  8568 
2.29 

(2.20‐2.39) 
2.34 

(2.29‐2.39) 
15.49 

(14.88‐16.17) 
15.83 

(15.49‐16.17) 
0.98 

(0.94‐1.03) 
0.42 

MIs‐Pe  890  3495 
0.92 

(0.86‐0.98) 
0.95 

(0.92‐0.98) 
6.22 

(5.82‐6.63) 
6.43 

(6.22‐6.63) 
0.96 

(0.89‐1.0) 
0.29 

Mis‐Bf  1962  7424 
2.02 

(1.93‐2.11) 
2.02 

(1.98‐2.07) 
13.67 

(13.06‐14.28) 
13.67 

(13.4‐14.01) 
1.00 

(0.95‐1.05) 
0.91 

Likely Gene Disrupting 
(LGD)g 

544  1936 
0.56 

(0.51‐0.61) 
0.53 

(0.50‐0.55) 
3.79 

(3.45‐4.13) 
3.59 

(3.38‐3.72) 
1.06 

(0.96‐1.17) 
0.24 

Damaging  
(LGD + Mis‐D) 

2772  10504 
2.85 

(2.75‐2.96) 
2.86 

(2.81‐2.92) 
19.28 

(18.61‐20.03) 
19.35 

(19.01‐19.76) 
1.00 

(0.95‐1.04) 
0.84 

LGD SNV  296  1075 
0.30 

(0.27‐0.34) 
0.29 

(0.28‐0.31) 
2.03 

(1.83‐2.3) 
1.96 

(1.89‐2.1) 
1.04 

(0.91‐1.18) 
0.58 

LGD frameshift indel  248  861 
0.25 

(0.22‐0.29) 
0.23 

(0.22‐0.25) 
1.69 

(1.49‐1.96) 
1.56 

(1.49‐1.69) 
1.09 

(0.94‐1.25) 
0.27 

Nonframeshift indel  94  298 
0.097 

(0.078‐0.12) 
0.081 

(0.072‐0.091) 
0.66 

(0.53‐0.81) 
0.55 

(0.49‐0.62) 
1.19 

(0.93‐1.51) 
0.16 

Unknownh  90  285 
0.093 

(0.074‐0.11) 
0.078 

(0.069‐0.087) 
0.63 

(0.50‐0.74) 
0.53 

(0.47‐0.59) 
1.19 

(0.93‐1.51) 
0.17 

 

aVariants were annotated with Annovar, using RefSeq hg19 gene definitions. b“Coding” variants include synonymous, nonsynonymous, 
nonframeshift, and those annotated as “unknown” by Annovar. c“Nonsynonymous” variants include all missense and LGD variants. d“Mis-D” are 
“probably damaging” missense variants with a Polyphen2 (HDIV) score ≥0.957. eMis-P are “possibly damaging” missense variants with a Polyphen2 
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(HDIV) score <0.957 and ≥0.453. fMis-B are “benign” missense variants with a Polyphen2 (HDIV) score <0.453. Two OCD missense variants and 
five control missense variants had no prediction by Polyphen2, but were included in the "All Missense (Mis)" variant type. gLGD variants are those 
altering a stop codon, canonical splice site, and frameshift indels. h“Unknown” variants are not included in the synonymous or nonsynonymous 
counts. iInherited mutation rates were calculated as the number of variants divided by the number of haploid “callable” bases. jThe estimated 
number of inherited mutations per individual was calculated by multiplying the mutation rate by the size of the RefSeq hg19 coding exome 
(33,828,798 bp). kRates were compared using a two-sided rate ratio test. 
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Table S5 – Gene-level de novo mutation rates, variant counts, and TADA results. 

(see “TableS5.xlsx”) 

First tab contains de novo mutation rates used to perform subsequent maximum likelihood estimation (MLE) 

and TADA analyses. The following mutation rates are listed for each gene: overall, likely gene disrupting (lgd), 

predicted damaging missense (misD), and all damaging (lgd + misD). These mutation rates were previously 

published (Ware et al., 2015) from unaffected parent-child trios. The code used to generate the mutation rate 

table is provided in Supplementary Methods. Second tab contains the input file for the TADA-Denovo code. 

