1	Supplementary Materials for
2	
3 4	"Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods"
5	
6	Ullmann, C.V.*, Boyle, R., Duarte, L.V., Hesselbo, S.P., Kasemann, S., Klein, T., Lenton, T.,
7	Piazza, V., Aberhan, M.
8	
9	*c.v.ullmann@gmx.net
10	
11	Contents:
12	Geological background
13	Analytical methods
14	Assessment of fossil preservation
15	Geochemical assessment of shell preservation
16	Palaeoenvironmental significance of data
17	Modelling
18	SI References
19	

20 Geological background

21 We studied the Toarcian succession of the NW Tethyan shelf at two representative 22 localities in the surroundings of the Iberian Massif. These are the Barranco de la Cañada 23 section (40°23'53.4"N 1°30'07.4"W) near Albarracín in the Iberian Basin, Spain, and the 24 composite sections of Fonte Coberta (40°03'36.5"N 8°27'33.4"W) and Rabaçal 25 (40°03'08.0"N 8°27'30.5"W) near Coimbra in the Lusitanian Basin, Portugal¹⁻⁴. Both 26 sections are fossiliferous, with brachiopods and bivalves being the dominant 27 macrobenthic groups, are well constrained biostratigraphically, and record fairly 28 continuous sedimentation without any obvious hiatuses.

29 Barranco de la Cañada is located in the Iberian Range, a NW trending fold- and thrust-belt in east-central Spain that, in the early Mesozoic, represented a system of shallow marine 30 31 platforms connected to other European epicontinental basins northward and the Tethyan Ocean in the southeast⁵. The Toarcian succession is represented by the Turmiel 32 33 Formation which marks a progressive Toarcian deepening of the platform until the mid-34 Toarcian Bifrons Zone^{6,7}. The ca. 27-m-thick sampled interval ranges from the Pliensbachian/Toarcian boundary to the lower Bifrons Zone (middle Toarcian) and is 35 36 biostratigraphically constrained by ammonites, brachiopods, and foraminifers^{7,8}. It 37 consists of rhythmic alternations of limestones and marlstones. The partly argillaceous 38 limestones primarily comprise wackestones, mudstones, and floatstones indicative of 39 low-energy conditions. Only very few packstone and rudstone beds suggest brief 40 episodes of higher water energy. Deposition took place in a mid-ramp setting mostly 41 below storm wave base at an estimated water depth of 40–70 m^{7,9}, with the occasional 42 higher energy limestone variants being interpreted as distal storm flow beds¹⁰. In terms 43 of sequence stratigraphy (summarized in Refs. 5,7,9,11) the studied interval is part of a 44 second-order transgressive-regressive cycle (LI-3 in Ref 5) ranging from the 45 Pliensbachian Davoei Zone to the middle Toarcian Variabilis Zone. The transgressive 46 phase occurred in three distinct pulses, of which the second (LJ3-2) and parts of the third 47 (LJ3-3) cycle fall within the study interval. LJ3-2 starts in the early Tenuicostatum Zone 48 with maximum flooding in the lower Semicelatum Subzone, whereas LJ3-3 starts in the 49 lower Serpentinum Zone with maximum transgression in the Bifrons Zone⁵.

50 At Fonte Coberta/Rabaçal, Portugal, the ca. 28-m-thick studied succession from the 51 Pliensbachian/Toarcian boundary (base of the Polymorphum Zone = Tenuicostatum 52 Zone of the Submediterranean Province) to the middle of the Levisoni Zone (= 53 Serpentinum Zone) comprises three members of the São Gião Formation^{12,13}. Biostratigraphic control is provided by ammonites (e.g. Refs. 13,14), nannofossils¹⁵, and 54 55 dinoflagellates¹⁶. Similar to Barranco de la Cañada, the section is composed of an 56 alternation of marlstones and partly argillaceous limestones (mudstones and 57 wackestones). This hemipelagic sequence was deposited on a low-energy, middle to distal homoclinal ramp below storm wave base, at an estimated water depth of 80–120 58 59 m^{5,17}, i.e. in a slightly deeper water setting than the sediments at Barranco de la Cañada. In terms of sequence stratigraphy, the base of the Polymorphum Zone marks the basal 60 61 Toarcian transgression, an isochronous event within the Lusitanian Basin^{18,19}. The first lithological member (Marly limestones with Leptaena Fauna) is interpreted as a 62 transgressive systems tract with low sedimentation rates. The second member (Thin 63 64 nodular limestones Member) and the third member (Marls and marly limestones with Hildaites and Hildoceras) represent two phases of the same sequence, with the former 65 being interpreted as low-stand systems tract related to tectonic activity²⁰ in the basin, 66 67 and the latter as a transgressive systems tract. A somewhat different view was presented by Gahr (2005)⁹, who argued for three different depositional sequences instead of two, 68 69 with the second member being at least partly related to the basal Toarcian transgression. 70 A conspicuous feature of both sections is the absence of black shales which commonly 71 characterize the Toarcian Oceanic Anoxic Event elsewhere (e.g., Refs. 21-24). In contrast, 72 the total organic carbon content is generally low^{25,26}, while body fossils and/or 73 ichnofossils occur continuously throughout the sections^{4,7,27}. Accordingly, the marine 74 habitats at both localities were characterized by well oxygenated conditions throughout 75 the early to middle Toarcian time interval^{4,7}. Also the ichnofauna, while undergoing 76 important changes, never vanishes entirely suggesting that bottom water oxygenation 77 was never insufficient to sustain benthic life for extended periods of time^{3,28}.

79 Analytical methods

- 80 Fossil specimens were collected from sedimentary strata in Barranco de la Cañada and
- 81 Fonte Coberta/Rabaçal and identified to species level (Table S1). A subset of these fossils
- 82 was selected for geochemical analysis
- 83

84 Scanning Electron Microscope (SEM)

- 85 Calcite splinters of ca 1 mm width were extracted from the fossils and placed on SEM
- 86 stubs (Figs S1,2). The stub was carbon coated and SEM observations carried out under
- 87 high vacuum. Images were taken using an FEI Quanta 650 Field Emission Gun Scanning
- 88 Electron Microscope (FEG SEM) at the University of Exeter, Penryn Campus, Environment
- and Sustainability Institute at 15 kV and typical working distance between 10 and 11 mm.

- Figure S1: SEM stubs with fossil fragments from Fonte Coberta / Rabaçal. Numbers correspond to
 collection numbers of the Museum für Naturkunde Berlin (Germany), see below. The diameter of the stubs
 is 12 mm.
- 94

Figure S2: SEM stubs with fossil fragments from the Barranco de la Cañada section. Numbers correspond
 to collection numbers of the Museu de Ciencias Naturales, Zaragoza (Spain), see below. The diameter of the
 stubs is 12 mm.

99

100 Fossil preparation

Fossil material from Fonte Coberta / Rabaçal is archived at the Museum für Naturkunde,
Berlin, Germany (samples MB.B.10843-10912 for brachiopods and MB.B.20325-20346

103 for bivalves). Shell fragments from Barranco de la Cañada are stored at the Museu de

105 for bivalves). Shell fragments from barranco de la Canada are stored at the Museu de

104 Ciencias Naturales, Zaragoza, Spain (samples MPZ 2019/415-571; Ref. 29).

105

106 For all fossil shells the surface was cleaned from sediments and altered rinds, and for 107 brachiopods the primary shell layer was removed if present using a preparation needle, 108 scalpel or hand-held drill with diamond coated drill bit. Visually best-preserved material 109 was targeted and specimens where only clearly altered shell material was present not 110 sampled. For most fossil specimens, shell material was extracted as sheaths of multiple 111 shell layers with a preparation needle. Where this was not possible due to the dense 112 nature of the material (mostly for some specimens of *Gryphaea*), samples were taken with a scalpel or hand-held drill using a diamond coated drill bit of ca 1 mm diameter. Sample 113 114 sizes ranged from 0.9 to 14 mg (typically 1 – 3 mg) for fossils.

115 For each stratigraphic interval apart from levels C12 and BC22 for Barranco de la Cañada

and 22 horizons for Fonte Coberta / Rabaçal a sample of bulk rock was extracted with a

117 hand-held drill from the bulk rock matrix of a suitable fossil specimen. Sample sizes

ranged from 7 to 31 mg (typically 15 to 30 mg). Where present, sparitic calcite cements

- filling or partially filling brachiopod fossils were sampled as well. Sample sizes rangedfrom 3 to 29 mg (typically 5 to 15 mg).
- 121 All 550 samples (4 belemnite samples, 130 bivalve samples, 359 brachiopod samples, 41
- 122 bulk rock and 16 cement samples) for Barranco de la Cañada and 135 samples for Fonte
- 123 Coberta / Rabaçal were collected and stored in 2 mL sample vials for later processing and
- 124 archiving of surplus material for possible replicate measurements or future specialist
- 125 analysis.
- 126

127 Element/Ca ratio determination

128 A fraction of each sample amounting to 220 to 820 µg (typically 330 to 550 µg) was 129 weighed into 15 mL centrifuge tubes using a Micro Balance at a precision of 1µg. The 130 centrifuge tubes were then weighed at 10 µg precision using either a model semi-131 microbalance. 2% v/v nitric acid prepared from 18.2 MΩ water and 67% concentrated 132 nitric acid was added from an FEP wash bottle to dissolve the fossil calcite at a ratio of ca 133 15 mL per mg resulting in a dilution to ca 25 μ g/g Ca. After dilution the tubes were 134 weighed again with the same semi-microbalance to allow for the computation of precise 135 dilution factors.

