Transcriptional repression of *GIF1* by the KIX-PPD-MYC repressor complex controls seed size in Arabidopsis

Liu et al.

Supplementary Fig. 1 Identification of the ppd1-2 ppd2-cr and ppd1-cr ppd2-1 mutants. a The ppd1-2 ppd2-cr plants were generated by CRISPR-Cas9 mediated genome editing in the ppd1-2 background. Alignment analysis of Col-0 and ppd1-2 ppd2-cr genomic DNA (top). The gRNA with red line is used for CRISPR-Cas9 mediated genome editing. Sequencing chromatogram of the genomic DNA from ppd1-2 ppd2-cr plants (middle). The A base with a red box represents the insertion base and causes a frameshift mutation of PPD2. The mutation sites of ppd1-2 and ppd2-cr in the ppd1-2 ppd2-cr plants are showed (bottom). b The ppd1-cr ppd2-1 plants were generated by CRISPR-Cas9 mediated genome editing in the ppd2-1 background. Alignment analysis of Col-0 and ppd1-cr ppd2-1 genomic DNA (top). The gRNA with red line is used for CRISPR-Cas9 mediated genome editing. Sequencing chromatogram of the genomic DNA from ppd1-cr ppd2-1 plants (middle). The red arrow position represents where the missing A base should be in The mutation sites of ppd1-cr and ppd2-1 in the ppd1-cr ppd2-1 plants are showed (bottom).

Supplementary Fig. 2 The phenotypes of *ppd1-2 ppd2-cr* and *ppd1-cr ppd2-1* plants. **a** 32-day-old plants of Col-0, *ppd1-2 ppd2-cr*, and *ppd1-cr ppd2-1* plants. **b** Leaf series of Col-0, *ppd1-2 ppd2-cr*, and *ppd1-cr ppd2-1*. **c** Area of individual leaves from Col-0, *ppd1-2 ppd2-cr*, and *ppd1-cr* (n = 12). **d** Palisade cells in the fifth leaf of Col-0, *ppd1-2 ppd2-cr*, and *ppd1-cr ppd2-1*. **e** The palisade cell number (CN, n = 8) and palisade cell area (CA, n = 300) in the fifth leaf of Col-0, *ppd1-2 ppd2-cr*, and *ppd1-cr ppd2-1*. **e** The palisade cell number (CN, n = 8) and palisade cell area (CA, n = 300) in the fifth leaf of Col-0, *ppd1-2 ppd2-cr*, and *ppd1-cr ppd2-1*. Scale bars, 4 cm (**a**), 1 cm (**b**), and 50 µm (**d**). Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: * *P* < 0.05 and ** *P* < 0.01.

Supplementary Fig. 3 KIX8 and PPD2 act maternally to control seed development. **a-b** The relative area of F_1 seeds (**a**) and F_2 seeds (**b**) from Col-0/Col-0, Col-0/*kix8-1*, *kix8-1*/Col-0, and *kix8-1*/*kix8-1* plants (n = 100). **c-d** The relative area of F_1 seeds (**c**) and F_2 seeds (**d**) from Col-0/Col-0, Col-0/*ppd2-1*, *ppd2-1*/Col-0, and *ppd2-1*/*ppd2-1* plants (n = 100). Seeds from the third to seventh silique on the stem of six plants were used for analysis. Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: * *P* < 0.05.

Supplementary Fig. 4 The PPD1/2-interacting proteins finding by split luciferase complementation assays.

Supplementary Fig. 5 KIX8 and KIX9 are not interact with MYC2/3/4 by split luciferase complementation assays .

Supplementary Fig. 6 The bimolecular fluorescence complementation assays showing that PPD1/2 interact with MYC3/4 in *N. benthamiana* leaves. YFP fluorescence was observed at 2 days later after coinfiltrating with different combinations of *nYFP-PPD1/2*, *cYFP-MYC3/4*, *nYFP*, and *cYFP* constructs. Blue dots represent the nuclei after staining with DAPI. Scale bar = 50 μ m.

Supplementary Fig. 8 KIX9 is not interact with MYC3/4 by pull-down analyses. His-KIX9 was incubated with GST-MYC3 or GST-MYC4 and MBP-PPD1 or MBP-PPD2. Proteins were pulled down by the Ni-NTA agarose beads and detected by Western blot with anti-GST, anti-MBP, or anti-His antibody.