Gene-level expected mutation rates for LGD (“mut.cls1” column) and Mis-D variants (“mut.cls2” column) are 

listed, along with their respective observed de novo mutation counts in our OCD data (“dn.cls1” and “dn.cls2”, 

respectively). Code for running TADA-Denovo is given in Supplementary Methods. Third tab contains the final 

output results from TADA-Denovo code provided in Supplementary Methods. Genes harboring more than one 

damaging de novo (LGD or Mis-D) variant in OCD probands are highlighted in yellow (SCUBE1, CHD8, TTN). 

Two of these genes (SCUBE1 and CHD8) exceeded thresholds for being considered a probable (qval < 0.3) or 

high confidence (qval < 0.1) risk gene. Fourth tab contains the input file for the TADA (Denovo + Inherited) 

code. Gene-level expected mutation rates for LGD (“mut.cls1” column) and Mis-D variants (“mut.cls2” column) 

are listed, along with their respective observed de novo mutation counts in our OCD data (“dn.cls1” and 

“dn.cls2”, respectively), observed transmitted mutation counts (trans.cls1, trans.cls2), and observed non-

transmitted mutation counts (present in either parent but not the child; ntrans.cls1, ntrans.cls2). Code for 

running TADA (Denovo + Inherited) is given in Supplementary Methods. 

 

Table S6 – DNENRICH gene lists and results. 

(see “TableS6.xlsx”) 

See Supplementary Methods for details of DNENRICH analysis. First tab contains the input gene lists to 

determine enrichment for our OCD damaging de novo mutations. Second tab contains input for DNENRICH 

analysis. Each row represents a de novo damaging mutation in an OCD proband. Third tab contains final 

results output from the DNENRICH primary analysis, also shown in Table 3. Fourth tab contains input for 
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DNENRICH secondary analysis; each row represents a de novo damaging mutation in an OCD proband 

without known tics or Tourette’s disorder. Fifth tab contains the results of this  secondary analysis. Significantly 

enriched gene sets are highlighted. 

 

Table S7 – GeNets network connectivity analysis results. 

(see “TableS7.xlsx”) 

Complete results from GeNets network analysis of de novo damaging variants found in OCD probands. First 

tab contains summary statistics of the resulting network, considered both with and without nearby predicted 

“tier 1” candidate genes. Second tab contains the input gene list and the candidate genes predicted by the 

network analysis. Third tab groups genes (without predicted candidates) into nearby “communities” that are 

more connected with each other than their neighbors. Fourth tab contains network edges without the predicted 

candidates. Fifth tab contains gene community groupings, including predicted candidates. Sixth tab contains 

network edges including predicted candidates. See Methods for further details of this analysis. 

 

TableS8 – MetaCore and Ingenuity Pathway Analysis (IPA) gene enrichment analysis results. 

(see “TableS8.xlsx”) 

Complete results from Metacore (first tab) and IPA (second tab) gene enrichment analyses, with p-values 

calculated by each analysis algorithm. See Methods for details of these analyses. 
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SUPPLEMENTAL FIGURES 

 

Figure S1 – PCA scree and individual plots. 

 

 

Scree plots following Principal Components Analysis (PCA), showing (A) the percentage of variance captured 

by each of the first 32 principal components, and (B) the cumulative percentage of variance captured by these 

same components in the exome metrics data from cases and controls.  The “elbow” of the scree plot is 

visualized to be around the 5th principal component. This was confirmed by the Factominer R code function 

“estim_ncp()”. The first 5 PCs capture almost 80% of the variance, and this number of PCs was used to 
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determine PCA outliers during quality control (see Table S1 and Supplementary Methods). (C) Individual plots 

for the first two principal components, based on PCA of exome sequencing quality metrics. OCD cases are 

plotted in red, and controls in blue. The first two PCs together capture 50.1% of the variance. R code to 

generate this data and figure are in Supplementary Methods, and individual PC factor values are in Table S1. 