The samples were analysed for element/Ca ratios using an Agilent 5110 VDV Inductively
Coupled Optical Emission Spectrometer (ICP-OES) with Seaspray U-series glass nebulizer
and double pass cyclonic spray chamber. Sample and standard transfer was automated

139 by an Agilent SPS4 autosampler.

Analysis was done in batches of 120 samples subdivided into blocks of 30 samples
bracketed by calibrations and subdivided into sets of 10 samples by quality control
solutions (BCQC & BCQ2) and international reference materials (JLs-1 limestone³⁰; UN
AK carbonate³¹). This protocol resulted in 5 calibrations, 12 analyses of JLs-1, 8 analyses
of UN AK, and 4 analyses of BCQC or BCQ2 per batch of 120 samples.

145 Three synthetic calibration solutions were prepared from certified 1,000 μ g/g single 146 element plasma standards. A uniform Ca concentration of 25 μ g/g was opted for to match 147 the matrix of the fossil samples. For all other elements contents were variable to cover 148 the expected range of element/Ca ratios. The calibration solutions were prepared 149 gravimetrically by incremental addition of single element standards into a 1 L bottle and 150 differential weighing using a Semi-microbalance with 10 μ g precision up to a weight of 120 g and 100 μ g precision up to a weight of 230 g. The final weight of the calibration 152 solutions after filling up to 1 L with 25 v/v nitric acid was determined using an top loader 153 balance with precision of 0.01 g. Comparability of the weighing results was ensured by 154 weighing the empty bottles on either balance which gave indistinguishable results. For 155 Ca concentrations a two-point calibration with calibration blank and three solutions of 156 near equivalent Ca concentration resulted. For all other analytes, a linear four point 157 calibration with a calibration blank and three calibration solutions with different 158 concentrations was made. Covered calibration ranges are 0 to 33.4 mmol/mol for Mg/Ca, 159 0 to 3.66 mmol/mol for Sr/Ca, 0 to 5.81 mmol/mol for Fe/Ca, 0 to 2.93 mmol/mol for 160 Mn/Ca, 0 to 13.1 mmol/mol for P/Ca, and 0 to 12.7 mmol/mol for S/Ca ratios. 161 Analysed wavelengths are 317.933 nm and 422.673 nm for Ca, 279.553 nm, 280.270 nm and 285.213 nm for Mg, 407.771 nm and 421.552 nm for Sr, 238.204 nm and 259.94 nm 162

for Fe, 257.610 nm and 259.372 nm for Mn, 213.618 nm for P and 181.972 nm for S. Signals were quantified synchronously for all wavelengths in 12 blocks of 5s each resulting in signal integration over 60s per measurement. Optimum wavelengths for Mg/Ca and Sr/Ca results were chosen to maximize repeatability of the QC and standard solutions during data reduction. Results for both analysed wavelengths for Fe and Mn were pooled to improve signal to noise ratios.

Typical quantification limits of the method measured as 6 standard deviations of the
baseline variability are 2 ng/g for Ca, 0.3 ng/g for Mg, 0.02 ng/g for Sr, 0.5 ng/g for Fe, 0.2
ng/g for Mn, 10 ng/g for P and 20 ng/g for S. Resulting effective quantification limits for
element/Ca ratios in the carbonate are 0.02 mmol/mol for Mg/Ca, 0.4 µmol/mol For
Sr/Ca, 0.02 mmol/mol for Fe/Ca, 0.006 mmol/mol for Mn/Ca, 0.5 mmol/mol for P/Ca and
1 mmol/mol for S/Ca ratios.

175 Reproducibility over six analytical sessions for Barranco de la Cañada was controlled by 176 72 measurements of JLs-1, 48 measurements of UN AK and 24 measurements of BCQC. 177 Over two analytical sessions for materials from Fonte Coberta / Rabaçal 24 aliquots of 178 JLs-1, 16 aliquots of UN AK and 8 aliquots of BCQ2 were measured. Reproducibility 179 depends on absolute analyte concentrations and is controlled by integration time when 180 concentrations are low and random noise when concentrations are high. Consequently, 181 element/Ca ratios which were higher than 100 times the quantification limit reproduced 182 within 1 % (2 sd) for all reference materials. Largest 2 sd uncertainties for element/Ca 183 ratios of reference materials where element/Ca ratios are below 100 times the 184 quantification limit are 0.05 mmol/mol for Mg/Ca, 0.005 mmol/mol for Sr/Ca, 0.002

mmol/mol for Mn/Ca, 0.06 mmol/mol for Fe/Ca, 0.28 mmol/mol for S/Ca, and 0.17
mmol/mol for P/Ca. Analytical results for all measured standard solutions are listed in
Table S2.

Internal consistency of the measurements was ascertained by the quality control solution (BCQC and BCQ2) which was prepared in the same way as the calibration solutions but was not used for signal quantification. Relative bias of the analytical results for this quality control solution was smaller than 1 % for all analytes (Table S2).

- 192 Stock solutions for JLs-1 and UN AK were prepared from 0.5 L 1,000 µg/g stock solutions 193 generated by the dissolution of ca 1.25 g of either of these standards using 2% v/v nitric 194 acid. Due to minor non-carbonate fractions in both standards that were not dissolved in 195 the nitric acid the results for some of the elements are therefore slightly biased. For the 196 standards measured alongside samples from Barranco de la Cañada averages (± 2sd) for 197 JLs-1 (n = 72) are Mg/Ca: 15.37 ± 0.07 ; Sr/Ca: 0.341 ± 0.005 ; Fe/Ca: 0.14 ± 0.01 198 mmol/mol; Mn/Ca: 0.032 ± 0.001 mmol/mol; P/Ca: 0.41 ± 0.17 mmol/mol; S/Ca: 0.43 ± 199 0.22 mmol/mol. Averages (\pm 2sd) for UN AK (n = 48) are Mg/Ca: 2.47 \pm 0.02 mmol/mol; Sr/Ca: 3.01 ± 0.01 mmol/mol; Fe/Ca: 1.11 ± 0.06 mmol/mol; Mn/Ca: 0.043 ± 0.001 200
- 201 mmol/mol; P/Ca: 0.39 ± 0.17 mmol/mol; S/Ca: 1.73 ± 0.18 mmol/mol.
- 202 Stock solutions for the samples from Fonte Coberta / Rabaçal were prepared from a 203 differing standard batch and therefore give slightly differing results from the data 204 obtained for Barranco de la Cañada. Averages $(\pm 2sd)$ for JLs-1 (n = 24) are Mg/Ca: 15.4 205 ± 0.1; Sr/Ca: 0.342 ± 0.002; Fe/Ca: 0.155 ± 0.004 mmol/mol; Mn/Ca: 0.032 ± 0.002 206 mmol/mol; P/Ca: 0.43 ± 0.09 mmol/mol; S/Ca: 0.50 ± 0.28 mmol/mol. Averages (± 2 sd) 207 for UN AK (n = 16) are Mg/Ca: 2.64 ± 0.05 mmol/mol; Sr/Ca: 3.04 ± 0.02 mmol/mol; 208 Fe/Ca: 1.366 ± 0.007 mmol/mol; Mn/Ca: 0.045 ± 0.002 mmol/mol; P/Ca: 0.40 ± 0.15 209 mmol/mol; S/Ca: 1.82 ± 0.21 mmol/mol.
- Absolute Ca concentrations calculated for fossils reproduced to better than 0.6 wt% (2
 sd) for all brachiopod genera from Barranco de la Cañada for which at least 30 samples
 were taken (2 outliers). This variability is equivalent to an average of 5 to 8 µg sample
 material and is therefore thought to be mostly controlled by weighing imprecision of the
 micro balance and signal noise of the ICP-OES.
- 215 Possible external errors of element/Ca determinations and Ca concentrations relate to
- 216 the uncertainty of element concentrations in certified $1,000 \,\mu g/g$ single element solutions
- taken for preparation of the calibration solutions. 95 % confidence intervals stated on the

certificates of analysis were 0.6 % of the analyte concentration or better for all studied

- elements.
- 220

221 C and O isotope ratio measurements

222 685 samples were analysed for δ^{13} C and δ^{18} O values as well as carbonate content using a 223 SerCon 20-22 Gas Source Isotope Ratio Mass Spectrometer (GS-IRMS) in continuous flow 224 mode at the University of Exeter Penryn Campus, Environment and Sustainability 225 Institute.

226 Typically 450 to 600 µg of fossil material, bulk rock powder or calcite cement weighed to 227 1 µg precision in randomized order using a model Micro Balance and were transferred 228 into 4.5 ml borosilicate Labco Exetainers®. Batches of 80 samples were analysed 229 together with 22 aliquots of the in-house standard CAR (Carrara Marble, $\delta^{13}C = +2.10 \%$ V-PDB; δ^{18} O = -2.03 ‰ V-PDB) and 8 aliquots of the in-house standard NCA (Namibia 230 Carbonatite, $\delta^{13}C = -5.63 \%$ V-PDB; $\delta^{18}O = -21.90 \%$ V-PDB). These standards were 231 232 previously calibrated against the international standards NBS-18, CO-8 and LSVEC as well 233 as in-house standards of Freie Universität Berlin (CAM, Carrara Marble; LM, Laaser 234 Marble) and University of Copenhagen (LEO, Carrara Marble). 450 to 550 µg of carbonate 235 powder weighed to 1 µg precision were used for 17 aliquots of CAR and all aliquots of 236 NCA in each batch. The remaining 5 aliquots of CAR ranged from ca. 200 µg to ca. 1,000 237 µg and were used to define a calibration curve of sample weight versus signal yield, which 238 is used to estimate carbonate concentrations of the bulk powders.

