# *PathME*: Pathway based Multi-modal Sparse Autoencoders for Unsupervised Clustering of Patient-Level Multi-Omics Data

Amina Lemsara, Salima Ouadfel, Holger Fröhlich

# 1. Estimation of Optimal Cluster Number

CRC









LSCC



**Fig S1**. Determination of number of clusters for CRC, GBM, LSCC and BRCA: Left) Comparison of true cophenetic correlation compared to the distribution of the cophenetic correlation resulting from 40 random permutations of the data. Right) Proportion of Deviance (POD) score for iCluster method. The plot shows 50 values of  $\Box$  chosen uniformly from [0.001, 0.9] for 2, 3, ..., 9 number of clusters.

## 2. Association of Clusters with Clinical Features

Significances of categorical variables were tested via a  $\chi 2^{-1}$  test, including the agreement with existing molecular classification schemes. For numerical variables a one-way ANOVA was applied. For survival we first checked nominal significance of the association to age via a Cox regression model that only contained age as predictor. If this was true, we fitted a Cox regression model that contained a factor "cluster" plus age as predictors. This model was then compared against the "null" Cox regression model that only contained age as predictor. Both models were compared via a likelihood ratio test, and the corresponding p-value was reported as the significance of the age corrected association to the clustering. In case of no significant association with age a conventional log-rank test was used.

To test the association with MGMT methylation status in GBM we applied a MANOVA and a global test (Goeman et al., 2004).

Multiple testing correction of p-values was performed via Benjamini & Hochberg's method [1] to control false discovery rate (FDR) separately for each method (i.e. column).

| Clinical features     |             | PathME ( | K=5)                  |          | SNF<br>(K=2)          | iCluster<br>(K=2)     |
|-----------------------|-------------|----------|-----------------------|----------|-----------------------|-----------------------|
| •                     | Multi-omics | mRNA     | CNV                   | miRNA    |                       |                       |
| Tumor tissue site     | 1.58E-02    | 6.83E-01 | 1.73E-02              | 1.89E-01 | <mark>4.27E-06</mark> | 8.34E-03              |
| Pathologic stage      | 1.15E-02    | 4.66E-01 | <mark>4.52E-02</mark> | 9.68E-01 | 1.86E-02              | 8.84E-01              |
| Pathology T_stage     | 1.28E-01    | 4.66E-01 | 6.00E-01              | 7.51E-01 | 3.92E-01              | 8.84E-01              |
| Pathology N_stage     | 6.78E-02    | 3.99E-01 | 3.32E-01              | 1.21E-01 | 3.63E-02              | 7.20E-01              |
| Pathology M_stage     | 1.24E-01    | 6.83E-01 | 6.65E-01              | 7.51E-01 | <mark>3.84E-02</mark> | 8.84E-01              |
| Gender                | 5.71E-01    | 6.20E-01 | 9.70E-01              | 7.51E-01 | 6.05E-01              | 8.84E-01              |
| Radiation therapy     | 8.30E-02    | 9.25E-01 | 2.39E-01              | 7.26E-01 | 6.05E-01              | 8.84E-01              |
| Histological type     | 1.49E-03    | 6.20E-01 | 1.90E-03              | 8.70E-02 | <mark>2.05E-09</mark> | <mark>4.72E-05</mark> |
| Age                   | 7.25E-01    | 6.60E-01 | 5.21E-01              | 5.75E-02 | 5.44E-01              | 8.94E-01              |
| Overall Survival (OS) | 8.30E-02    | 6.00E-02 | 6.00E-01              | 8.70E-02 | 1.03E-01              | 7.20E-01              |

Table S1: FDR for association of clusters with clinical features (CRC).