This figure includes PCA outliers (>3 standard deviations from the mean in PCs 1-5), which were removed 

during quality control, prior to further analysis of case-control data.   
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Figure S2 – Maximum Likelihood Estimate (MLE) of number of OCD risk genes. 

 

 

 

Assuming each number of possible risk genes between 1-2,500, 100,000 simulations were conducted to 

determine the number of risk genes that yielded the closest agreement between our observed and simulated 

data. In each simulation, we generated 95 variants (the number of de novo damaging variants observed in our 

OCD sample), then randomly assigned a percentage of variants (determined by the fraction of de novo 

damaging variants estimated to carry OCD risk) to the risk genes, recording the frequency at which the number 

of genes with two and three recurrent variants matched the number observed in our study (2 and 1, 

respectively). This MLE method yields an estimate of 335 OCD risk genes (red vertical line), a number that is 

in close agreement with that from an alternative "unseen species" method (317 genes, 95% CI: 190-454). 
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Figure S3 – Gene discovery by number of trios sequenced. 

 

 

 

Using the MLE estimate of 335 risk genes, we estimated the number of probable (q<0.3) and high-confidence 

(q<0.1) risk genes that will be discovered as more OCD trios are sequenced. We performed 10,000 

simulations at each cohort size from 25-3,000 trios, randomly generating variants and assigning to risk genes 

in agreement with the proportions seen in our data, then applying the TADA-Denovo algorithm. 
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Figure S4 – Sequencing coverage and parental age distributions. 
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Distribution boxplots of values for (A) mean target coverage, (B) median target coverage, (C) number of base 

pairs in all “callable” regions, (D) number of base pairs in coding “callable” regions, (E) paternal age, and (F) 

maternal age for both OCD and control cohorts. For each cohort, the box extends from the first through third 

quartiles, and the horizontal line is at the second quartile (median) of the data.  Whiskers extend to the largest 

non-outliers, and outlier data points are plotted individually. For each comparison, a p-value was calculated 

using a two-sided Wilcoxon rank sum test with continuity correction. Panels A-D show increased opportunity 

for variant calling in the OCD cohort, necessitating the use of de novo mutation rate comparisons within the 

callable exome, as explained in the main text and methods. Panels E-F show no significant difference in 

parental ages between case and control cohorts. Also see Table S1. 
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Figure S5 – CHD8 variants in OCD and ASD. 

 

 

Two de novo likely gene disrupting (LGD, red) and damaging missense (Mis-D, black) variants identified in CHD8 among OCD probands are 

indicated. ASD-associated de novo LGD and Mis-D mutations reported in the Simons Foundation Autism Research Initiative (SFARI) database 

(accessed April 12, 2017) are also shown in muted colors. Only variants with identifiable allele or residue sequence positions in the SFARI database 

were included in the above protein diagram, and splice site variants across cohorts are indicated by the respective allele change and underlined. 

Annotated protein domains predicted with confidence by the Simple Modular Architecture Research Tool (SMART) are shown as follows: CHR, 

chromatin organization modifier domain (blue), DEX, DEAD-like helicases superfamily (yellow), HELC, helicase superfamily c-terminal domain 

(pink), and BRK, domain of unknown function associated with CHROMO domain helicases (purple).



35 
 

Figure S6 – GeNets network analysis without candidates. 

 

 

 

Using the GeNets algorithm (https://apps.broadinstitute.org/genets), we mapped all 89 genes harboring de 

novo damaging mutations in OCD (excluding two genes, TTN and CACNA1E, which harbored de novo 

damaging variants in control subjects) onto the GeNets Metanetwork v1.0 to determine whether they are 

functionally connected. The density of the mapped network (density = number of edges / number of possible 

edges) was greater than 95% of randomly sampled gene sets, indicating that the network is significantly more 

connected than random (p=0.026). In the figure, node (gene) size is proportional to the number of connections. 
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Node color indicates “community” assignment. A community is a set of genes that are more connected to one 

another than to another group of genes. Interactive results are available here: 

https://www.broadinstitute.org/genets#/visualize/58d9425ea4e00291af652379. 
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