## **Supplementary Information**

## Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> towards beneficial soil bacteria

**Bilal Ahmed,**\*<sup>1</sup> Fuad Ameen<sup>2</sup>, Asfa Rizvi<sup>1</sup>, Khursheed Ali<sup>1</sup>, Hana Sonbol<sup>3</sup>, Almas Zaidi<sup>1</sup>, Mohammad Saghir Khan<sup>1</sup>, Javed Musarrat<sup>1,4</sup>

<sup>1</sup>Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India

<sup>2</sup>Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

<sup>3</sup>Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

<sup>4</sup>School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu & Kashmir, India

## \*Correspondence to:

Bilal Ahmed Nanotoxicology Laboratory, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India Email; <u>bilalahmed.amu@gmail.com</u>

| S.   | IR sign:      | al (cm <sup>-1</sup> ) in the s<br><i>mosselii</i> | pectrum of <i>P</i> .   | Frequency assignment                                  | Reference                  |
|------|---------------|----------------------------------------------------|-------------------------|-------------------------------------------------------|----------------------------|
| INO, | Control       | P. mosselii +<br>AgNPs                             | P. mosselii +<br>ZnONPs |                                                       |                            |
| 1    | 3324-<br>3437 | 3319-3437                                          | 3333-3442               | O–H str of hydroxyl groups                            | Maquelin et al. (2002)     |
| 2    | 3289          | 3292                                               | 3289                    | N–H str (amide A) of proteins                         | Maquelin et al. (2002)     |
| 3    | 3075          | 3072                                               | 3079                    | N–H str (amide A) of proteins                         | Maquelin et al. (2002)     |
| 4    | 2959          | 2959                                               | 2961                    | C–H str (asym) of –CH <sub>3</sub> in fatty acids     | Maquelin et al. (2002)     |
| 5    | 2924          | 2926                                               | 2926                    | C–H str (asym) of >CH <sub>2</sub>                    | Maquelin et al. (2002)     |
| 6    | 2853          | 2853                                               | 2853                    | CH <sub>2</sub> Sym lipids                            | Movasaghi et al. 2008      |
| 7    | 1650          | 1653                                               | 1653                    | Amide I of beta-pleated sheet structures              | Maquelin et al. (2002)     |
| 8    | 1539          | 1540                                               | 1536                    | N-H def., C-H str                                     | Movasaghi et al. (2008)    |
| 9    | 1442          | 1445                                               | 1445                    | Asy CH <sub>3</sub> bending of proteins               | Movasaghi et al. (2008)    |
| 10   | 1400          | 1403                                               | 1405                    | Symmetric stretch of C-O of COO- groups               | Lu et al.<br>(2011)        |
| 11   | 1308          | 1314                                               | 1311                    | Amide III band components of proteins                 | Movasaghi et<br>al. (2008) |
| 12   | 1235          | 1235                                               | 1235                    | P=O str (asym) of >PO <sub>2</sub><br>phosphodiesters | Maquelin et al. (2002)     |
| 13   | 1066          | 1058                                               | 1072                    | $P=O \text{ str (sym) of } >PO_2$                     | Maquelin et al. (2002)     |
| 14   | 600-900       | 600-900                                            | 600-900                 | Finger Print Region                                   | Maquelin et al. (2002)     |