| Progression free survival<br>(PFS)                                                 | 2.67E-01 | 6.00E-02         | 6.00E-01        | 8.70E-02        | 1.03E-01       | 8.84E-01 |
|------------------------------------------------------------------------------------|----------|------------------|-----------------|-----------------|----------------|----------|
| Disease free survival<br>(DFS)                                                     | 9.00E-01 | 6.20E-01         | 9.00E-02        | 1.89E-01        | 1.50E-01       | 7.20E-01 |
| Enrichment of known<br>prognostic somatic<br>mutations (KRAS, NRAS,<br>BRAF, PTEN) | No soma  | atic mutations o | f these prognos | tic markers wer | e found in our | data     |

#### Table S2: Enrichment analysis of known CRC subtypes.

| Method |             | Subtypes  | C        | onsensus Molecul | ar Subtypes (CMS | Ss)      |
|--------|-------------|-----------|----------|------------------|------------------|----------|
|        |             |           | CMS1     | CMS2             | CMS3             | CMS4     |
| PathME | Multi-omics | Subtype 1 |          | 6.26E-03         | 7.03E-05         |          |
|        |             | Subtype 2 |          |                  |                  | 7.88E-16 |
|        |             | Subtype 3 | 5.10E-19 |                  | 1.61E-05         |          |
|        |             | Subtype 4 |          | 1.70E-10         |                  |          |
|        |             | Subtype 5 |          |                  |                  |          |
|        | mRNA        | Subtype 1 |          | 1.94E-13         |                  |          |
|        |             | Subtype 2 | 4.36E-09 |                  | 1.19E-05         |          |
|        |             | Subtype 3 |          |                  |                  | 5.45E-03 |
|        |             | Subtype 4 |          |                  |                  | 3.03E-13 |
|        |             | Subtype 5 |          |                  |                  | 3.33E-04 |
|        | miRNA       | Subtype 1 |          | 1.06E-05         |                  |          |
|        |             | Subtype 2 |          |                  |                  | 4.11E-06 |
|        |             | Subtype 3 |          |                  |                  | 9.21E-06 |
|        |             | Subtype 4 |          |                  |                  |          |
|        |             | Subtype 5 |          |                  |                  |          |
|        | CNV         | Subtype 1 |          |                  |                  |          |

|          |  | Subtype 2 |          | 1.81E-03 |          |          |
|----------|--|-----------|----------|----------|----------|----------|
|          |  | Subtype 3 |          | 1.97E-06 |          |          |
|          |  | Subtype 4 |          |          |          | 2.49E-02 |
|          |  | Subtype 5 | 3.17E-11 |          | 3.17E-06 |          |
| SNF      |  | Subtype 1 | 2.93E-21 |          | 1.04E-05 |          |
|          |  | Subtype 2 |          |          |          |          |
| iCluster |  | Subtype 1 | 2.18E-10 |          | 5.91E-09 |          |
|          |  | Subtype 2 |          | 1.21E-12 |          |          |