Supplementary Fig. 9 The seed phenotype of the plants with overexpression of *KIX8*, *KIX9*, *PPD1*, and *PPD2*. **a-b** Seed area (**a**, n = 100), and 100 seed weight (**b**, n = 10) of Col-0, 35S:*Myc-KIX8* (Myc-KIX8 #2, #6, #11), 35S:*Myc-KIX9* (Myc-KIX9 #4, #9, #14), 35S:*Myc-PPD1* (Myc-PPD1 #1, #5, #8), and 35S:*Myc-PPD2* (Myc-PPD2 #2, #5, #7) plants. **c** The relative expression levels of *KIX8* in the 2 DAF (days after flowering) siliques of Col-0, and 35S:*Myc-KIX8* (Myc-KIX8 #2, #6, #11) (n = 3). **d** The relative expression levels of *KIX9* in the 2 DAF siliques of Col-0, and 35S:*Myc-KIX9* (Myc-KIX9 (Myc-KIX9 #4, #9, #14)). **e** The relative expression levels of *PPD1* in the 2 DAF siliques of Col-0, and 35S:*Myc-PPD1* (Myc-PPD1 #1, #5, #8) (n = 3). **f** The relative expression levels of *PPD2* in the 2 DAF siliques of Col-0, and 35S:*Myc-PPD1* (Myc-PPD2 (Myc-PPD2 #2, #5, #7) (n = 3). Seeds from the third to seventh silique on the stem of six plants were used for analysis. Scale bars = 0.5 mm. Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: * *P* < 0.05 and ** *P* < 0.01.

Supplementary Fig. 10 The seed phenotype of the plants with overexpression of *MYC3* and *MYC4*. **a-b** Seed area (**a**, n = 100), and 100 seed weight (**b**, n = 10) of Col-0, 35S:*GFP-MYC3* (GFP-MYC3 #2, #7, #12), and 35S:*GFP-MYC4* (GFP-MYC4 #1, #6, #8) plants. **c** The relative expression levels of *MYC3* in the 2 DAF (days after flowering) siliques of Col-0, and 35S:*GFP-MYC3* (GFP-MYC3 #2, #7, #12) (n = 3). **d** The relative expression levels of *MYC4* in the 2 DAF siliques of Col-0, and 35S:*GFP-MYC4* (GFP-MYC4 #1, #6, #8) (n = 3). Seeds from the third to seventh silique on the stem of six plants were used for analysis. Scale bars = 0.5 mm. Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: * *P* < 0.05 and ** *P* < 0.01.

Supplementary Fig. 11 The relative expression levels of *GIF1* in the 2 DAF siliques of *35S:Myc-KIX8* #6, *35S:Myc-KIX9* #14, *35S:Myc-PPD1* #8, *35S:Myc-PPD2* #5, *35S:GFP-MYC3* #12, and *35S:GFP-MYC4* #8 were detected by qPCR (n = 3). Data was normalized with *ACTIN2*. Error bars represent \pm SE. Different lowercase letters above the columns indicate the significant difference among different groups, one-way ANOVA *P*-values: *P* < 0.05.

Supplementary Fig. 12 The seed phenotype of 35S:GFP-KIX8;kix8-1, 35S:GFP-KIX9;kix9-1, 35S:GFP-PPD1;ppd1-2, 35S:GFP-PPD2;ppd2-1, 35S:GFP-MYC3;myc3, and 35S:GFP-MYC4;myc4 plants. Seed area (n = 100) of 35S:GFP-KIX8;kix8-1, 35S:GFP-KIX9;kix9-1, 35S:GFP-PPD1;ppd1-2, 35S:GFP-PPD2;ppd2-1, 35S:GFP-MYC3;myc3, and 35S:GFP-MYC4;myc4 plants. Seeds from the third to seventh silique on the stem of six plants were used for analysis. Scale bars = 0.5 mm. Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: * *P* < 0.05 and ** *P* < 0.01.

Supplementary Fig. 13 The phenotypes of *gif1* plants. **a** The 25-day-old plants of Col-0 and *gif1* (from left to right). **b** The 10-DAP-old siliques of Col-0 and *gif1* (from up to down). Red arrows show the abortion sites. Scale bars, $4 \text{ cm}(\mathbf{a})$ and $0.5 \text{ cm}(\mathbf{b})$.

