XPO5 promotes primary miRNA processing independently of RanGTP

Wang et al.

Supplementary Figure 1. XPO5 associates with primary transcripts of closely clustered miRNAs.

(a-b) IGV tracks of XPO5-CLIP, DROSHA-CLIP, DGCR8-CLIP, DICER-PARCLIP and AGO2/3-Seq for *mir-21* (a) and *mir-34a* (b). XPO5 binding to these monocistronic miRNAs is restricted within the pre-miRNA hairpin.
(c) Individual reads of XPO5 HITS-CLIP data show that XPO5 recognizes uncleaved *pri-mir-17~92* fragments between *mir-18a* and *mir-19a*. Red lines indicate the boundary of pre-miRNA hairpin. Note that many reads are across the DROSHA cleaving sites. (d-e) IGV tracks of XPO5-CLIP, DROSHA-CLIP, DGCR8-CLIP, DICER-PARCLIP and AGO2/3-Seq for *mir-15a~16-1* and *mir-15b~16-2* clusters (d), and *mir-200b* cluster (e). Widespread inter-pre-miRNA reads are only detected in *mir-15a~16-1* and *mir-15b~16-2* clusters but not in *mir-200b* cluster. Blue bars at the bottom and black lines together indicate the location of pre-miRNAs. Data range is shown on the left or right of each track. Negative value indicates the reads mapping to the minus strand.

а

Supplementary Figure 2. Predicted secondary structure and folding of *pri-mir-17~92* and *pri-mir-19a*. (a) Secondary structure of *pri-mir-17~92* is predicted by RNAfold. Heat map indicates the probability of secondary structures (Purple: 0 - low; Red: 1 - high). (b) *Pri-mir17~92* is in vitro transcribed and folded under P1 and P2 conditions in refolding buffer with or without Mg2+. Note that a DNA ladder is used, which does not reflect the correct size of RNA. (c) Secondary structure of *pri-mir-19a* and its truncation versions are predicted by RNAfold. Heat map indicates the probability of secondary structures (Purple: 0 - low; Red: 1 - high). Original data for b are provided in the Source Data file.

Silver stain

Supplementary Figure 3. XPO5 does not associate with the microprocessor.

(a) No XPO5 band is detected by silver staining for the 3XFLAG tagged microprocessor (DROSHA and DGCR8) immunoprecipitation sample from HEK293T cells. (b) Lack of XPO5 associating with the microprocessor is confirmed by XPO5 Western blotting for 3XFLAG tagged microprocessor immunoprecipitation sample. Both 3XFLAG-XPO5 and recombinant XPO5 are recognized by XPO5 antibody.

Supplementary Figure 4 b 728 XPO5-CLIP (all reads) 0 53 XPO5-CLIP (collasped) 0 DROSHA-CLIP 0 1 DGCR8-CLIP 0 2 DICER-PARCLIP 0 86 AGO2/3-Seq 0 scaRNA16 3 d С 5 137 **XPO5-CLIP** (all reads) 0 11 XPO5-CLIP (collasped) 0 DROSHA-CLIP 0

DGCR8-CLIP

DICER-PARCLIP

0 15

Supplementary Figure 4. XPO5 associates with diverse cellular RNAs containing double-stranded regions.

(a, c, e, g) IGV tracks of XPO5-CLIP, DROSHA-CLIP, DGCR8-CLIP, DICER-PARCLIP and AGO2/3-Seq show the association of each component with scaRNA16 (a), tRNA-Tyr (c), U11 snRNA (e) and 7SK RNA (g). Blue bars at the bottom indicate the coding region of each RNA. Arrows indicate the direction of transcription. Data range is shown on the right of each track. (b, d, f and h) The predicted secondary structure of each RNA by *RNAfold*. Heat map indicates the probability of secondary structures (Purple: 0 - low; Red: 1 - high).

Supplementary Figure 5. Predicted secondary structure of human vtRNA1-1 and mouse vault RNA and confirmation of XPO5 knock-out MEF cells.

(a) Secondary structures of human vtRNA1-1 and mouse vault RNA are predicted by *RNAfold*. Heat map indicates the probability of secondary structures (Purple: 0 - low; Red: 1 - high). (b-c) Depletion of XPO5 RNA and protein in *XPO5* KO MEF cells are confirmed by qPCR and Western blot. Data shown are mean s.d. from 3 independent experiments. *** P <0.001 by Student's t -test. Original data for c are provided in the Source Data file.