| Table S3: FI                                     | Table S3: FDR for association of clusters with clinical features (GBM). |                             |                       |                             |                       |                       |                       |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-----------------------|--|--|--|
|                                                  |                                                                         |                             | PathME                | (K=4)                       |                       | SNF<br>(K=2)          | iCluster<br>(K=3)     |  |  |  |
|                                                  |                                                                         | Multi-omics                 | mRNA                  | DNA<br>methylation          | miRNA                 |                       |                       |  |  |  |
| MGMT                                             | (Manova, Pillai<br>test)                                                | <mark>6.44E-10</mark>       | 1.20E-03              | 2.55E-11                    | <mark>4.52E-02</mark> | <mark>3.39E-05</mark> | 5.51E-01              |  |  |  |
|                                                  | (Global test)                                                           | 6.72E-08                    | 2.80E-04              | 2.04E-08                    | 2.87E-03              | <mark>6.48E-08</mark> | 8.34E-01              |  |  |  |
| (                                                | Gender                                                                  |                             | 3.61E-02              | 1.04E-02                    | 2.66E-01              | 4.57E-01              | 1.95E-01              |  |  |  |
| History_of_                                      | History_of_neoadjuvant_treat<br>ment                                    |                             | <mark>8.96E-06</mark> | 1.19E-01                    | 9.31E-02              | 4.61E-01              | 1.14E-09              |  |  |  |
|                                                  | Age                                                                     | <mark>1.19E-0</mark> 8      | 1.03E-02              | 2.04E-08                    | 5.17E-01              | 3.96E-01              | 1.71E-02              |  |  |  |
| OS, cor                                          | rected for age                                                          | 3.87E-01                    | 1.65E-01              | 3.47E-01                    | 2.66E-01              | 4.80E-02              | 5.51E-01              |  |  |  |
| PFS, coi                                         | rrected for age                                                         | 3.31E-02                    | 5.02E-01              | 1.87E-02                    | 1.33E-02              | 4.80E-02              | 8.98E-01              |  |  |  |
| Enrichment of known prognostic somatic mutations |                                                                         | Subtype 3<br>IDH1: 2.55E-06 |                       | Subtype 2<br>IDH1: 1.76E-06 |                       |                       |                       |  |  |  |
| Verhaak                                          | classification                                                          | <mark>6.59E-31</mark>       | <mark>8.48E-14</mark> | 3.20E-24                    | <mark>5.65E-14</mark> | 1.31E-15              | <mark>6.68E-08</mark> |  |  |  |

 $\label{eq:second} \textbf{Table S4}: Enrichment analysis of GBM subtypes for Verhaak subtypes.$ 

| Mathad   |             | Saltana   |           | Verhaak     | classes  |           |
|----------|-------------|-----------|-----------|-------------|----------|-----------|
| Method   |             | Subtypes  | Classical | Mesenchymal | Neural   | Proneural |
| PathME   | Multi-omics | Subtype 1 |           |             |          | 7.92E-09  |
|          |             | Subtype 2 | 1.76E-11  |             |          |           |
|          |             | Subtype 3 |           |             |          | 8.69E-10  |
|          |             | Subtype 4 |           | 3.21E-10    | 7.64E-03 |           |
|          | mRNA        | Subtype 1 |           |             | 1.28E-04 |           |
| m        |             | Subtype 2 |           | 1.51E-08    |          |           |
|          |             | Subtype 3 |           |             |          |           |
|          |             | Subtype 4 | 3.09E-02  |             |          | 1.63E-03  |
|          | miRNA       | Subtype 1 |           |             |          | 2.58E-08  |
|          |             | Subtype 2 |           | 2.26E-08    |          |           |
|          |             | Subtype 3 |           |             | 1.21E-02 |           |
|          |             | Subtype 4 | 7.29E-03  |             |          |           |
|          | Methylation | Subtype 1 |           |             |          | 9.10E-05  |
|          |             | Subtype 2 |           |             |          | 2.79E-10  |
|          |             | Subtype 3 |           | 4.42E-08    |          |           |
|          |             | Subtype 4 | 6.83E-08  |             |          |           |
| SNF      |             | Subtype 1 |           | 4.12E-09    | 2.40E-04 |           |
|          |             | Subtype 2 | 4.85E-02  |             |          | 1.31E-11  |
| iCluster |             | Subtype 1 |           |             |          |           |
|          |             | Subtype 2 |           | 2.56E-05    |          |           |
|          |             | Subtype 3 |           | 3.23E-02    |          |           |

Table S5:FDR for association of clusters with clinical features (LSCC).