239 All samples were held at 70°C and flushed with He for 80 s before manual injection of c. 240 100 µL of nominally anhydrous phosphoric acid. Samples from Barranco de la Cañada 241 were measured alternating with a reference gas which yielded typical peak areas of 201 242 nAs for mass 44, equivalent to the signal from 551 µg of calcite. Samples from Fonte 243 Coberta / Rabaçal were analysed after replacement of the source filament of the 20-22 244 GS-IRMS, change of Helium pressure control installations and CO₂ reference gas, resulting 245 in slightly lower reference gas intensities of 192 nAs for mass 44, equivalent to the signal 246 from 501 µg of calcite. For samples from Barranco de la Cañada signal yield of the in-247 house reference NCA (n = 56) was $97.1 \pm 1.7 \%$ (2 sd) versus the in-house reference CAR. 248 For samples from Fonte Coberta / Rabaçal NCA (n = 24) signal intensity was 97.5 ± 0.9 % 249 (2 sd) versus CAR. External errors of carbonate content estimations relate to the 250 uncertainty of the carbonate content in CAR which was assumed to be pure CaCO₃ (44.0

- wt% CO₂). Minimal non-carbonate impurities, as well as minor adsorbed water on the powdered standard material could have biased the measurements.
- 253 Isotopic drift of the instrument reaching up to ca. 0.3 % during an analytical session was
- controlled with both, the raw isotopic ratios of the reference gas and CAR and subtracted
- from the data using a polynomial fit to the raw data for CAR. Shift and compression of the
- 256 isotopic scale were corrected using a two-point calibration of CAR and NCA. For Barranco
- de la Cañada samples, 2 sd repeatability of CAR (n = 125) was found to be 0.07 % for δ^{13} C
- and 0.15 $\%_0$ for δ^{18} O and 2 sd repeatability of NCA (n = 56) was 0.09 $\%_0$ for δ^{13} C and 0.35
- 259 % for δ^{18} O. For Fonte Coberta / Rabaçal samples, 2 sd repeatability of CAR (n = 54) was
- found to be 0.06 % for δ^{13} C and 0.14 % for δ^{18} O and 2 sd repeatability of NCA (n = 24)
- 261 was 0.08 $\%_0$ for δ^{13} C and 0.28 $\%_0$ for δ^{18} O.
- 262 All analytical result for isotopic and CaCO3 concentration measurements of standard
- 263 materials are listed in **Table S3**.

265 Assessment of fossil preservation

Excellent preservation of fossil material is a prerequisite for high fidelity 266 267 palaeoenvironmental reconstructions using geochemical proxies from biogenic calcite. 268 Brachiopods as well as oysters are widely studied³²⁻³⁴ and their shell structure and 269 geochemical patterns well understood so that diagenetic impacts on their calcite can be 270 spotted confidently³⁵. Additionally, the low magnesium calcite of rhynchonellid 271 brachiopods and oysters is resistant against post-depositional recrystallization as 272 compared to mineralized tissues of aragonitic or high magnesium calcite secreting 273 organisms.

274 Reliable identification of diagenetically overprinted material using optical and chemical preservation parameters, however, is complicated. Optical assessment suffers from the 275 276 fact that visual changes to the shell material are seldom uniform for an entire fossil and 277 one can only qualitatively link optical signs of alteration to changes in chemical and 278 isotopic parameters. Qualitative trends of diagenesis on geochemical parameters in fossil 279 calcite are well-studied, but the local burial and exhumation history of outcropping 280 sedimentary successions can be complicated and will define thresholds of chemical 281 preservation markers.

282 To overcome these challenges, a comprehensive study of shell preservation employing 283 optical (binocular miscroscope, SEM) and chemical (element/Ca ratios and C & O isotope 284 ratios) techniques was employed. For Barranco de la Cañada, clearly diagenetic phases, 285 in particular geopetal cements encountered in 15 brachiopods, as well as bulk rock 286 samples were analysed for element/Ca and C & O isotope ratios alongside the fossil shells 287 to control the geochemical composition of diagenetic endmembers. Geochemical patterns 288 compatible with diagenesis observed in fossil calcite could then be matched with bulk 289 and cement signals and suitable geochemical thresholds defining good shell preservation 290 defined accordingly. For Fonte Coberta / Rabacal, for which sparitic calcite was not 291 observed in the studied specimens, only bulk rock data were used as proxy for diagenetic 292 trends.

293

294 Optical assessment of shell structure preservation

295 Rhynchonellid brachiopods

296 Under the binocular microscope, secondary layer calcite of rhynchonellid brachiopods297 from Barranco de la Cañada looks exceptionally well preserved. The typical silky

reflection and slightly brownish semi-transparent colour attest to minimal recrystallization. Sample extraction with a preparation needle resulted in well-defined packages of multiples layers of shell fibres detaching along fibre surfaces, rather than disintegrated single fibres or calcite blocks with fracture surfaces oblique to the shell structures. Only on some specimens of *Soaresirhynchia* the coherence of the secondary layer calcite fibres was somewhat compromised and single fibres tended to detach from the shell and break into fragments of sugar-like appearance.

- 305 When observed under the SEM, many shell fibres of secondary layer calcite show 306 surficial, pyramid shaped dissolution pits of less than 10 µm depth developed nearly 307 exclusively on exposed surfaces of shell fibres (Fig. S3). These dissolution pits, where 308 they are asymmetrical, show uniform orientation on single fibres. Morphologies and 309 orientation of the pits change from fibre to fibre, indicating that the single-crystal 310 character of the fibres is preserved and no pervasive re-crystallisation has taken place. 311 Exposed surfaces of shell fibres are otherwise smooth and show no signs of fusing with 312 adjacent fibres, and imprints of adjacent fibres as well as features of pressure solution 313 and neomorphic calcite are absent. Terebratulid material with large cement-filled 314 punctae as well as clearly recrystallized brachiopod calcite (Fig. S3) was not sampled for 315 geochemical analysis.
- 316

317

Figure S3: SEM secondary electron images of brachiopods and bivalves from the Barranco de la Cañada
and Fonte Coberta / Rabaçal sections. Dissolution pits of a few micrometres depth in brachiopod shells as
observed in *Soaresirhynchia* (top left) are common. Terebratulids with large, cement-filled punctae (top
middle) and clearly recrystallized shell material (top right) were not processed for geochemical analyses.
Shell ultrastructure preservation of bivalves (*Gryphaea*, bottom left; *Harpax*, bottom middle) is often very
good. In many instances, however, imprints of surrounding shell fibres are observed (bottom right). Were
these effects are pronounced, clear changes in element/Ca, C and O isotope ratios are observed (one sample

325 of *Gryphaea* specimen BC09_2 had to be excluded from palaeoenvironmental interpretation). For 326 stratigraphic position of imaged material, see Table S4.

327

328 Brachiopod material from Fonte Coberta / Rabaçal showed the same morphological 329 characteristics as specimens from Barranco de la Cañada. Overall, a larger fraction of 330 specimens which were not further investigated for geochemical parameters due to 331 spurious preservation observed already using a binocular microscope, showed 332 diagenetic overprints, such as fusion of shell fibres and neomorphic calcite.

Overall, optical assessment of the shell calcite of specimens subjected to geochemical
analyses did not suggest that the geochemical signatures in the material would be
significantly compromised.

336

337 Bivalves

338 *Gryphaea* shell material from Barranco de la Cañada appears less well preserved than 339 brachiopod shells and a range of features indicative of diagenetic overprint were 340 encountered during visual inspection with the binocular microscope. Fusion of shell 341 layers and irregular surfaces indicative of incipient recrystallization, sometimes even loss 342 of discernible shell structure were observed, but these features were seldom pervasive. 343 Often, partially altered specimens still yielded patches of shell material with the typical 344 stacks of thin, translucent sheaths of calcite layers that could be levered off the shell with 345 a preparation needle. These visually best preserved areas were targeted for sampling for 346 geochemical analysis.

347 SEM observations confirm that, compared to rhynchonellids, a larger fraction of *Gryphaea* 348 calcite was affected by alteration. Dissolution pitting is almost absent, but neomorphic 349 calcite is sometimes observed and surfaces of shell layers often bear the imprint of the 350 overlying shell fibres, indicating earliest stages of fusing fibre sheaths as well as 351 recrystallization (Fig. S3). Nevertheless, primary shell textures even on the micrometre 352 scale are preserved in nearly all studied shell fragments, so that textural evidence 353 suggests that geochemical preservation of the *Gryphaea* material should be good to very 354 good.

Samples of the bivalve genus *Harpax* from Fonte Coberta / Rabaçal show ultrastructural
features generally comparable to *Gryphaea* from Barranco de la Cañada (Fig. S3).
However, as observed also for brachiopods, the preservation in general appears
somewhat poorer than samples from Barranco de la Cañada as evidenced by more

- 359 pronounced fusion of shell layers. Consequently, data from *Harpax* are not further
- 360 considered for palaeoenvironmental interpretation in this study.

362 Geochemical assessment of shell preservation

363 Bulk rock geochemistry Barranco de la Cañada

- 364 The Toarcian sedimentary strata of the Barranco de la Cañada section from which fossils
- were extracted are typically carbonate rich marls with carbonate contents of 46 to 94 %
- 366 (median 81 %, n = 42; **Table S4**, **Figure S4**) according to mass spectrometry results.
- 367 Carbonate contents below 70 % were only observed for four samples.
- 368

369

Figure S4: δ¹³C and δ¹⁸O values and Fe/Ca and Mg/Ca ratios of bulk rock and sparite cement samples from
 the Barranco de la Cañada section.