Supplementary Table T Antibodies a	and Prime	rs
------------------------------------	-----------	----

Antibodies	SOURCE	IDENTIFIER	
Beta-4 antibody	BD Bioscience	Cat#553745	
Anti-Ki67 antibody	Abcam	Cat#ab15580	
Polyclonal Antibody against Keratin 5, K5 (AF 138)	Covance	Cat#PRB-160P	
Purified anti-Keratin 1 Antibody	Covance	Cat#PRB-165P	
LEF1 (C12A5) Rabbit mAb	Cell signaling	Cat#2230	
Anti-Exportin-5 antibody [EPR8453]	Abcam	Cat#ab131281	
ANTI-FLAG® M2 Affinity Gel	Sigma	Cat#A2220	
Anti-Mouse Ago2 Monoclonal Antibody	Wako Chemicals GmbH	Cat#018-22021	
B-Tubulin Antibody	Cell signaling	Cat#2146	
Primers	0 0		
Names	sequences		
Human XPO5 cloning forward primer		GATGGATC	
	AAGTAAACGC		
Human XPO5 cloning reverse primer	GGCTCTAGATC AGGGT	TCAAAGAT GGTGGCC	
miR17~92a pri-miRNA transcription forward primer	GCGGTACCTAATACGACTCACTATAGGGTCAG		
miP17~02a pri miPNA transprintion reverse primer			
Pro miP30a in vitro transcription forward primer			
	ACTGGAAGCTGT		
Pre-miR30a in vitro transcription reverse primer	GCTGCA AACATCCGACTGAAAGC		
Pre-miR19a in vitro transcription forward primer	TAATACGACTCACTATAGG		
· · ·	AGTTTTGCATAGTTGCACTACAAG		
Pre-miR19a in vitro transcription reverse primer	TCAGTTTTGCATAGATTT	TCAGTTTTGCATAGATTTGCACAAC	
Pri-miR19a in vitro transcription forward primer	TAATACGACTCACTATAGGCAAGCAAGTATA TAGGTGTTTTAATAG		
Pri-miR19a in vitro transcription reverse primer	CAATAAAAGTACACAAAA	CAATAAAAGTACACAAAATTAGTAAAAATCA	
Pri-mir-19a_truncation v1 in vitro transcription	TAATACGACTCACTATAGG TGT TTT AAT AGT		
forward primer	TTT TGT TTG CAG TCC TC		
Pri-mir-19a_truncation v1 in vitro transcription	ATT AGT AAA AAT CAT TCA TTT GAA GGA AAT		
Pri-mir-19a, truncation v2 in vitro transcription			
forward primer	TGT TAG TTT TGC ATA GTT G		
Pri-mir-19a_truncation v2 in vitro transcription	GAA GGA AAT AGC AGG CCA CCA TC		
reverse primer			
Pri-miR15b-16-2 in vitro transcription forward primer	TAATACGACTCACTATAGGTTGAGGCCTTAA AGTACTGTAGC		
Pri-miR15b-16-2 in vitro transcription reverse primer	TCC CTG TCA CAC TAA	AGC AGC	
Pri-miR15b in vitro transcription reverse primer	CAT AGT TTT GAA TGA ATT TCC TTA AAT		
VtRNA1-1 in vitro transcription forward primer	TAATACGACTCACTATAGGGCTGGCTTTAG CTCAGCGG		
VtRNA1-1 in vitro transcription reverse primer	AAAAGGACTGGAGAGCGCCCG		
Mouse vtRNA probe for northern blot	GTA ACC GCT GAG CTA	AAG CTG GCC	
Mouse 5S RNA probe for northern blot	TCAGACGAGATCGGGC	GCGTTCAGGGTGGT	
qPCR primers			
XPO5_q_for primer	TGATCCTGTTTGGAGAT	GTCG	
XPO5_q_rev primer	CACATAGCAGATTTCCCAGTG		
Oct4_q_for primer	AGTGGAAAGCAACTCAGAGG		
Oct4_q_rev primer	AACTGTTCTAGCTCCTTCTGC		

CCATTGCTCACAGACCAGAG				
GTCTAGCCTCGGAGTGCCT				
TCCAAGTTGGGTTGGTCCAAGTCT				
AACCAAAGGATGAAGTGCAAGCGG				
TTGCTCTTCTTCCCCATGAC				
CGAAAGAACAGCCACCAGAT				
GAGTTT GTG ATG TTG AAG AAG GAT GTG G				
CCA TCA GGG CAT CGA CCC TG				
TCA GAT TCA AAA AGT GAA GTC TCA GGA				
CGG GTT GTG GTG TCT ACC TGC T				
AAG CAG CGG CGG CTC TAG				
CTA GAA CCG CCT CCG TAG CT				
TTGGTCGCCGTCTGGTAAAC				
GTGCCGGATGACAGGGATG				
Recombinant DNA				
(Lee et al., 2003)	N/A			
(Lee et al., 2003)	N/A			
This paper	N/A			
This paper	N/A			
Addgene	Cat#12553			
Gift from Ian G. Macara	N/A			
This paper	N/A			
Software and Algorithms				
Michael Zuker & Nick	N/A			
Markham				
(Martin, 2011)	https://cutadapt.readt			
(Quiples and Hell 2010)	hedocs.io/en/stable/			
(Quinian and Hall, 2010)	edocs io/en/latest/			
John Hopkins University	http://bowtie-			
	bio.sourceforge.net/b			
	owtie2/index.shtml			
(Anders et al., 2015)	https://htseq.readthed			
	ocs.io/en/release_0.9.			
Neveraft	1/			
novocran	om/products/povoalig			
	n/			
	CCATTGCTCACAGACCA GTCTAGCCTCGGAGTGC TCCAAGTTGGGTTGG			