|                                      |                       | PathME (K=4) |                       |          | SNF<br>(K=4) | iCluster<br>(K=2) |
|--------------------------------------|-----------------------|--------------|-----------------------|----------|--------------|-------------------|
|                                      | Multi-omics           | mRNA         | DNA<br>methylation    | miRNA    |              |                   |
| Ajcc_metastasis_pathologic<br>pm     | 5.53E-01              | 7.23E-01     | 4.94E-01              | 1.00E+00 | 6.90E-01     | 9.62E-01          |
| Ajcc_nodes_pathologic_pn             | 9.38E-03              | 7.95E-01     | 4.94E-01              | 1.00E+00 | 6.53E-01     | 9.62E-01          |
| Ajcc_pathologic_tumor_stage          | 8.86E-02              | 7.23E-01     | 4.94E-01              | 1.00E+00 | 6.53E-01     | 9.62E-01          |
| Ajcc_tumor_pathologic_pt             | 5.53E-01              | 2.13E-01     | 9.18E-01              | 1.58E-01 | 6.53E-01     | 9.62E-01          |
| History_neoadjuvant_trtyn            | 2.75E-01              | 7.14E-01     | 4.94E-01              | 1.00E+00 | 6.53E-01     | 1.00E+00          |
| History_other_malignancy             | 5.53E-01              | 7.95E-01     | 8.53E-01              | 3.71E-01 | 8.34E-01     | 9.62E-01          |
| Primary_site_patient                 | 5.53E-01              | 7.95E-01     | 5.44E-01              | 1.00E+00 | 8.34E-01     | 9.62E-01          |
| Race                                 | 2.76E-03              | 7.14E-01     | <mark>2.49E-04</mark> | 1.00E+00 | 7.17E-03     | 4.98E-02          |
| Residual_tumor                       | 5.53E-01              | 6.00E-01     | 4.94E-01              | 1.00E+00 | 6.53E-01     | 9.62E-01          |
| Gender                               | 2.20E-01              | 7.95E-01     | 4.94E-01              | 1.00E+00 | 7.64E-01     | 9.62E-01          |
| Tissue_source_site                   | 8.93E-14              | 6.36E-02     | 1.59E-10              | 1.31E-11 | 1.65E-12     | 1.22E-11          |
| Tobacco_smoking_history<br>indicator | 9.30E-02              | 7.23E-01     | 5.44E-01              | 1.00E+00 | 6.53E-01     | 8.98E-01          |
| Age                                  | 5.53E-01              | 7.95E-01     | 5.44E-01              | 7.20E-01 | 9.48E-01     | 9.62E-01          |
| Fraction_genome_altered              | 1.05E-01              | 6.01E-03     | 4.94E-01              | 7.59E-03 | 9.69E-01     | 4.83E-01          |
| Longest_dimension                    | <mark>4.09E-02</mark> | 1.22E-01     | 4.94E-01              | 8.14E-01 | 8.33E-03     | 9.62E-01          |
| Shortest_dimension                   | 4.09E-02              | 8.44E-01     | 7.35E-02              | 1.00E+00 | 9.48E-01     | 1.98E-02          |
| Specimen_second_longest<br>dimension | 6.72E-01              | 7.32E-01     | 6.49E-01              | 8.35E-01 | 6.53E-01     | 9.62E-01          |

| Smoking_pack_years                                                       | 5.53E-01 | 7.95E-01 | 4.94E-01      | 1.00E+00 | 8.96E-01 | 4.20E-01 |
|--------------------------------------------------------------------------|----------|----------|---------------|----------|----------|----------|
| Overall survival (OS)                                                    | 7.00E-01 | 6.00E-01 | 4.94E-01      | 3.71E-01 | 6.53E-01 | 8.98E-01 |
| Progression free survival<br>(PFS)                                       | 5.53E-01 | 6.00E-01 | 4.94E-01      | 1.58E-01 | 5.25E-01 | 4.20E-01 |
| Disease free survival (DFS)                                              | 5.53E-01 | 7.95E-01 | 8.53E-01      | 1.00E+00 | 6.53E-01 | 9.62E-01 |
| Enrichment of known<br>prognostic somatic mutations<br>(KRAS, EGFR, P53) |          |          | Not significa | int      |          |          |