Supplementary Fig. 14 Expression patterns of *KIX8*, *KIX9*, *PPD1*, *PPD2*, *MYC3*, *MYC4*, and *GIF1* in seeds during seed development. The promotors of *KIX8* (2,087 bp), *KIX9* (1,714 bp), *PPD1* (1,797 bp), *PPD2* (2,153 bp), *MYC3* (2,180 bp), *MYC4* (2,132 bp), and *GIF1* (2,337 bp) and their CDSs were cloned into the *pMDC107-GFP* vector to generate *KIX8pro:KIX8-GFP*, *KIX9pro:KIX9-GFP*, *PPD1pro:PPD1-GFP*, *PPD2pro:PPD2-GFP*, *MYC3pro:MYC3-GFP*, *MYC4pro:MYC4-GFP*, and *GIF1pro:GIF1-GFP* constructs, respectively. GFP fluorescence was observed by the confocal microscopy. DAP, days after pollination. Scale bars = 50 μm.

Supplementary Fig. 15 The siliques (a) and silique length (SL) and silique width (SW) (b) of Col-0, *gif1, myc3 myc4, gif1 myc3 myc4, kix8-1 kix9-1, gif1 kix8-1 kix9-1, ppd1-2 ppd2-cr, gif1 ppd1-2 ppd2-cr, 35*S:SAP, and 35S:SAP;gif1 plants (n = 35). Siliques from the fourth silique on the stem of plants were used for analysis. Scale bar = 0.5 cm. Error bars represent \pm SE. Different lowercase letters above the columns indicate the significant difference among different groups, one-way ANOVA *P*-values: *P* < 0.05.

Supplementary Fig. 16 The fertility of Col-0, *gif1*, *myc3 myc4*, *gif1 myc3 myc4*, *kix8-1 kix9-1*, *gif1 kix8-1 kix9-1*, *ppd1-2 ppd2-cr*, *gif1 ppd1-2 ppd2-cr*, *35S:SAP*, and *35S:SAP;gif1* plants (n = 40). Error bars represent \pm SE. Different lowercase letters above the columns indicate the significant difference among different groups, one-way ANOVA *P*-values: *P* < 0.05.

Supplementary Fig. 17 The *GIF1* expression in the 35S:SAP plants. The relative expression levels of *GIF1* in the 3 DAP siliques of Col-0, and 35S:SAP were detected by qPCR (n = 4). Data are normalized with *ACTIN2*. Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: ** *P* < 0.01.

Supplementary Fig. 18 The expression levels of *GIF2* and *GIF3* in the Col-0, *kix8-1 kix9-1*, *ppd1-2 ppd2-cr*, and *myc3 myc4*. The expression levels of *GIF2* and *GIF3* in 3 DAP siliques of the Col-0, *kix8-1 kix9-1*, *ppd1-2 ppd2-cr*, and *myc3 myc4* were detected by qPCR (n = 3). Data was normalized with *ACTIN2*. Error bars represent \pm SE. *, significant difference from the Col-0, one-way ANOVA *P*-values: * P < 0.05.

Supplementary Fig. 19 The stabilities of MYC3 and MYC4 are not regulated by SAP. **a-b** The amounts of GFP-MYC3 and GFP-MYC4 in the plants with SAP overexpression. 35S:GFP-MYC3 (#7 and #12) or 35S:GFP-MYC4 (#1 and #8) transgenic line was crossed with Col-0 and 35S:SAP plants to generate 35S:GFP-MYC3 #7,Col-0, 35S:GFP-MYC3 #7,35S:SAP, 35S:GFP-MYC3 #12,Col-0, 35S:GFP-MYC3 #12,35S:SAP, 35S:GFP-MYC3 #12,Col-0, 35S:GFP-MYC3 #12,35S:SAP, 35S:GFP-MYC3 #12,Col-0, 35S:GFP-MYC3 #8,Col-0, and 35S:GFP-MYC3 #8,35S:SAP, respectively. 10-day-old F₁ seedlings were used for analysis with anti-GFP and anti-RPN6 antibodies. RPN6 was used as loading controls. **c** The relative expression of SAP in 35S:GFP-MYC3 #7,35S:SAP, 35S:GFP-MYC3 #7,20-0, and 35S:GFP-MYC3 #7,20-0, 35S:GFP-MYC3 #7,35S:SAP, 35S:GFP-MYC3 #12,00-0, and 35S:GFP-MYC3 #12,35S:SAP asedlings (n = 3). 10-day-old F₁ seedlings were used for analysis by qPCR. Data was normalized with ACTIN2. Error bars represent \pm SE. **e** The relative expression of MYC4 in 35S:GFP-MYC4 #1,35S:SAP, 35S:GFP-MYC3 #8,00-0, and 35S:GFP-MYC4 #1,35S:SAP, 35S:GFP-MYC3 #8,00-0, and 35S:GFP-MYC3 #8,35S:SAP seedlings (n = 3). 10-day-old F₁ seedlings were used for analysis by qPCR. Data was normalized with ACTIN2. Error bars represent \pm SE.