373 ICP-OES measurements of the 42 bulk rock samples (Table S4) show that the majority of 374 the bulk rock matrix dissolved by the 2 v/v HNO₃ is low magnesium calcite with nine 375 measurements yielding Mg/Ca ratios greater than 50 mmol/mol. Besides sample BC18 376 (24.35m, top Serpentinum Zone), Mg/Ca ratios greater than 50 mmol/mol are restricted 377 to the interval of samples C15 to C21+22/C25+26 (4.0 to 7.8 m, middle Tenuicostatum Zone to basal Serpentinum Zone). The rock leachates are relatively depleted in Sr with 378 379 Sr/Ca ranging from 0.26 to 0.71 mmol/mol (median 0.42 mmol/mol), but enriched in Mn 380 with Mn/Ca ratios of 0.34 to 1.07 (median 0.53 mmol/mol). Fe/Ca ratios are very high 381 and highly variable ranging from 7.9 to 83.4 mmol/mol (median 18.8 mmol/mol).

382 With respect to δ^{13} C values, bulk rock carbonate shows a broadly similar pattern as 383 brachiopod data (Table S4), but offset to lower values by 0.6 % (median; range = -1.6 to 384 +0.7 $\%_0$). δ^{18} O values of bulk carbonate (Table S4) do not follow the macrofossil pattern 385 and become progressively more negative upsection, initially fluctuating around -3.0~%386 V-PDB at the bottom of the section and reaching values around -4.5 % V-PDB at the top. 387 The median offset between fossil and bulk rock δ^{18} O is -1.2 ‰ (range = -3.6 to +0.6 ‰). 388 Assuming that diagenetic trends in the fossil carbonates led to an endmember similar to 389 the bulk rock signature suggests that fossil calcite should be depleted in ¹³C, ¹⁸O and Sr, 390 and enriched in Mg, Mn and Fe. Due to the highly Fe-enriched nature of the rock matrix, 391 biases on isotope ratios > 0.2 % as well as biases on Sr/Ca ratios > 0.05 mmol/mol would 392 be visible as enrichments in Fe/Ca well above 1 mmol/mol. Because of the comparatively 393 high Mg/Ca ratios of the rock matrix, this threshold could potentially be associated with 394 a bias in fossil Mg/Ca of 0.8 to 4.1 mmol/mol (median 1.7 mmol/mol).

395

396 Sparitic cements Barranco de la Cañada

Geopetal cements incompletely filling voids in brachiopods are observed from samples 397 398 C15+26/C28 to BC8 (8.9 to 18.05 m, basal to middle Serpentinum Zone) and samples 399 BC20 and BC22 (26.25 and 28.4m, lower Bifrons Zone). Both intervals with geopetal 400 cements start immediately above samples with bulk rock Mg/Ca > 50 mmol/mol (Figure 401 **S4**). The cements (Table S4) in the Serpentinum zone show stratigraphic trends in 402 Mg/Ca, covering a range from 7.2 to 13.7 mmol/mol and falling upsection as well as a 403 well-defined increase in δ^{13} C values from +1.6 to +2.3 ‰. Also, a weak downward trend 404 in δ^{18} O values which range from -8.6 to -10.4 ‰ is observed. Sr/Ca (0.22 to 0.44 405 mmol/mol), Mn/Ca (0.65 to 0.85 mmol/mol) and Fe/Ca (7.5 to 10.5 mmol/mol) are more 406 stable than the hosting rock matrix and do not show clear stratigraphic trends. The 407 sparite sample at level BC20 is geochemically distinct with particularly low Sr/Ca of 0.05 408 mmol/mol and low Mg/Ca of 3.0 mmol/mol, high Mn/Ca of 2.50 mmol/mol and less 409 negative δ^{18} O value of -6.1 ‰. Otherwise, however, the sparite samples of the Bifrons 410 Zone are geochemically comparable to their counterparts in the Serpentinum Zone.

411 The strong depletion in ¹⁸O as compared to the bulk carbonate suggests that the sparitic 412 cements formed much later in the diagenetic sequence, either at elevated temperatures 413 during burial or – more likely – involving meteoric fluids. Fluid migration may have been 414 governed by lithology-controlled permeability as suggested by the high Mg/Ca ratios in 415 bulk rock leachates directly underlying both intervals of sparite occurrence. No 416 geochemical links between sparite and surrounding rock matrix can otherwise be 417 established suggesting limited effects of this void filling stage on geochemistry of 418 carbonates in the section.

419 Partial isotopic overprint of fossil shell material approaching sparite-like δ^{18} O values 420 would be a clear concern. No strong correlations of δ^{18} O values with Fe/Ca ratios with 421 slopes (approximately 0.7 ‰ per mmol/mol) suggestive of such an alteration trend are 422 observed in fossil material from levels where sparite is present, however. A measureable 423 effect of sparite calcite on fossil geochemistry is therefore excluded.

424

425 Bulk rock geochemistry Fonte Coberta / Rabaçal

Toarcian samples from the Fonte Coberta / Rabaçal section from which fossils were
extracted are similar to those of the Barranco de la Cañada section (Table S4, Figure S5).
The samples are carbonate rich marls with carbonate contents of 47 to 89 % (median 71)

429 %, n = 22) according to mass spectrometry results.

430

433 / Rabaçal section.

434 ICP-OES measurements of the 22 bulk rock samples (Table S4, Figure S5) show that the 435 bulk rock matrix dissolved by the 2 v/v HNO₃ is consistently low magnesium calcite with 436 maximum Mg/Ca ratios reaching 41 mmol/mol in the lower *polymorphum* Zone. The rock 437 leachates are generally slightly less Sr depleted than samples from Barranco de la Cañada 438 with values ranging from 0.37 to 0.91 mmol/mol (median 0.55 mmol/mol). Mn/Ca ratios 439 are comparable to Barranco de la Cañada with an observed range from 0.34 to 0.86 mmol 440 (median 0.47 mmol/mol). As in Barranco de la Cañada Fe/Ca ratios are also high, but 441 spikes coinciding with strong Mg enrichments are missing. Ratios of 10.8 to 32.2 442 mmol/mol (median 18.7 mmol/mol) are found. 443 Also C and O isotope trends in the Fonte Coberta / Rabaçal section are similar to those of 444 Barranco de la Cañada (**Table S4, Figs. S4,5**). Bulk rock δ^{13} C values are typically 1 to 2

⁴⁴⁴ barranco de la canada (Table 54, Figs. 54,5). Built fock 6-40 values are typically 1 to 2 ⁴⁴⁵ $\%_0$ less positive than brachiopod samples from the same horizon and show a pattern ⁴⁴⁶ comparable to the brachiopod data. Conversely, δ^{18} O values become progressively ⁴⁴⁷ depleted in ¹⁸O upsection with median values of -3.8 $\%_0$ in the *polymorphum* Zone and -⁴⁴⁸ 4.2 $\%_0$ in the *levisoni* Zone.

- The geochemical signatures in the Fonte Coberta / Rabaçal section suggest that chemical
 cut offs for fossil preservation similar to material from Barranco de la Cañada can be
 applied.
- 452

453 Covariation of geochemical proxies in fossil materials indicative of alteration 454 Barranco de la Cañada

- The fact that isotopic trends observed in the rhynchonellid brachiopods and *Gryphaea* are distinct from bulk rock matrix and sparitic cements (**Table S4**) indicates that preservation of palaeoenvironmental information in the fossil calcite may be good. Subtle biases relating to partial recrystallization or addition of cements may nevertheless bias the proxy data and need to be assessed by detailed investigation of co-variations of geochemical indicators of diagenesis.
- 461 Co-variation of Fe/Ca ratios as the most sensitive proxy for alteration at the Barranco de 462 la Cañada section in *Gryphaea* (n = 130) is only strong with Mn/Ca ($r^2 = 0.62$, p < 0.001) 463 and Mg/Ca ($r^2 = 0.88$, p < 0.001). For the remaining element/Ca ratios the correlation 464 coefficients are 0.26 or lower and for C & O isotope ratios, they are 0.06 or lower, 465 signifying that the vast majority of signal is not controlled by processes adding iron to the 466 calcite postdepositionally. When excluding all samples with Fe/Ca ratios > 1mmol/mol,

the correlation coefficient of Fe/Ca with Mg/Ca reduces to 0.04 and all samples with
Mg/Ca ratios > 6 mmol/mol are excluded from the dataset. An Fe/Ca threshold of 1
mmol/mol for good fossil preservation as deduced also from comparison to bulk rock
geochemistry is therefore deemed suitable for *Gryphaea*.

471 For rhynchonellid brachiopods (n = 359), only the co-variation of Fe/Ca ratios with 472 Mn/Ca ratios is strong with a correlation coefficient of $r^2 = 0.70$. For all other correlations, 473 the correlation coefficient is 0.18 (Sr/Ca) or lower. Considering that the studied dataset 474 encompasses major, global geochemical perturbations, geochemical co-variation in 475 single stratigraphic intervals specific to brachiopod genera was also tested. Only intervals 476 where data density was deemed high enough to produce reliable results (10 specimens 477 of a single genus or more) were tested. As expected, for these subsets correlation 478 coefficients of Fe/Ca with Mn/Ca were partially much higher than the entire dataset. 479 However, in addition to this no clear pattern consistent with diagenetic trends (loss of Sr 480 as depletion in ¹³C and ¹⁸O in parallel with gains in Mg, Mn and Fe) could be identified.