| <b>Table S6</b> : FDR for association of clusters with clinical features (BRCA). |             |              |          |          |                       |                       |  |  |  |
|----------------------------------------------------------------------------------|-------------|--------------|----------|----------|-----------------------|-----------------------|--|--|--|
|                                                                                  |             | PathME (K=5) |          |          | SNF<br>(K=2)          | iCluster<br>(K=3)     |  |  |  |
|                                                                                  | Multi-omics | mRNA         | CNV      | miRNA    |                       |                       |  |  |  |
| Gender                                                                           | 2.19E-08    | 6.73E-02     | 1.05E-04 | 9.90E-01 | 4.46E-01              | 2.05E-02              |  |  |  |
| Race                                                                             | 2.19E-08    | 4.29E-02     | 4.98E-02 | 1.56E-04 | <mark>3.55E-09</mark> | 6.93E-02              |  |  |  |
| ajcc_pathologic_tumor_stage                                                      | 1.33E-01    | 2.85E-01     | 5.61E-01 | 5.48E-01 | 6.00E-02              | 3.72E-01              |  |  |  |
| histological_type                                                                | 2.19E-08    | 8.46E-09     | 7.96E-04 | 4.32E-02 | 1.21E-15              | 2.35E-08              |  |  |  |
| age_at_initial_pathologic_diag<br>nosis                                          | 8.36E-02    | 4.29E-02     | 2.20E-01 | 2.89E-01 | 1.88E-01              | 1.78E-01              |  |  |  |
| Overall survival (OS) after age<br>correction                                    | 1.33E-01    | 4.29E-02     | 3.67E-01 | 6.04E-01 | 6.60E-01              | 1.10E-01              |  |  |  |
| Disease-specific survival (DSS) after age correction                             | 1.39E-01    | 1.07E-01     | 3.67E-01 | 1.00E+00 | 6.60E-01              | 3.72E-01              |  |  |  |
| Disease-free interval ( DFI)<br>after age correction                             | 3.30E-01    | 4.40E-01     | 3.67E-01 | 5.50E-01 | 3.67E-01              | <mark>2.20E-02</mark> |  |  |  |
| Progression free interval (PFI)<br>after age correction                          | 2.93E-01    | 2.44E-01     | 8.00E-01 | 9.90E-01 | 6.60E-01              | 9.00E-01              |  |  |  |
| Progression free survival<br>(PFS) after age correction                          | 3.08E-01    | 7.40E-02     | 3.67E-01 | 1.83E-01 | 1.00E+00              | 8.80E-01              |  |  |  |

| Enrichment of known<br>prognostic somatic mutations<br>(TP53, CDH1,GATA3,<br>PIK3CA) | Subtype 3:<br>TP53: 1.04E-12<br>Subtype 4:<br>CDH1: 0.898E-3<br>GATA3: 0.18E-2<br>PIK3CA: 1.28E-<br>02 | -        | -        | Subtype<br>1:<br>ZFYVE2<br>6: 2.70E-<br>02 | -        | Subtype 1:<br>TP53:<br>3.80E-03 |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|----------|--------------------------------------------|----------|---------------------------------|
| Molecular classification                                                             | 2.42E-15                                                                                               | 7.54E-08 | 2.42E-15 | 6.04E-01                                   | 1.21E-15 | 2.42E-15                        |

Table S7: Enrichment analysis of known BRCA subtypes.