Supplementary Fig. 20 The seeds of Col-0, *kix8-1 kix9-1 ppd1-2 ppd2-cr*, *myc3 myc4*, and *gif1* at 2, 4 and 6 DAP. The seeds were obtained under 20x magnification by the differential interference contrast microscope. The outer integument cells were obtained under 40x magnification by the differential interference contrast microscope. Scale bars, 25 μm (images at 2 DAP) and 50 μm (images at 4 and 6 DAP). Supports for Fig. 1i-l, Fig. 3i-l and Fig. 5i-l.

Supplementary Fig. 21 Original images of Fig. 2c.

Supplementary Fig. 22 Original images of Fig. 2d.

Supplementary Fig. 23 Original images of Fig. 2e.

Supplementary Fig. 24 Original images of Fig. 2f.

Supplementary Table 1 | List of primers used in this study

Primer Name	Sequence	Purpose
ppd1-2F	ACGAGAAGAATTCGCCTTCTC	genotype analysis
ppd1-2R	TGGCCACAAGACGACTATTTC	genotype analysis
ppd2-1F	CGCTCTCAGGTGTTTTAAAGC	genotype analysis
ppd2-1R	GAATCATGGTTTTGATGGTGG	genotype analysis
kix8-1F	TTGGTGCCACTTAGACCAAAC	genotype analysis
kix8-1R	TGAAAATCTGGCGAATAATCG	genotype analysis
kix9-1F	ATTTGACGCAAGTTATCCACG	genotype analysis
kix9-1R	CTTGAAGCTCTCCTTGGTGTG	genotype analysis
gif1-F	AGGGTCCAGTTGTGTTTTGAGTTC	genotype analysis
gif1-R	GCTCGAGTCCTTGTGCCACACTCTT	genotype analysis
myc3-F	AGGCAAAACCCATTTACAACC	genotype analysis
myc3-R	TGAAGCAGAGAGGCAGAGAAG	genotype analysis
myc4-F	CTCCTTGACAAATTTGATCCG	genotype analysis
myc4-R	CGCTACACACCATTGTTTG	genotype analysis
LBa1	TGGTTCACGTAGTGGGCCATCG	genotype analysis
8474	ATAATAACGCTGCGGACATCTACATT	genotype analysis
LB1	CAGAAATGGATAAATAGCCTTG	genotype analysis
LBb1.3	ATTTTGCCGATTTCGGAAC	genotype analysis
0849	ATTGACCATCATACTCATTGC	genotype analysis
PPD1-CRIJD-F	GGATTCCGGTGAAGAGGAGG	genotype analysis
PPD1-CRIJD-R	TCAATCAACGTTGTTGTGAC	genotype analysis
PPD2-CRIJD-F	AATCTCTGTTTTCTTTCGTGTC	genotype analysis
PPD2-CRIJD-R	AGATAAAACTTGCTGGATCGC	genotype analysis
GIF1-QF	CTACCCCAGCAATGTTACCTC	qPCR
GIF1-QR	ATTCGCTAAGCTTTCCAGAGT	qPCR
GIF2-QF	TACAGTTTGGTAGCCCACTCC	qPCR
GIF2-QR	TGGTCTAATCCCCATGTGTCC	qPCR
GIF3-QF	TTCCTTCATTTCCGCCCAC	qPCR
GIF3-QR	CTGATTTTCCAAGATCGCCAT	qPCR
V159-MYC3F	GGGACGAGCTCGGTACCCGGGGATCCATGAACGGCACAACA	MYC3-nLUC
	ТСАТСААТС	
V159-MYC3R	GGGACGCGTACGAGATCTGGTCGACATAGTTTTCTCCGACTT	MYC3-nLUC
	тс	
V45-MYC3F	GGTTCCGCGTGGATCCCCGGAATTCATGAACGGCACAACAT	GST-MYC3
	CATCAATC	
V45-MYC3R	GCCGCTCGAGTCGACCCGGGAATTCTCAATAGTTTTCTCCGA	GST-MYC3
	стттс	
YC-MYC3F	CTTACGATGTTCCTGACTATGCGATGAACGGCACAACATCAT	cYFP-MYC3
	CAATC	
YC-MYC3R	AACATATCCAGTCACTATGGTCAATAGTTTTCTCCGACTTTC	cYFP-MYC3