481 In summary, it was concluded that minor diagenetic overprint of the material must have 482 taken place as is evidenced by the enrichment of the shell calcite in Mn and Fe. These two 483 elements are highly sensitive to partial diagenetic re-equilibration in the Barranco de la Cañada section, so that preservation of other geochemical proxies can robustly be 484 controlled with Mn/Ca ratios and Fe/Ca ratios. In order to exclude altered material 485 486 effectively, common limits of good preservation of 0.1 mmol/mol for Mn/Ca and 1.0 487 mmol/mol for Fe/Ca ratios were adopted. These limits led to the exclusion of 34 of 359 488 (9%) brachiopod samples and 26 of 130 (20%) Gryphaea samples. The larger fraction of 489 excluded *Gryphaea* samples corroborates the optical assessment of the shell preservation 490 that pointed at better preservation of brachiopod material. The number of excluded 491 samples as compared to other studies on Mesozoic benthic organisms is small, however, 492 further evidencing the overall excellent preservation of the shell material.

493

494 Fonte Coberta / Rabaçal

The isotopic ratios of fossil shell materials in the Fonte Coberta / Rabaçal section are distinct from the bulk rock signal, suggesting that primary information is retained in their calcite. Strong fluctuations in particular in δ^{13} C values relating to known environmental perturbations preclude the use of simple cross-plots of diagenesis proxies with isotope ratios to identify clearly overprinted samples. Comparison of geochemical signals within

- 500 single stratigraphic horizons suggests that isotopic proxies are insensitive to diagenetic
- 501 overprint until Mn/Ca ratios of 0.05 and/or Fe/Ca ratios of 0.5 mmol/mol are reached.
- 502 For example, samples of one individual of the genus *Cirpa* at 1.45 m height have δ^{13} C
- 503 values of +3.0 to +3.3 $\%_0$ and δ^{18} O values of -1.1 to -1.2 $\%_0$ apart from a single sample
- 504 with δ^{13} C value of +2.6 ‰ and δ^{18} O values of -2.3 ‰ where Mn/Ca is 0.050 and Fe/Ca is
- 505 0.57 mmol/mol. Because all but two of the fourteen samples taken from the bivalve
- 506 *Harpax* cross the above preservation limits we only consider brachiopod data from Fonte
- 507 Coberta / Rabaçal for palaeoenvironmental reconstruction.

509 Palaeoenvironmental significance of data

The reconstruction of palaeoenvironmental conditions on the basis of geochemical data requires that robust transfer functions exist for the studied parameters. In biogenic calcite geochemical signatures can be biased even in well-preserved materials by the presence of disequilibrium effects, generally known as "vital effects"^{36,37}. Such effects associated with biological factors usually lead to the preferential incorporation of ¹²C and ¹⁶O into shell calcite and also compromise proxies based on element concentrations.

- 516 A pragmatic approach to minimise these challenges is to opt for fossil substrates that are 517 thought to be least prone to vital effects. The calcite of the secondary shell layer in 518 rhynchonellid brachiopods has been identified as a highly reliable substrate for 519 geochemical proxies, especially when avoiding sampling from the shell hinge and 520 specialized shell regions³⁸. Similarly, the foliate calcite of modern oysters has been found 521 to record environmental parameters with high fidelity³⁴. From this point of view the fossil 522 material chosen for study here is of the highest possible quality for investigating Early 523 Jurassic palaeoenvironmental conditions.
- In order to further boost confidence in the reliability of the proxy data, potential biases relating to the chosen brachiopod genus and potential inter-specimen and intraspecimen differences, e.g. potential offsets between ventral and dorsal valves were assessed. Furthermore, isotopic data for brachiopods were compared to *Gryphaea* data to assess biases between these fossil groups.
- 529

530 Intraspecimen variability of geochemical proxies

531 Geochemical compositions of ventral and dorsal valve of brachiopod specimens were 532 only compared for genera for which at least three individuals with four samples that 533 passed preservation criteria were available. This was the case for *Choffatirhynchia*, 534 Homoeorhynchia, Quadratirhynchia and Soaresirhynchia from the Barranco de la Cañada 535 section and *Soaresirhynchia* from the Fonte Coberta / Rabaçal section (Fig. S6). 536 Soaresirhynchia specimens from the two sections were considered separately in case 537 environmental conditions exerted a measurable control on shell geochemical proxies. For 538 tested genera, differences in average isotope ratios range are generally negligible. Only 539 δ^{18} O values in *Quadratirhynchia* show a minor offset of 0.2 $\%_0$ in median values. This 540 difference is based on nine measurements per valve only, however, and is not deemed to 541 be large enough to warrant further consideration. The overall excellent correspondence

- of isotopic signatures among dorsal and ventral valves of brachiopods instead is taken as
- 543 evidence that sampling spot on the specimen does not exert a bias on the isotopic data.
- 544

Figure S6: Whisker plot of differences of δ^{13} C and δ^{18} O values from specimen average depending on sampled valve. Whiskers indicate the entire observed range and boxes the second and third quartile with median. Only genera for which at least three specimens with four or more well-preserved samples were available are presented. Isotopic differences relating to the sampled valve are generally negligible. The dataset for *Soaresirhynchia* is split into specimens from Portugal (grey) and Spain (black).

Also average differences in Mg/Ca and Sr/Ca are minor with a maximum difference of median Mg/Ca of 0.3 mmol/mol and maximum difference of median Sr/Ca of 0.02 mmol/mol in *Quadratirhynchia* (Fig. S7). Consequently, no biases related to the valve chosen for sampling need to be considered.

Figure S7: Whisker plot of differences of Mg/Ca and Sr/Ca ratios from specimen average depending on
 sampled valve. Whiskers indicate the entire observed range and boxes the second and third quartile with
 median. Only genera for which at least three specimens with four or more well-preserved samples were
 available are presented. Differences relating to the sampled valve are generally negligible. The dataset for
 Soaresirhynchia is split into specimens from Portugal (grey) and Spain (black).

The median isotopic variability within individuals of the various species has been computed from specimens for which at least four samples which were deemed wellpreserved were available (**Table S5**). Median 2 sd isotopic variability is always smaller than 0.5 ‰ for both isotopic systems, but substantially larger in *Choffatirhynchia*, *Gibbirhynchia*, *Homoeorhynchia* and *Quadratirhynchia* than in *Cirpa*, *Nannirhynchia* and *Soaresirhynchia*.

566

567 Differences between fossils from the same stratigraphic level

568 Differences in geochemical proxies between individual brachiopod fossils were assessed 569 for stratigraphic intervals for which at least two fossils yielding four well-preserved 570 samples each were available. This is the case for *Choffatirhynchia*, *Homoeorhynchia*, 571 *Quadratirhynchia* and *Soaresirhynchia* from Barranco de la Cañada and *Cirpa* from Fonte 572 Coberta / Rabaçal. For most of the resulting fossil couples significant (95 % confidence) 573 differences between average δ^{13} C values (10 of 16) and δ^{18} O values (12 of 16) were 574 observed (**Fig. S8**).

Figure S8: Isotopic differences between fossils from the same stratigraphic horizon. Error bars indicate 95
 % confidence interval for the difference in average values. Where more than two specimens from a horizon are available, all are compared to the most ¹³C and ¹⁸O enriched specimen respectively.

Isotopic differences greater than 0.5 $\%_0$ between different specimens, however, were not observed for δ^{13} C values and only in three instances for δ^{18} O values (0.51, 0.52, and 0.85 $\%_0$). While stratigraphic horizons for which only one specimen or few specimens are available the computed isotopic averages are therefore less certain than were ample sample material was at hand, uncertainties relating from inter-specimen differences are not major.

585

586 Interspecific offsets amongst brachiopods

594 Regarding their chemical composition, the studied rhynchonellid taxa fall into two 595 distinct groups (Table S6). The species with comparatively larger isotopic variability 596 (Choffatirhynchia, Gibbirhynchia, Homoeorhynchia and *Quadratirhynchia*) are 597 characterised by comparatively low calcite contents of 97.6 to 99.1 % versus the in-house 598 marble standard CAR and comparatively high Mg/Ca (4.8 to 6.6 mmol/mol) and Sr/Ca 599 (0.95 to 1.14 mmol/mol) ratios. Species with low isotopic variability (Cirpa, 600 Nannirhynchia, Soaresirhynchia) on the other hand have high calcite content of 99.9 to 601 100.3 % versus the in-house standard CAR and low Mg/Ca (1.9 to 2.6 mmol/mol) and 602 Sr/Ca (0.51 to 0.54 mmol/mol) ratios.

603

604 Isotopic difference between rhynchonellids and Gryphaea

605 When comparing isotope ratios of brachiopods and bivalves from the Barranco de la 606 Cañada section, a clear tendency of δ^{13} C values from *Gryphaea* to be more positive than 607 brachiopods from the same horizon is observed (**Figure S9**).

Figure S9: Carbon and oxygen isotope ratios for all individual samples from the Barranco de la Cañada
 section that passed screening for diagenesis.