| Method |             | Subtypes  | Molecular Subtypes |           |                 |                   |             |  |
|--------|-------------|-----------|--------------------|-----------|-----------------|-------------------|-------------|--|
|        |             |           | Luminal A          | Luminal B | basal-like      | HER2-<br>enriched | Normal-like |  |
| PathME | Multi-omics | Subtype 1 |                    | 6.11E-05  |                 |                   |             |  |
|        |             | Subtype 2 |                    | 9.79E-14  |                 |                   |             |  |
|        |             | Subtype 3 |                    |           | 3.67E-34        |                   |             |  |
|        |             | Subtype 4 | 6.38E-16           |           |                 |                   |             |  |
|        |             | Subtype 5 |                    |           |                 |                   | 4.17E-09    |  |
|        | mRNA        | Subtype 1 |                    |           |                 |                   |             |  |
|        |             | Subtype 2 |                    |           | 3.00E-02        |                   |             |  |
|        |             | Subtype 3 |                    |           | 7.30E-04        |                   | 1.00E-02    |  |
|        |             | Subtype 4 |                    |           |                 |                   |             |  |
|        |             | Subtype 5 | 3.24E-03           |           |                 |                   |             |  |
|        | miRNA       | Subtype 1 |                    |           | Not significant |                   | ·           |  |
|        |             | Subtype 2 |                    |           |                 |                   |             |  |
|        |             | Subtype 3 | -                  |           |                 |                   |             |  |
|        |             | Subtype 4 |                    |           |                 |                   |             |  |
|        |             | Subtype 5 |                    |           |                 |                   |             |  |
|        | CNV         | Subtype 1 |                    | 1.46E-04  |                 |                   |             |  |

|          | Subtype 2 |          | 8.75E-08 |          |          |            |
|----------|-----------|----------|----------|----------|----------|------------|
|          | Subtype 3 |          | 7.43E-03 |          | 6.16E-07 |            |
|          | Subtype 4 | 3.18E-06 |          |          |          |            |
|          | Subtype 5 |          |          |          |          | 8.64 3E-09 |
| SNF      | Subtype 1 |          |          | 4.86E-80 |          |            |
|          | Subtype 2 |          |          |          |          |            |
| iCluster | Subtype 1 |          | 3.13E-05 | 3.91E-06 |          |            |
|          | Subtype 2 | 2.04E-14 |          |          |          | 1.49E-03   |
|          | Subtype 3 |          | 2.48E-05 |          |          |            |

# **3.** Basis and Coefficient maps for Multi-Omics Clustering



**Fig S2**: Basis and coefficient maps for the optimal solution among 500 individual sNMF runs for *PathME*.

## 4. Visualization of Clustering



**Fig S3**: T-SNE visualization of CRC consensus clustering based on *PathME*. Data points have been colored according to the consensus sNMF clustering of multi-omics pathway scores. T-SNE visualization of individual omics modalities is based on all features mapable to the pathways used by *PathME*.



**Fig S4**: T-SNE visualization of GBM consensus clustering based on *PathME*. Data points have been colored according to the consensus sNMF clustering of multi-omics pathway scores. T-SNE visualization of individual omics modalities is based on all features mapable to the pathways used by *PathME*.



**Fig S5**: T-SNE visualization of LSCC consensus clustering based on *PathME*. Data points have been colored according to the consensus sNMF clustering of multi-omics pathway scores. T-SNE visualization of individual omics modalities is based on all features mapable to the pathways used by *PathME*.



**Fig S6**: T-SNE visualization of BRCA consensus clustering based on *PathME*. Data points have been colored according to the consensus sNMF clustering of multi-omics pathway scores. T-SNE visualization of individual omics modalities is based on all features mapable to the pathways used by *PathME*.

# 5. Cluster specific pathways and impact of individual omics types

**Table S8:** Top 2 pathways selected for each CRC subtype and mean absolute SHAP values per pathway and omics type.

| Subtype 1                            |                                             | Subtype 4                                               |                                            |
|--------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------|
| FGF signaling pathway                | mRNA: 0.0154<br>CNV: 0.076<br>miRNA:7.8E-05 | Validated nuclear<br>estrogen receptor alpha<br>network | mRNA: 0.0004<br>CNV: 0.01<br>miRNA:1.2E-04 |
| Syndecan-4-mediated signaling events | mRNA : 0<br>CNV: 0.01<br>miRNA:0.0008       | Validated nuclear<br>estrogen receptor beta<br>network  | mRNA : 0.0004<br>CNV: 0.02<br>miRNA:0.0004 |
| Subtype 2                            |                                             | Subtype 5                                               |                                            |
| Syndecan-1-mediated signaling events | mRNA : 0.0018<br>CNV: 0.008<br>miRNA:0.0014 | Regulation of Ras<br>family activation                  | mRNA: 0<br>CNV: 3.1E-10<br>miRNA:4.78E-10  |