GW-MYC3F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAACGGCA	GFP- MYC3
	CAACATCATCAATC	
GW-MYC3R	GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAATAGTTTTC	GFP- MYC3
	TCCGACTTTC	
GW-MYC4F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTCCGAC	GFP- MYC4
	GAATGTTCAAG	
GW-MYC4R	GGGGACCACTTTGTACAAGAAAGCTGGGTCTCATGGACATTC	GFP- MYC4
	TCCAACTTTC	
V159-MYC4F	GGGACGAGCTCGGTACCCGGGGATCCATGTCTCCGACGAAT	MYC4-nLUC
	GTTCAAG	
V159-MYC4R	GGGACGCGTACGAGATCTGGTCGACTGGACATTCTCCAACT	MYC4-nLUC
	ттс	
V45-MYC4F	GGTTCCGCGTGGATCCCCGGAATTCATGTCTCCGACGAATG	GST-MYC4
	TTCAAG	
V45-MYC4R	GCCGCTCGAGTCGACCCGGGAATTCTCATGGACATTCTCCA	GST-MYC4
	ACTTTC	
YC-MYC4F	CTTACGATGTTCCTGACTATGCGATGTCTCCGACGAATGTTCA	cYFP-MYC4
	AG	
YC-MYC4R	AACATATCCAGTCACTATGGTCATGGACATTCTCCAACTTTC	cYFP-MYC4
V158-PPD1F	GTCCCGGGGCGGTACCCGGGGATCCATGGATGTCGGAGTTT	cLUC-PPD1
	CACC	
V158-PPD1R	TCCTTGTAGTCCATTTGTTGGATCCTTAAATGCCTTCACTGTT	cLUC-PPD1
	TAGA	
V158-PPD2F	GTCCCGGGGCGGTACCCGGGGATCCATGGATGTAGGAGTTA	cLUC-PPD2
	CTACGG	
V158-PPD2R	TCCTTGTAGTCCATTTGTTGGATCCTTAATTATCTTCGCTGTTT	cLUC-PPD2
	AGATCA	
MYC3-F2	CTAGAGGATCCCCGGGTACCATGAACGGCACAACATCATC	MYC3-CFP
MYC3-R2	GCGGCCGCTCTAGAACTAGTATAGTTTTCTCCGACTTTCG	MYC3-CFP
MYC4-F2	CTAGAGGATCCCCGGGTACCATGTCTCCGACGAATGTTC	MYC4-CFP
MYC4-R2	GCGGCCGCTCTAGAACTAGTTGGACATTCTCCAACTTTC	MYC4-CFP
PPD1-F2	CTAGAGGATCCCCGGGTACCATGGATGTCGGAGTTTCACC	PPD1-YFP
PPD1-R2	GCGGCCGCTCTAGAACTAGTAATGCCTTCACTGTTTAGATC	PPD1-YFP
PPD2-F2	CTAGAGGATCCCCGGGTACC ATGGATGTAGGAGTTACTAC	PPD2-YFP
PPD2-R2	GCGGCCGCTCTAGAACTAGTATTATCTTCGCTGTTTAGATC	PPD2-YFP
DEL1-F2	CTAGAGGATCCCCGGGTACCATGTCAGATCTATCGCCAG	DEL1-YFP
DEL1-R2	GCGGCCGCTCTAGAACTAGTACGGTGTTGTGATGTATTAG	DEL1-YFP
V47-PPD1F	GGGAAGGATTTCAGAATTCGGATCCATGGATGTCGGAGTTTC	MBP-PPD1
	ACC	
V47-PPD1R	CCTGCAGGTCGACTCTAGAGGATCCTTAAATGCCTTCACTGT	MBP-PPD1
	TTAGAT	
V47-PPD2F	GGGAAGGATTTCAGAATTCGGATCCATGGATGTAGGAGTTAC	MBP-PPD2
	TACGG	