**Table S1:** FTIR bond assignments of *P. mosselii* in the presence and absence of Ag-NPs and ZnO-NPs

| S.<br>N | IR            | signal (cm <sup>-1</sup> ) in the<br><i>chroococci</i> | spectrum of A.<br>um       | Frequency assignment                                  | Reference                  |  |
|---------|---------------|--------------------------------------------------------|----------------------------|-------------------------------------------------------|----------------------------|--|
| 0.      | Contr<br>ol   | A. chroococcum<br>+ AgNPs                              | A. chroococcum<br>+ ZnONPs |                                                       |                            |  |
| 1       | 3324-<br>3439 | 3319-3435                                              | 3314-3425                  | O–H str of hydroxyl groups                            | Maquelin et al. (2002)     |  |
| 2       | 3282          | 3284                                                   | 3285                       | N–H str (Amide A) of proteins                         | Maquelin et al. (2002)     |  |
| 3       | 2956          | 2961                                                   | 2961                       | C–H str (asym) of $-CH_3$ in fatty acids              | Maquelin et al. (2002)     |  |
| 4       | 2924          | 2924                                                   | 2924                       | C–H str (asym) of $>$ CH <sub>2</sub>                 | Maquelin et al. (2002)     |  |
| 5       | 2853          | 2850                                                   | 2855                       | CH <sub>2</sub> Sym lipids                            | Movasaghi et<br>al. (2008) |  |
| 6       | 1653          | 1656                                                   | 1653                       | Amide I of beta-pleated sheet structures              | Maquelin et al. (2002)     |  |
| 7       | 1542          | 1539                                                   | 1539                       | N-H def., C-H str                                     | Movasaghi et<br>al. (2008) |  |
| 8       | 1457          | 1454                                                   | 1451                       | Asy CH <sub>3</sub> bending of proteins               | Movasaghi et<br>al. (2008) |  |
| 9       | 1402          | 1402                                                   | 1396                       | Symmetric stretch of C-O of COO- groups               | Lu et al. (2011)           |  |
| 1<br>0  | 1231          | 1235                                                   | 1235                       | P=O str (asym) of >PO <sub>2</sub><br>phosphodiesters | Maquelin et al. (2002)     |  |
| 1<br>1  | 1072          | 1055                                                   | 1058                       | P=O str (sym) of >PO <sub>2</sub>                     | Maquelin et al. (2002)     |  |
| 1<br>2  | 600-<br>900   | 600-900                                                | 600-900                    | Finger Print Region                                   | Maquelin et al. (2002)     |  |

**Table S2:** FTIR bond assignments of *A. chroococcum* in the presence and absence of Ag-NPs

 and ZnO-NPs

| Dentionaleur                                        | Nanoparticles                                                                  |                                                              |                                                |                                                                                      |                                                                                                                                                   |  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Particulars                                         | Al <sub>2</sub> O <sub>3</sub> -NPs                                            | CuO-NPs                                                      | TiO <sub>2</sub> -NPs                          | ZnO-NPs                                                                              | Ag-NPs                                                                                                                                            |  |  |  |
| <sup><i>a</i></sup> Elemental composition (%)       | Al (50.6), O (49.4)                                                            | Cu (76.7), O (23.3)                                          | Ti (53.2), O (46.8)                            | Zn (78.9), O (21.1)                                                                  | Ag (38.01), C (2.47), N<br>(18.88), O (33.93), Na (6.71)                                                                                          |  |  |  |
| <sup>b</sup> Morphology                             | Spherical to<br>lobular to short<br>rods of variable<br>length and<br>diameter | Irregular individual<br>and aggregates with<br>rough surface | Spherical with<br>uniform size<br>distribution | Pleomorphic, smaller<br>to larger sized<br>aggregates with some<br>small thin sheets | Aggregates of NPs with<br>various shapes predominantly<br>spherical,                                                                              |  |  |  |
| <sup>c</sup> Crystal size (nm)                      | 28                                                                             | 18                                                           | 4.6                                            | 24                                                                                   | 12                                                                                                                                                |  |  |  |
| <sup>d</sup> Primary size (nm)                      | 21.8±8.7                                                                       | 18.4±5.5                                                     | 3.9±0.9                                        | 34±10                                                                                | 13.2±9.5                                                                                                                                          |  |  |  |
| <sup>e</sup> Secondary size (nm) in distilled water | 238±4.6                                                                        | 194±5.8                                                      | 148±8.4                                        | 248±11.7                                                                             | 221±12.4                                                                                                                                          |  |  |  |
| Zeta potential (mV)                                 | +26.1±1.7                                                                      | -29.8±2.1                                                    | +19.2±2.3                                      | -21±0.9                                                                              | +31±3.1                                                                                                                                           |  |  |  |
| Signal in FTIR spectrum (cm <sup>-1</sup> )         | 466                                                                            | 533                                                          | 541                                            | 482                                                                                  | Various signals for quercetin<br>functional groups such as -OH<br>phenolic stretch, C-C<br>stretches, C-H bending, C=O<br>stretch and C-O stretch |  |  |  |