| ATF-2 transcription factor<br>network     | mRNA : 0.0004<br>CNV: 0.0006<br>miRNA:2.4E-05    | amb2 Integrin signaling | mRNA: 0.0002<br>CNV: 0.0008<br>miRNA:0.0008 |
|-------------------------------------------|--------------------------------------------------|-------------------------|---------------------------------------------|
| Subtype 3                                 |                                                  |                         |                                             |
| Alpha9 beta1 integrin<br>signaling events | mRNA: 0<br>CNV: 1.7E-06<br>miRNA:1.04E-08        |                         |                                             |
| Beta1 integrin cell surface interactions  | mRNA: 1.72E-04<br>CNV: 6.9E-05<br>miRNA: 1.2E-05 |                         |                                             |

**Table S9**: Top 2 pathways selected for each GBM subtype and mean absolute SHAP values per pathway and omics type.

| Subtype 1                                                                          |                                                               | Subtype 3                                          |                                                                  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| IL23-mediated signaling events                                                     | mRNA: 5.9E-05<br>DNA methylation: 0.0002<br>miRNA: 3.75E-05   | BCR signaling pathway                              | mRNA: 1.4E-05<br>DNA methylation: 1.9E-<br>04<br>miRNA: 1.25E-08 |
| Urokinase-type<br>plasminogen<br>activator (uPA) and<br>uPAR-mediated<br>signaling | mRNA: 5.71E-11<br>DNA methylation: 1.94E-08<br>miRNA: 4.6E-12 | Regulation of<br>Ras family<br>activation          | mRNA: 0.007<br>DNA methylation: 0.027<br>miRNA: 0.008            |
| Subtype 2                                                                          |                                                               | Subtype 4                                          |                                                                  |
| PDGFR-beta<br>signaling pathway                                                    | mRNA: 0.001<br>DNA methylation: 0.016<br>miRNA: 0             | Signaling<br>events<br>mediated by<br>HDAC Class I | mRNA: 9.09E-05<br>DNA methylation:0.01<br>miRNA: 2.22E-05        |

| TGF-beta receptor<br>signaling | mRNA: 6.7E-04<br>DNA methylation: 0.01<br>miRNA: 0.01 | Validated<br>targets of C-<br>MYC<br>transcriptional<br>activation | mRNA: 0.005<br>DNA methylation: 0.024<br>miRNA: 1.2E-07 |
|--------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|
|--------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|

**Table S10**: Top 2 pathways selected for each LSCC subtype and mean absolute SHAP values per pathway and omics type.

| Subtype 1                                                                         |                                                       | Subtype 3                                            |                                                       |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--|
| Alpha6 beta4<br>integrin-ligand<br>interactions                                   | mRNA: 0.12<br>DNA methylation: 0.0027<br>miRNA: 0.006 | Signaling mediated by<br>p38-gamma and p38-<br>delta | mRNA: 0.02<br>DNA methylation: 0.1<br>miRNA: 0.0006   |  |
| Validated<br>transcriptional<br>targets of AP1<br>family members<br>Fra1 and Fra2 | mRNA:0.006<br>DNA methylation: 0.006<br>miRNA:0.029   | CD40/CD40L<br>signaling                              | mRNA: 0.0025<br>DNA methylation: 0.06<br>miRNA: 0.005 |  |
| Subtype 2                                                                         |                                                       | Subtype 4                                            |                                                       |  |
| IL2-mediated signaling events                                                     | mRNA: 0.005<br>DNA methylation: 0.003                 | ATM pathway                                          | mRNA: 0.04                                            |  |
|                                                                                   | miRNA: 0.04                                           |                                                      | miRNA: 0.009                                          |  |