V47-PPD2R	CCTGCAGGTCGACTCTAGAGGATCCTTAATTATCTTCGCTGTT	MBP-PPD2
	TAGATC	
YN-PPD1F	GAGGAAGAGTATATGCCTATGGAAATGGATGTCGGAGTTTCA	nYFP-PPD1
	СС	
YN-PPD1R	AACATATCCAGTCACTATGGTTAAATGCCTTCACTGTTTAGAT	nYFP-PPD1
YN-PPD2F	GAGGAAGAGTATATGCCTATGGAAATGGATGTAGGAGTTACTA	nYFP-PPD2
	CGG	
YN-PPD2R	AACATATCCAGTCACTATGGTTAATTATCTTCGCTGTTTAGATC	nYFP-PPD2
V6-PPD1F	GAGGACTTGAATTCGGTACCCATGGATGTCGGAGTTTCACC	Myc-PPD1
V6-PPD1R	CGATTTCGAACCCGGGGTACCTTAAATGCCTTCACTGTTTAG	Myc-PPD1
V6-PPD2F	GAGGACTTGAATTCGGTACCCATGGATGTAGGAGTTACTACG	Myc-PPD2
V6-PPD2R	CGATTTCGAACCCGGGGTACCTTAATTATCTTCGCTGTTTAGA	Myc-PPD2
V6-KIX8F	GAGGACTTGAATTCGGTACCCATGCCGAGGCCAGGACCAAG	Myc-KIX8
V6-KIX8R	CGATTTCGAACCCGGGGTACCCTAAAGGAAGTCTCCACACA	Myc-KIX8
V6-KIX9F	GAGGACTTGAATTCGGTACCCATGCCGAGGCCAGGGCCAAG	Myc-KIX9
V6-KIX9R	CGATTTCGAACCCGGGGTACCTCAGTTGTTATTGTTGCTGCT	Myc-KIX9
V6-MYC3F	GAGGACTTGAATTCGGTACCCATGAACGGCACAACATCATC	Myc-MYC3
V6-MYC3R	CGATTTCGAACCCGGGGTACCTCAATAGTTTTCTCCGACT	Myc-MYC3
V6-MYC4F	GAGGACTTGAATTCGGTACCCATGTCTCCGACGAATGTTC	Myc-MYC4
V6-MYC4R	CGATTTCGAACCCGGGGTACCTCATGGACATTCTCCAACT	Myc-MYC4
V6-TPLF	GAGGACTTGAATTCGGTACCCATGTCTTCTCTTAGTAGAG	Myc-TPL
V6-TPLR	CGATTTCGAACCCGGGGTACCTCATCTCTGAGGCTGATCAG	Myc-TPL
GIF1pro-F	CGCGGTGGAGATCGAATTCCCATGGAGAGGATTCAACATCA	GIF1pro:LUC
	ACCTCAC	
GIF1pro-R	TTTATGTTTTTGGCGTCTTCCATGGGTGCTGTTGCATTTCTTT	GIF1pro:LUC
	TGC	
V46-KIX8F	AATGGGTCGCGGATCCGAATTCATGCCGAGGCCAGGACCAA	His-KIX8
	GAC	
V46-KIX8R	TTGTCGACGGAGCTCGAATTCATGCCGAGGCCAGGACCAAG	His-KIX8
	AC	
V46-KIX9F	AATGGGTCGCGGATCCGAATTCATGCCGAGGCCAGGGCCAA	His-KIX9
	GAC	
V46-KIX9R	TTGTCGACGGAGCTCGAATTCTCAGTTGTTATTGTTGCTGCT	His-KIX9
GW-GIF1F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTC	35S:GIF1
	ATGCAACAGCACCTGATGCAGAT	
GW-GIF1R	GGGGACCACTTTGTACAAGAAAGCTGGGTC	35S:GIF1
	TCAATTCCCATCATCTGATG	
KIX8pro-F	TAGAGGATCCCCGGGTACGTAATACAGCAACCTCTCCCAC	KIX8pro:KIX8-GFP
KIX8pro-R	CTTGGTCCTGGCCTCGGCAT	KIX8pro:KIX8-GFP
KIX8-F	ATGCCGAGGCCAGGACCAAG	KIX8pro:KIX8-GFP
KIX8-R	GTACCGGTAGAAAAAATGAGAAGGAAGTCTCCACAAAAG	KIX8pro:KIX8-GFP
KIX9pro-F	TAGAGGATCCCCGGGTACTTCGTCTTCTCTCGAGTTGTC	KIX9pro:KIX9-GFP
KIX9pro-R	CTTGGCCCTGGCCTCGGCAT	KIX9pro:KIX9-GFP