Table S3: Physicochemical properties of nanoparticles

<sup>*a*</sup>Data measured by EDX; <sup>*b*</sup>revealed by SEM, AFM and TEM; <sup>*c*</sup>measured by XRD; <sup>*d*</sup>Determined by TEM; <sup>*e*</sup>Determined by DLS. In this and succeeding tables, EDX, SEM, AFM, TEM, XRD and DLS represents energy dispersive X-ray, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, X-ray diffraction and dynamic light scattering, respectively; '+' and '-' indicates positive and negative, respectively; ± represents standard deviation

| Time<br>(h)         | Concentration<br>of NPs  | Size of NPs (<br>in nutrie<br>Ag-NPs | ( <b>nm) by DLS</b><br>ent broth<br>ZnO-NPs | Metal io<br>(µg<br>Ag <sup>+</sup> | on release<br>ml <sup>-1</sup> )<br>Zn <sup>2+</sup> | Metal ion<br>release (%)<br>Ag <sup>+</sup> Zn <sup>2+</sup> |      |  |
|---------------------|--------------------------|--------------------------------------|---------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------------------------|------|--|
| $t_{0}(0)$          | 1000 µg ml <sup>-1</sup> | 244±9                                | 323±10.5                                    | 10±2                               | 10.6±3.7                                             | 1.03                                                         | 1.06 |  |
| t <sub>1</sub> (3)  | 1000 µg ml <sup>-1</sup> | 267.3±12.2                           | 345±5                                       | 18±3                               | 14±2                                                 | 1.8                                                          | 1.43 |  |
| t <sub>2</sub> (6)  | 1000 µg ml <sup>-1</sup> | 286.6±6.6                            | 339.3±8.5                                   | 20±7                               | 19.3±4.7                                             | 2.03                                                         | 1.93 |  |
| t <sub>3</sub> (12) | 1000 µg ml-1             | 278.6±3.7                            | 337.6±15.2                                  | 31±10                              | 20±5.8                                               | 3.13                                                         | 2.06 |  |
| t <sub>4</sub> (24) | 1000 µg ml-1             | 297.3±12                             | 352±4                                       | 39±8.5                             | 26.3±5                                               | 3.93                                                         | 2.63 |  |

**Table S4:** Time (0-24 h) dependent analysis of nanoparticle size and dissolution of metal ions in sterile nutrient broth (1X).

 Table S5: Bacterial cultures used in the present study

| S.<br>No. | Accession<br>Number                                                             | ssion Taxonomic designation<br>ber |                     | Plant growth promoting traits                             |  |  |
|-----------|---------------------------------------------------------------------------------|------------------------------------|---------------------|-----------------------------------------------------------|--|--|
| 1.        | ATCC 9043, Azotobacter<br>2351 (T) chroococcum Beijerinck<br>1901 (Type strain) |                                    | Soil                | N <sub>2</sub> fixation, L-<br>carnitine production       |  |  |
| 2.        | 2095                                                                            | Bacillus thuringiensis             | Soybean rhizosphere | Zinc solubilization                                       |  |  |
| 3.        | 2126                                                                            | Pseudomonas mosselii               | Soybean rhizosphere | Zinc solubilization,<br>siderophore<br>production         |  |  |
| 4.        | NAIMCC-B-<br>00863                                                              | Sinorhizobium meliloti             | Not mentioned       | Symbiotic N <sub>2</sub> fixer ( <i>Medicago sativa</i> ) |  |  |