- For ten stratigraphic levels, samples for both, brachiopods and *Gryphaea*, were analysed. Comparison of the two datasets including overlaps with all rhynchonellids apart from *Soaresirhynchia* revealed a consistent offset of *Gryphaea* data towards more positive δ^{13} C values (+0.25 to +1.00 ‰), with a weighted average of +0.63 ‰. *Gryphaea* data were also found to be minimally enriched in ¹⁸O (-0.43 to +0.70 ‰) with a weighted average of +0.10 ‰.
- 619 Independent studies reporting carbon and oxygen isotope ratios for coeval Early Jurassic 620 brachiopods and *Gryphaea* are currently unavailable. The framework for understanding 621 C & O isotope data from rhynchonellid brachiopods is very well established, their average 622 shell preservation is superior to that of *Gryphaea* in the Barranco de la Cañada section, 623 and rhynchonellids contribute more than 75 % of the data of the screened dataset. 624 Futhermore, the dataset from Fonte Coberta / Rabaçal is based solely on brachiopod 625 samples. It was therefore decided to shift all *Gryphaea* δ^{13} C values by -0.63 ‰ to generate 626 a coherent dataset. The question remains how this recalculated dataset exactly matches 627 to absolute atmospheric carbon isotope ratios during the Toarcian stage, but the correction procedure allows for relative changes in $\delta^{13}C$ values to be studied with 628 629 confidence. δ^{18} O values of the *Gryphaea* samples were not adjusted, because the observed difference between the two fossil types of 0.10 ‰ was deemed negligible. 630

632 Calculation of palaeo seawater temperatures

633 A palaeothermometer based on oxygen isotope ratios and supplemented by MgCO₃ concentrations has been developed using modern analogues³². We adopt this 634 635 thermometer as the currently most sophisticated thermometer available for brachiopods 636 and use it also for the *Gryphaea* data owing to the good agreement of the brachiopod and bivalve datasets. The equation presented by Brand et al. (2013)³² requires and input of 637 638 seawater δ^{18} O and mol% MgCO₃ in the shell calcite. Due to the lack of robust knowledge 639 of seawater δ^{18} O we use here the value of -1 % vs V-SMOW and also list palaeotemperature data derived from the equation by Anderson and Arthur (1983)³⁹ to 640 641 enable maximum comparability to palaeotemperature data of Suan et al., (2008)³³. The 642 fractionation factor for oxygen isotopes between calcite and water is also to some degree influenced by the magnesium concentration of the secreted calcite⁴⁰. The magnitude of 643 this effect is approximately 0.17 ‰ per mol% MgCO₃. The resulting MgCO3 effect on the 644 645 fractionation factor is very small (0.07 ‰ on average) due to the very low MgCO₃ content 646 of the shell materials averaging 0.4 mol% MgCO₃. Because of the narrow range of MgCO₃ 647 concentrations in the studied shell materials palaeotemperatures are calculated for 648 aggregated data rather than for each sample individually. The resulting potential biases 649 are negligible, e.g., 0.07 ‰ and 0.24 °C or less between the different taxa. 650 Average palaeotemperatures for the Barranco de la Cañada section derived from Refs. 32

and 39 together with average carbon and oxygen isotope ratios and ages based on the
Geologic Timescale 2012⁴¹ are listed in Table S7.

654 Modelling

655 Simple mass balance calculations

656 The datapoints are separated by time intervals in the region of 0.05-0.1 Myrs, shorter than 657 the ~ 100 kyr residence time of oceanic carbon⁴² and longer than the c. 1,000 year mixing 658 time of the ocean. Over such timescales we can make rough estimates of how much 659 carbon is needed to drive the perturbation using simple mass-balance calculations⁴³. We 660 write the initial isotopic composition of exchangeable carbon in the ocean-atmosphere pool as $\delta^{13}C_T$, then equate the mass of this pool M_T to the sum of its organic and inorganic 661 662 components $M_T = M_{inorganic} + M_{organic}$. We can then write the pre-perturbation 663 isotopic mass balance as:

$$664 \qquad \delta^{13}C_T \cdot M_T = \delta^{13}C_{organic} \cdot M_{organic} + \delta^{13}C_{inorganic} \cdot M_{inorganic} \tag{1}$$

The values for present day the exchangeable dissolved organic and inorganic carbon pools are $M_{organic} = 662$ Gt C, and $M_{inorganic} = 37,400$ Gt C^{44,45}, which we use as a reference point for the pre-perturbation Jurassic system.

668 We write the post-perturbation composition as $\delta^{13}C_T$, based on the idea that this value 669 deviates from $\delta^{13}C_T$ as a function of the mass M_x and isotopic composition $\delta^{13}C_x$ of some 670 external carbon pool (methane, large igneous province derived CO₂ etc) putatively 671 responsible for the perturbation:

672
$$\delta^{13}C_{T}' = \frac{\delta^{13}C_{T} \cdot M_{T} + \delta^{13}C_{X} \cdot M_{X}}{M_{T} + M_{X}}, \therefore M_{X} = \frac{M_{T}(\delta^{13}C_{T}' - \delta^{13}C_{T})}{\delta^{13}C_{X} - \delta^{13}C_{T}'}$$
(2)

The right hand side of (2) illustrates how the more negative $\delta^{13}C_X$ (i.e. the isotopically 673 674 lighter the carbon input) the lower M_x (i.e. the less carbon is needed to explain an 675 excursion of a given magnitude). Sources of isotopically light carbon plausibly relevant to the Toarcian include CH₄ released by clathrate destabilization $\delta^{13}C_{CH_4 hvd} = -60 \%^{45,46}$ 676 thermogenic CH₄ from contact metamorphism $-35 \%_0 \le \delta^{13} C_{CH_4 therm} \le -25 \%_0^{47}$, 677 CO₂ derived directly from magma $-7\% \leq \delta^{13}C_{CO_2 magma} = -5\%$ and/or thermogenic 678 CO2 sources associated with large igneous province emplacement $-27\%_0 \leq$ 679 $\delta^{13}C_{CO_2 therm} \leq 2\%^{48}$. 680

The carbon isotopic dataset reaches a minimum of δ^{13} C=-0.36 ‰ after a downward trend that begins from an inflection point at δ^{13} C=3.13 ‰. Treating this as a single negative carbon isotopic excursion (NCIE) we calculate a magnitude of $\Delta \delta^{13} C_{data,NCIE} =$ -(3.13 - -0.36) = -3.49%. This happens within an interval of $\Delta t_{NCIE} \sim 181.98$ -181.70=0.28Myrs⁴¹. The NCIE is followed by a large amplitude positive excursion 686 $\Delta \delta^{13} C_{data,PCIE} = 5.13 - -0.36 = 5.49\%_0$, which occurs over $\Delta t_{NCIE} \sim 181.7$ Ma - 181.3 687 Ma = 0.4Myrs⁴¹.

688 Writing $\delta^{13}C_T = \delta^{13}C_{data,pre} = 3.13$ and $\delta^{13}C_T' = \delta^{13}C_{data,pre} + \Delta\delta^{13}C_{data,NCIE} =$ 689 -0.36 we can solve (2) for M_x using various different values of $\delta^{13}C_x$ corresponding to the 690 above sources, thus estimate the mass of different types of carbon plausibly responsible. 691 This produces the results depicted in **Fig. S10** (see also **Table S8**).

- The numbers for methane are in the same range as the Beerling et al. (2002)⁴⁹ upper estimate of a clathrate-derived methane induced excursion of c. 5,000 Gt C, as well as earlier estimates⁴⁴, considering a likely background pCO₂ of approximately 2-4 time preindustrial values⁵⁰.
- 696 The dynamical modelling results referred to in the main text correspond, unless 697 otherwise stated, to $\delta^{13}C_{CO_2} = \delta^{13}C_{CO_2 magma} = -7\%_0$ and $\delta^{13}C_{CH_4} = \delta^{13}C_{CH_4 hyd} =$ 698 -60 ‰. The above mass balance calculations neglect dynamical carbon sinks and are 699 consequently underestimates. The input fluxes and the time interval over which these 700 fluxes were non-zero were tuned so as to reproduce the data:

701
$$TCO_{2(input)} = \int_{t_{start}CO_{2}}^{t_{end}CO_{2}} F_{Toarcian(CO_{2})} dt$$
(3)

702
$$TCH_{4 (input)} = \int_{t_{start CH_4}}^{t_{end CH_4}} F_{Toarcian (CO_2)} dt$$
(4)

703With $F_{Toarcian (CO_2)} = 3.6 \times 10^{13} molyr^{-1}$ and $F_{Toarcian (CH_4)} = 1.107 \times 10^{12} molyr^{-1}$ 704with the time of the start and end of the CO2 "burn" $t_{start CO_2} = 181.87$ Ma, $t_{end CO_2} =$ 705181.74 Ma and the time of methane input $t_{start CH_4} = 181.75$ Ma $t_{end CH_4} = 181.65$ Ma.

- This gives the total time-integrated carbon inputs to the dynamical model described below is an LIP- CO_2 input $F_{Toarcian(CO_2)} \cdot (0.13 \times 10^6 yrs) = 5.25 \times 10^{18} mol$, or $F_{Toarcian(CO_2)} \cdot (0.13 \times 10^6 yrs) \cdot \frac{12.0107}{1 \times 10^{15}} = 63146$ GtC as LIP-associated CO_2 , and $F_{Toarcian(CH_4)} \cdot (0.01 \times 10^6 yrs) = 1.107 \times 10^{17} mol$ or $F_{Toarcian(CH_4)} \cdot (0.01 \times 10^6 yrs) \cdot \frac{12.0107}{1 \times 10^{15}} = 1329$ GtC as clathrate methane.
- 711 A coarse estimate of how much carbon would be required in order to explain the 712 observed PCIE can be derived by modifying (1) to describe the removal of mass M_X , i.e. 713 $\delta^{13}C_T'(M_T - M_X) = \delta^{13}C_T \cdot M_T - \delta^{13}C_X \cdot M_X$, thus $M_X = \frac{M_T(\delta^{13}C_T' - \delta^{13}C_T)}{(\delta^{13}C_T' - \delta^{13}C_X)}$. Writing 714 $\delta^{13}C_X = \delta^{13}C_{organic}$, then equating the pre- and post- perturbation isotopic compositions
- 715 to $\delta^{13}C_T = -0.36$, and $\delta^{13}C_T' = 5.13$, and the duration of the PCIE from the data

 $\Delta t_{data, PCIE} = 0.4 Myrs$. A provisional estimate of the necessary organic carbon burial 716 717 flux can be provisionally derived using an intermediate value for the organic carbon isotopic composition $\delta^{13}C_{organic} = -24.5\%$ (An expanded range -32.5% \leq 718 $\delta^{13}C_{organic} \leq -17.5\%^{51}$ is explored in the figure below (Fig. S10)). These numbers (in 719 GtC) can be related to the present day organic carbon burial flux $mocb_0 = 3.75 \times$ 720 $10^{12} molyr^{-1}$ 52 via *GtC* (*organic*, *out*) = $x \cdot \int_{0}^{\Delta t_{data, PCIE}} mocb_0 dt$ where x is the 721 magnitude of the organic carbon burial flux relative to present. Results of these 722 723 calculations are listed in Table S8.