KIX9-F	ATGCCGAGGCCAGGGCCAAG	KIX9pro:KIX9-GFP
KIX9-R	GTACCGGTAGAAAAAATGAGGTTGTTATTGTTGCTGCTTATC	KIX9pro:KIX9-GFP
PPD1pro-F	TAGAGGATCCCCGGGTACGGAGACTTGATGCTGATAAC	PPD1pro:PPD1-GFP
PPD1pro-R	GGTGAAACTCCGACATCCAT	PPD1pro:PPD1-GFP
PPD1-F	ATGGATGTCGGAGTTTCACC	PPD1pro:PPD1-GFP
PPD1-R	GTACCGGTAGAAAAAATGAGAATGCCTTCACTGTTTAGATC	PPD1pro:PPD1-GFP
PPD2pro-F	TAGAGGATCCCCGGGTACGATCCATTTCTTCGATAACGAC	PPD2pro:PPD2-GFP
PPD2pro-R	CGTAGTAACTCCTACATCCAT	PPD2pro:PPD2-GFP
PPD2-F	ATGGATGTAGGAGTTACTACG	PPD2pro:PPD2-GFP
PPD2-R	GTACCGGTAGAAAAAATGAGATTATCTTCGCTGTTTAGATC	PPD2pro:PPD2-GFP
MYC3pro-F	TAGAGGATCCCCGGGTACAAGTCACACAATTCTAAATC	MYC3pro:MYC3-GFP
MYC3pro-R	GATGATGTTGTGCCGTTCAT	MYC3pro:MYC3-GFP
MYC3-F	ATGAACGGCACAACATCATC	MYC3pro:MYC3-GFP
MYC3-R	GTACCGGTAGAAAAAATGAGATAGTTTTCTCCGACTTTCG	MYC3pro:MYC3-GFP
MYC4pro-F	TAGAGGATCCCCGGGTACCAACGTAATGCTACACATTAG	MYC4pro:MYC4-GFP
MYC4pro-R	CTTGAACATTCGTCGGAGACAT	MYC4pro:MYC4-GFP
MYC4-F	ATGTCTCCGACGAATGTTCAAG	MYC4pro:MYC4-GFP
MYC4-R	GTACCGGTAGAAAAAATGAGTGGACATTCTCCAACTTTCTC	MYC4pro:MYC4-GFP
GIF1pro-F	TAGAGGATCCCCGGGTACAGAGGATTCAACATCAACCTCAC	GIF1pro:GIF1-GFP
GIF1pro-R	CTGCATCAGGTGCTGTTGCAT	GIF1pro:GIF1-GFP
GIF1-F	ATGCAACAGCACCTGATGCAG	GIF1pro:GIF1-GFP
GIF1-R	GTACCGGTAGAAAAAATGAGATTCCCATCATCTGATGATTTC	GIF1pro:GIF1-GFP
ChIPF1F	TGTGTACATATTGATAAGTAG	ChIP-qPCR
ChIPF1R	CTTTCTGTCTCATCCTATCTC	ChIP-qPCR
ChIPF2F	CCAAAACAAAATAAGACGAC	ChIP-qPCR
ChIPF2R	GGATTTTATAATAAAGTAATGC	ChIP-qPCR
ChIPF3F	AGATAACTATTGGTAAGCGTAAG	ChIP-qPCR
ChIPF3R	TTGTTTTAAAAGTAGCGCATG	ChIP-qPCR
ChIPF4F	GAATTGATCATTTGTAAGCG	ChIP-qPCR
ChIPF4R	CAATAGTGTTTCTATGCCATC	ChIP-qPCR
Actin7-ChIPF	TGTTGGTCGTCCTAGGCAC	ChIP-qPCR
Actin7-ChIPR	ATGCCATATCTTTTCCATGTC	ChIP-qPCR