Table S6: Scheme of bacterial growth under the influence of varying concentrations of NPs

| NPs<br>Used | Treatment (μg ml <sup>-1</sup> )<br>(i) |      |                 | Treatment |   |   |                 | Treatment (µg ml <sup>-1</sup> ) (iii) |      |
|-------------|-----------------------------------------|------|-----------------|-----------|---|---|-----------------|----------------------------------------|------|
| 0.504       | Α                                       | B    | . <u>,</u><br>Р | S         | A | B | . <u>,</u><br>Р | S                                      |      |
|             | 125                                     | 125  | 125             | 125       | - | - | -               | -                                      | 125  |
|             | 250                                     | 250  | 250             | 250       | - | - | -               | -                                      | 250  |
| Ag-NPs      | 500                                     | 500  | 500             | 500       | - | - | -               | -                                      | 500  |
|             | 1000                                    | 1000 | 1000            | 1000      | - | - | -               | -                                      | 1000 |
|             | 125                                     | 125  | 125             | 125       | - | - | -               | -                                      | 125  |
| ZnO-NPs     | 250                                     | 250  | 250             | 250       | - | - | -               | -                                      | 250  |
|             | 500                                     | 500  | 500             | 500       | - | - | -               | -                                      | 500  |
|             | 1000                                    | 1000 | 1000            | 1000      | - | - | -               | -                                      | 1000 |

 $\overline{A=A.\ chroococcum;\ B=B.\ thuringiensis;\ P=P.\ mosselii;\ S=S.\ meliloti.\ Each individual experiment was replicated three times$ 



Figure S1. Colonial characteristics of beneficial soil bacteria used in this study. A: A. chroococcum; B: B. thuringiensis; C: P. mosselii; and D: S. meliloti.



**Figure S2.** Concentration dependent inhibition of cell viability of *B. thuringiensis* by NPs: control (A), 62.5 (B), 125 (C), 250 (D), 500 (E), 1000 (F), 1500 (G) μgAgNPs ml<sup>-1</sup>; 62.5 (H), 125 (I), 250 (J), 500 (K), 1000 (L) and 1500 (M) μgZnONPs ml<sup>-1</sup>.



**Figure S3.** Concentration dependent inhibition of cell viability of *P. mosselii* by NPs: control (A), 62.5 (B), 125 (C), 250 (D), 500 (E) and 1000 (F)  $\mu$ gAgNPs ml<sup>-1</sup>; 62.5 (G), 125 (H), 250 (I), 500 (J) and 1000 (K)  $\mu$ gZnONPs ml<sup>-1</sup>.



**Figure S4.** Concentration dependent inhibition of cell viability of *S. meliloti* by NPs: control (A), 62.5 (B), 125 (C), 250 (D), 500 (E) and 1000 (F)  $\mu$ gAgNPs ml<sup>-1</sup>; 62.5 (G), 125 (H), 250 (I), 500 (J) and 1000 (K)  $\mu$ gZnONPs ml<sup>-1</sup>.



**Figure S5.** Concentration dependent inhibition of cell viability of *A. chroococcum* by NPs: control (A), 62.5 (B), 125 (C), 250 (D), 500 (E) and 1000 (F)  $\mu$ gAgNPs ml<sup>-1</sup>; 62.5 (G), 125 (H), 250 (I), 500 (J) and 1000 (K)  $\mu$ gZnONPs ml<sup>-1</sup>.



**Figure S6.** Bioassay of indole acetic acid (IAA) secretion by *P. mosselii* (A), *S. meliloti* (B) and *A. chroococcum* (C) grown in LB broth treated with 62.5-1000  $\mu$ g ml<sup>-1</sup> each of Ag-NPs and ZnO-NPs. Different letters on bars denotes significant difference (P≤0.05) according to DMRT.