- However, these are underestimates because the mass balance calculation in (2) neglects both dynamical carbon sinks and the fact the positive excursion occurs after the carbon input corresponding to the negative excursion, which will increase the baseline reservoir size M_T . Consequently we now turn to a dynamical modelling approach.
- 728

729 Proxy inversion modelling

Our inversion model aims to get the maximum amount of information from the dataset whilst making the minimum possible number of assumptions. We proceed by backcalculating CO₂ and temperature via the δ^{18} O data, then estimating carbon cycle fluxes compatible with both these calculations and the δ^{13} C data:

- 7341. The δ^{18} O dataset is related to global average surface temperature using an existing735empirical formulation³² (see below).
- 7362. This δ^{18} O-inversion temperature $T_{\delta^{18}O}$ is used to estimate a corresponding value for737relative atmospheric CO_2 , $R_{CO_2}(\delta^{18}O)$ using the Geocarbsulf model's temperature738function.
- 3. Estimates of the normalized magnitude of uplift *U*, degassing *D* and bulk weathering *W* are taken from the forcings for the COPSE model⁵³ across the time interval corresponding to the dataset allowing us to estimate the various weathering fluxes relevant to the organic and carbonate carbon cycle mass balances.
- 743
 4. The marine carbonate carbon burial flux *mccb* is assumed to be calculable from mass
 744
 745
 745
 745
 746
 747
 748
 748
 749
 749
 749
 749
 740
 740
 740
 741
 741
 742
 742
 743
 744
 744
 744
 745
 744
 745
 745
 745
 745
 746
 747
 747
 748
 748
 749
 749
 749
 749
 740
 740
 740
 741
 741
 742
 744
 744
 744
 745
 745
 745
 745
 745
 746
 746
 747
 747
 748
 748
 748
 749
 749
 749
 749
 749
 740
 740
 740
 741
 741
 741
 742
 744
 744
 745
 745
 746
 746
 747
 747
 748
 748
 748
 749
 749
 749
 749
 749
 749
 740
 740
 740
 741
 741
 741
 742
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
- 7465. The combination of all the above flux estimates, the $\delta^{13}C$ data, and isotopic mass747balance, allows us to estimate the marine organic carbon burial *mocb* flux.
- 7486. The marine phosphate concentration \overline{P} corresponding to this marine organic carbon749burial flux, along with a rough estimate of the corresponding global ocean anoxic750fraction f_{anox} is then calculated.
- Thus, our aim in this section is to describe an approximate mapping from each $\delta^{13}C$, $\delta^{18}O$ datapoint to temperature, carbon cycle weathering/burial fluxes, marine limiting nutrient concentration, and finally anoxia.

We begin with Berner's global carbon isotopic mass balance⁵⁴, which is an isotopically weighted mass balance combining the inputs to and outputs from the organic and carbonate carbon cycles (please see **Table S9** for flux abbreviations):

$$757 \qquad \delta^{13}C_{C} \cdot (carbw + ccdeg) + \delta^{13}C_{G} \cdot (oxidw + ocdeg) + \delta^{13}C_{\Delta toarcian} \cdot F_{\Delta toarcian}$$

$$758 \qquad = \delta^{13}C_{mccb} \cdot mccb + (\delta^{13}C_{mccb} - \varepsilon) \cdot mocb \qquad (5)$$

The isotopic composition $\delta^{13}C_{mccb}$ of the marine carbonate carbon burial (mccb) flux is assumed to reflect the isotopic composition of the marine DIC pool and is given by:

761
$$\delta^{13}C_{mccb} = \frac{\delta^{13}C_{C}(carbw+ccdeg) + \delta^{13}C_{G}(oxidw+ocdeg) + \varepsilon \cdot mocb + \delta^{13}C_{\Delta toarcian} \cdot F_{\Delta toarcian}}{mocb+mccb}$$
(6)

Where $\delta^{13}C_{\Delta toarcian} \cdot F_{\Delta toarcian}$ is the isotopically weighted input from the putative Toarcian-specific perturbation, i.e. the sum of large igneous province (LIP) associated CO_2 degassing and CO_2 associated with the oxidation of clathrate-derived CH_4 :

765
$$\delta^{13}C_{\Delta toarcian} \cdot F_{\Delta toarcian} = \delta^{13}C_{LIP} \cdot F_{LIP} + \delta^{13}C_{CH_4} \cdot F_{CH_4}$$
(7)

(Note that the above is set to zero by default for the figure discussed in the main text, because in this exercise we treat each δ^{13} C data point as reflecting a mass balance within which the above fluxes have already gone in to the atmospheric CO₂ pool, and thus drive the temperature increase). The $\delta^{18}O$ data is related to the inversion model temperature estimate using the fit of Brand et al (2013)³², which incorporates the impact on $\delta^{18}O$ of the proportion of MgCO₃ in the shell:

772
$$T_{\delta^{18}O(model)} = 16.192 - 3.468 \cdot (\delta^{18}O_{data} - \delta^{18}O_{SW} - \delta_{Mg})$$
 (8)

Where we assume, in line with previous estimates, that the average seawater isotopic composition can be approximated by $\delta^{18}O_{SW} = -1\%_0$, and the magnesium calcite adjustment factor $\delta_{Mg} = 0.17 \ mol\% MgCO_3^{14}$, was for this dataset approximately $mol\% MgCO_3 = 0.4$. For comparison, we additionally show Andersen & Arthur's³⁹ fit, which does not include a magnesium calcite correction:

778
$$T_{\delta^{18}O(reference)} = 16.0 - 4.14 \cdot \delta^{18}O_{data} + 0.13 \cdot (\delta^{18}O_{data}^2)$$
 (9)

779 We equate (9) to the Geocarbsulf's temperature function:

780
$$T_{\delta^{18}O} - T_0 = ESS \cdot \frac{\ln\left(\frac{CO_2(atmos)}{CO_2_0}\right)}{\ln(2)} - W_s\left(\frac{t_{bp}}{570}\right) + GEOG$$
 (10)

Where the baseline modern temperature $T_0 = 15^{\circ}C$, ESS = 5 is the "Earth system sensitivity" (long term climate sensitivity), GEOG = 3 (corresponding to the early Jurassic) is Royer's adjustment to Berner's original model to express the sensitivity of temperature to changes in paleogeography⁵⁵, $W_s = 7.4$ represents Berner's linearization of the luminosity component of the temperature function⁵⁶, atmospheric CO_2 is normalized to pre-industrial levels of $CO_{20} = 280$ ppm and t_{bp} is the model time in millions of years before present. This allows us to derive an estimate of the relative atmospheric $R_{CO_2} = \frac{CO_2(atmos)}{CO_{20}}$ corresponding to each inversion temperature.

789
$$R_{CO_2(\delta^{18}O)} = \frac{CO_2(atmos)}{CO_2_0} = e^{(T_{\delta^{18}O} - T_0 - GEOG + W_s(\frac{t_{bp}}{570})) \cdot \frac{\ln(2)}{ESS}}$$
(11)

Several of the fluxes in (5) are plausibly a function of the relative size of the carbonate
and organic carbon rock reservoirs. The differential equations describing the mass of
carbonate *C* and organic *G* carbon are estimated by simple differential equations of the
form given by Berner's original Geocarb model:

$$794 \quad \frac{dc}{dt} = mccb - carbw - ccdeg \tag{12}$$

795
$$\frac{dG}{dt} = mocb - oxidw - ocdeg$$
(13)

Degassing fluxes are constrained by time-dependent forcings taken from the COPSEmodel⁵³:

798
$$ccdeg = ccdeg_0 \cdot D_{(t_{bp})}$$
 (14)

799
$$ocdeg = ocdeg_0 \cdot D_{(t_{bp})}$$
 (15)

800 Where $D_{(t_{bp})}$ is a normalized estimate of the time-specific degassing rate. We estimate the 801 carbonate *carbw* and oxidative *oxidw* weathering fluxes via:

802
$$carbw = carbw_0 \cdot U_{(t_{bp})}^{0.9} \cdot (1 + 0.087 \cdot \Delta T) \cdot 2 \cdot (\frac{R_{CO_2}(\delta^{18}O)}{1 + R_{CO_2}(\delta^{18}O)}) \cdot \frac{C_{(t)}}{C_0}$$
 (16)

803
$$oxidw = oxidw_0 \cdot U_{(t_{bp})} \cdot \frac{G_{(t)}}{G_0}$$
 (17)

804 Where $\Delta T = T_{\delta^{18}o} - T_0$ is the deviation between the temperature estimated from the 805 proxy inversion and the baseline planetary average. (We also experimented with an 806 adjustment for the bias in global weathering to tropical latitudes $\Delta T_{tropics} = \frac{2}{3} \Delta T^5$, but 807 this did not qualitatively alter the results).