**Table S11**: Top 2 pathways selected for each BRCA subtype and mean absolute SHAP values per pathway and omics type.

| Subtype 1 | Subtype 4 |
|-----------|-----------|
|           |           |

| Canonical Wnt signaling<br>pathway                                    | mRNA: 6.8E-08<br>CNV: 0.001<br>miRNA: 4.7E-05  | VEGFR3 signaling<br>in lymphatic<br>endothelium | mRNA: 6.5E-12<br>CNV: 0.002<br>miRNA: 3.8E-08  |
|-----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| Stabilization and expansion of<br>the E-cadherin adherens<br>junction | mRNA: 2.1E-12<br>CNV: 0.0002<br>miRNA: 4E-06   | CDC42 signaling<br>events                       | mRNA: 0.0005<br>CNV: 0.008<br>miRNA: 0.0004    |
| Subtype 2                                                             |                                                | Subtype 5                                       |                                                |
| Signaling mediated by p38-<br>alpha and p38-beta                      | mRNA: 6.7E-05<br>CNV: 0.001<br>miRNA: 9.9E-06  | a4b7 Integrin<br>signaling                      | mRNA: 0.003<br>CNV: 0.04<br>miRNA: 0.028       |
| TNF receptor signaling pathway                                        | mRNA: 4.2E-06<br>CNV: 0.03<br>miRNA: 0.001     | HIF-1-alpha<br>transcription factor<br>network  | mRNA: 1.6E-05<br>CNV: 0.0001<br>miRNA: 5.4E-06 |
| Subtype 3                                                             |                                                |                                                 |                                                |
| Neurotrophic factor-mediated<br>Trk receptor signaling                | mRNA: 1.96E-05<br>CNV: 0.002<br>miRNA: 4.3E-05 |                                                 |                                                |
| Coregulation of Androgen<br>receptor activity                         | mRNA: 0.0008<br>CNV: 0.01<br>miRNA: 0.0001     |                                                 |                                                |

# 6. Feature relevance in terms of SHAP values

Barplots of mean absolute SHAP values of omics features mapping to the most relevant cluster specific pathways according to Section 3 can be accessed under this link : https://docs.google.com/spreadsheets/d/11NWZRp2\_DtyrvUhKQFRVq\_KkDS41rzFpbQWoFU-1jSs/edit?usp=sharing

#### 7. Mutational burden of most relevant pathways

CRC is missing, because none of the top 2 pathway genes contained somatic mutations. The data underlying the Figures can be accessed via <u>https://docs.google.com/spreadsheets/d/1FOJNR1sG86LUJ8dPWAk6POCQGrY1PhqgeZ5\_u2ePvVE</u> /edit#gid=1918286966



Fig S7: Mutational burden related to most relevant pathways across GBM subtypes.



Fig S8: Mutational burden related to most relevant pathways across LSCC subtypes



**Fig S9:** Mutational burden related to most relevant pathways across BRCA subtypes. The shown p-values have been corrected for multiple testing via the Benjamini & Hochberg method.

#### 8. Loss curves from the multi-modal autoencoders

The Figures found under this weblink depict the autoencoder reconstruction loss as a function of training epochs. Due to the mass of Figures we restrict ourselves to the autoencoder models with optimal hyper-parameter settings (see main document for details about hyper-parameter tuning).

- CRC loss curves: <u>https://gist.github.com/AminaLEM/dc0cbb124abbf5e3b096c31c95a04374</u>
- GBM loss curves: <u>https://gist.github.com/AminaLEM/6980bbe6fc6fda6242152ef491cc03ec</u>
- LSCC loss curves: <u>https://gist.github.com/AminaLEM/a70076ca5cf5d27e2edfa6df5c768251</u>
- BRCA loss curves: https://gist.github.com/AminaLEM/6d6cae975486ecc573914b4aa8a28658

#### References

 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57(1):289–300