**Figure S7.** Transmission electron micrographs of bacterial strains; control cells of *B. thuringiensis* (A), *P. mosselii* (B), *S. meliloti* (C) and *A. chroococcum* (D), *B. thuringiensis*+1000  $\mu$ gAg-NPs ml<sup>-1</sup> (E), *P. mosselii*+500  $\mu$ gAg-NPs ml<sup>-1</sup> (F), *S. meliloti*+250  $\mu$ gAg-NPs ml<sup>-1</sup> (G), *A. chroococcum*+500  $\mu$ gAg-NPs ml<sup>-1</sup> (H), *B. thuringiensis*+1000  $\mu$ gZnO-NPs ml<sup>-1</sup> (I), *P. mosselii*+500  $\mu$ gZnO-NPs ml<sup>-1</sup> (J), *S. meliloti*+250  $\mu$ gZnO-NPs ml<sup>-1</sup> (K) and *A. chroococcum*+500  $\mu$ gZnO-NPs ml<sup>-1</sup> (L).



**Figure S8.** CLSM images (at 400X) of *B. thuringiensis* biofilm. Panel A represents untreated biofilm of *B. thuringiensis*. Red fluorescence depicts propidium iodide stained bacterial cells while green fluorescence of ConA-FITC indicates the presence of EPS. Panels B and C represent CLSM images of *B. thuringiensis* biofilm observed at 1000  $\mu$ g ml<sup>-1</sup> each of Ag-NPs (B) and ZnO-NPs (C).



**Figure S9.** CLSM images (at 400X) of *P. mosselii* biofilm. Panel A represents untreated biofilm of *P. mosselii*. Red fluorescence depicts propidium iodide stained bacterial cells while green fluorescence of ConA-FITC indicates the presence of EPS. Panels B and C represent CLSM images of *B. thuringiensis* biofilm observed at 500  $\mu$ g ml<sup>-1</sup> each of Ag-NPs (B) and ZnO-NPs (C).



**Figure S10.** CLSM images (at 400X) of *S. meliloti* biofilm. Panel A represents untreated biofilm of *S. meliloti*. Red fluorescence depicts propidium iodide stained bacterial cells while green fluorescence of ConA-FITC indicates the presence of EPS. Panels B and C represent CLSM images of *B. thuringiensis* biofilm observed at 500  $\mu$ g ml<sup>-1</sup> each of Ag-NPs (B) and ZnO-NPs (C).



**Figure S11.** CLSM images (at 400X) of *A. chroococcum* biofilm. Panel A represents untreated biofilm of *A. chroococcum*. Red fluorescence depicts propidium iodide stained bacterial cells while green fluorescence of ConA-FITC indicates the presence of EPS. Panels B and C represent CLSM images of *B. thuringiensis* biofilm observed at 500 µg ml<sup>-1</sup> each of Ag-NPs (B) and ZnO-NPs (C).



**Figure S12.** Bar diagrams (A-D) represents the absorbance of crystal violet retained by cells of *B. thuringiensis* (A), *P. mosselii* (B), *S. meliloti* (C) and *A. chroococcum* (D) after NPs exposure. Asterisks indicate significant difference at \*\*P < 0.001.



**Figure S13.** Time (0-16 h) and concentration (125–100 µg ml<sup>-1</sup>) dependent growth inhibition of bacterial strains. A: *B. thuringiensis*+Ag-NPs, B: *B. thuringiensis*+ZnO-NPs, C: *P.* 

*mosselii*+Ag-NPs, D: *P. mosselii*+ZnO-NPs, E: *S. meliloti*+Ag-NPs, F: *S. meliloti*+ZnO-NPs, G: *A. chroococcum*+Ag-NPs and H: *A. chroococcum*+ZnO-NPs.



**Figure S14.** NBT staining of bacterial cells under NPs stress: Intracellular development of blue color formazan by *B. thuringiensis, P. mosselii, S. meliloti* and *A. chroococcum* under varying concentrations (62.5-1000  $\mu$ g ml<sup>-1</sup>) of Ag-NPs and ZnO-NPs. Panel A represents generation of superoxide radicals while Panels B and C show spectrophotometric quantification of superoxide radicals generated by Ag-NPs (B) and ZnO-NPs (C). Different letters on bars denotes significant difference at P≤0.05 according to DMRT.