- 808We explored two options for the marine carbonate carbon burial flux *mccb*. The default809carbonate carbon burial flux was assumed to balance carbonate and silicate weathering:810 $mccb_{balance} = carbw + silw$ (18)
- 811 The kinetic-limited silicate weathering flux scales with temperature and CO_2 via Caldeira
- 812 and Kasting (1992)⁵⁷:

813
$$silw_{kinetic} = silw_0 \cdot U_{(t_{bp})}^{0.33} \cdot e^{0.09\Delta T} \cdot (1 + 0.038 \cdot \Delta T)^{0.65} \cdot \sqrt{R_{CO_2}(\delta^{18}O)}$$
 (19)

Limitation of silicate weathering by the supply, via physical erosion, of silicate cations in weather-able rock is imposed using a formulation from previous deep time work⁵⁸:

816
$$silw_{supply} = silw_{kinetic} + \frac{silw_{max} - silw_{kinetic}}{1 + e^{-k_{supply}(silw_{kinetic} - silw_{max})}}$$
 (20)

817 Where $silw_{max} = 3 \cdot silw_0$ and $k_{supply} = 100$, such that the formulation in (20) dictates 818 the manner in which $silw_{supply}$ plateaus out at $silw_{max}$ at high weathering rates. In the 819 simulations discussed in the main text we imposed supply limitation of silicate 820 weathering at lower thresholds of 1.5 to 2 times the modern value.

821 An alternative functional form of the marine carbonate carbon burial flux involves a 822 coarse approximation to its (short-term) dependence on carbonate alkalinity:

823
$$mccb_{variable} = mccb_0 \cdot RCO_{2 (ocean)}$$
 (21)

Where $RCO_{2 (ocean)}$ is the normalized size of the marine component of the global oceanatmosphere CO_2 reservoir. In keeping with the revised COPSE model⁵⁹ and previous calculations⁵¹, we assume that relative atmospheric CO_2 scales with the second power of the normalized reservoir size:

828
$$R_{CO_2(\delta^{18}O)} = \left(\frac{A_{(t)}}{A_0}\right)^2, \therefore A_{(t)} = A_0 \cdot \sqrt{R_{CO_2(\delta^{18}O)}}$$
 (22)

This allows us to estimate the atmospheric fraction ϕ of the total ocean-atmosphere CO_2 reservoir (assuming a constant total number of moles of air in the atmosphere of $mol_{atmos} = 1.773 \times 10^{20}$):

832
$$\phi_{(t)} = \frac{R_{co_2(\delta^{18}o)} \cdot Co_2 \cdot 1 \times 10^{-6} \cdot mol_{atmos}}{A_0 \cdot \sqrt{R_{co_2}(\delta^{18}o)}}$$
(23)

Which finally gives the ocean component of the *CO*₂ reservoir, scaled relative to presentday values:

835
$$RCO_{2 (ocean)(t)} = \frac{(1-\phi_{(t)})A_{(t)}}{(1-\phi_0)A_0}$$
 (24)

This is then plugged into the $mccb_{variable}$ flux (21).

837 The only remaining undetermined flux, marine organic carbon burial, can now be 838 calculated by assuming $\delta^{13}C_{mccb} = \delta^{13}C_{data}$ and solving (5) for this flux:

839
$$mocb = \frac{\delta^{13}C_{C}\cdot(carbw+ccdeg) + \delta^{13}C_{G}\cdot(oxidw+ocdeg) + \delta^{13}C_{\Delta toarcian}\cdot F_{\Delta toarcian} - \delta^{13}C_{mccb}\cdot mccb}{(\delta^{13}C_{mccb} - \varepsilon)}$$
(25)

840 We initialize at the first time step using isotopic compositions for carbonate $\delta^{13}C_c = 0\%$

- and organic carbon in rock $\delta^{13}C_G = -\varepsilon = -24.5$ and modern day reservoir sizes C_0 and
- G_0 , then proceed to use the dataset to solve the differential equations (24) and (25) by

Euler's method. Berner's original equations for the change over time in the isotopiccomposition of the organic and carbonate rock reservoirs were also used:

845
$$\frac{d\delta_C C}{dt} = \delta_{mccb} \cdot mccb - \delta_C \cdot carbw - \delta_C \cdot ccdeg$$
(26)

846
$$\frac{d\delta_G G}{dt} = (\delta_{mccb} - \varepsilon) \cdot mocb - \delta_G \cdot oxidw - \delta_G \cdot ocdeg$$
(27)

For each estimate of marine organic carbon burial *mocb* that we arrive at (i.e. at each timestep), we calculate the corresponding relative concentration of limiting nutrient necessary to sustain it:

850
$$mocb = mocb_0 \cdot \overline{P}^2, \therefore \overline{P} = \frac{PO_4}{PO_{40}} = \sqrt{\frac{mocb}{mocb_0}}$$
 (28)

The global phosphorous weathering flux is taken from COPSE, and is a function of temperature, CO_2 and the other weathering fluxes:

853
$$phosw = phosw_0 (f_{silw} \frac{silw}{silw_0} + f_{carbw} \frac{carbw}{carbw_0} + f_{oxidw} \frac{oxidw}{oxidw_0})$$
 (29)

Where we use recently revised apportioning factors are $f_{silw} = 0.58$, $f_{carbw} = 0.21$, $f_{oxidw} = 0.21$. The formulations of the calcium-phosphate burial flux *capb*, iron adsorbed phosphate burial flux *fepb* and marine organic phosphate *mopb* are given by:

$$857 \quad capb = capb_0 \cdot \bar{P}^2 \tag{30}$$

$$858 \quad fepb = fepb_0(1 - f_{anox}) \tag{31}$$

859
$$mopb = mocb(\frac{f_{anox}}{CP_{anox}} + \frac{1 - f_{anox}}{CP_{ox}})$$
 (32)

We make the (highly idealized/approximate) simplifying assumption that the global phosphate reservoir's dynamics are at roughly steady state at each carbon isotope data point:

863
$$\frac{dP}{dt} = phosw - capb - fepb - mopb \approx 0$$
(33)

864 This assumption allows us to estimate the global ocean anoxic fraction f_{anox} by 865 substituting (35)-(38) into (39):

$$866 f_{anox} = \frac{phosw-capb-fepb_0 - \frac{mocb}{CP_{ox}}}{mocb(\frac{1}{CP_{anox}} - \frac{1}{CP_{ox}}) - fepb_0} (34)$$

867 Where we additionally impose the necessary constraint that $0 \le f_{anox} \le 1$.

868 To sum up, we have used the $\delta^{18}O$ data to produce a temperature (thus CO₂ greenhouse) 869 estimate, then plugged this estimate and the $\delta^{13}C_{data}$ into an isotopically weighted 870 carbon cycle mass balance in order to estimate marine organic carbon burial, thus 871 limiting nutrient concentration, thus anoxia. The results of this proxy inversion exercise
872 are discussed in the main text. Discrete values taken for modelling are listed in Table S9.
873

Forward modelling in the COPSE (Carbon, Oxygen, Phosphorous, Sulphur, Evolution) model

In the forward model we aim to reproduce the data using prescribed greenhouse forcings, as opposed to using this data to drive the model. Full model equations for COPSE can be found in the original descriptions^{53,59}; we restrict our description here to those fluxes of key conceptual relevance. The greenhouse forcings dictating the injection of LIP- CO_2 and clathrate CH_4 are given by (also see equations (3) and (4) above):

881
$$F_{LIP CO_2(t_{LIP start} \ge |t_{bp}| \ge t_{LIP end})} = F_{Toarcian (CO_2)0}, \ F_{LIP CO_2(\neg(t_{LIP start} \ge |t_{bp}| \ge t_{LIP end}))} = 0$$
(35)

882 $F_{Clathrate CH_4(t_{CH_4 start} \ge |t_{bp}| \ge t_{CH_4 end})} = F_{Toarcian (CH_4)0}$

883
$$F_{Clathrate CH_4\left(\neg\left(t_{CH_4 \, start} \ge |t_{bp}| \ge t_{CH_4 \, end}\right)\right)} = 0$$
(36)

- Where t_{bp} is model time in millions of years before present and $t_{LIP \ start}$, $t_{LIP \ end}$ $t_{CH_4 \ start}$, $t_{CH_4 \ end}$ are tuneable parameters describing, respectively, the time (in years before present) at which LIP- CO_2 and clathrate CH_4 begin and cease. Additional forcings are degassing D, uplift U, weathering W, and relative biotic terrestrial evolution E, from the original model.
- As above, the δ_{mccb} value predicted by the model is assumed equilibrated with the isotopic composition of the global ocean-atmosphere CO_2 reservoir A, $\delta_{mccb} = \delta_A$. The mass and isotopic composition of the global ocean-atmosphere CO_2 reservoir changes over time according to:

893
$$\frac{dA}{dt} = ocdeg + ccdeg + oxidw + carbw - mccb - mocb - tocb - sfw + F_{LIP CO_2} + CO_2 + C$$

894
$$\Gamma_{Clathrate CH_4}^{(37)}$$

895 $\frac{d(\delta_A A)}{dt} = \delta_G(ocdeg + oxidw) + \delta_C(ccdeg + carbw) - \delta_A mccb - (\delta_A - \varepsilon_{ocean})mocb$

896
$$-(\delta_A - \varepsilon_{land}) tocb + \delta^{13} C_{CH_4} F_{Clathrate CH_4} + \delta^{13} C_{LIP} F_{LIP CO_2}$$
(38)

- 897 Where the isotopic composition of the organic δ_G and carbonate δ_C rock reservoirs 898 change according to (26) and (27). The terrestrial organic carbon burial flux *tocb* is 899 related to phosphorous weathering of the terrestrial rock surface:
- 900 $tocb = 0.02041 \cdot V \cdot CP_{land} \cdot phosw$ (39)

Where $CP_{land} = 1000$. The relative mass of the terrestrial photosynthetic biosphere *V* exhibits a simple Michaelis-Menten style dependence on atmospheric CO_2 , a dependence on temperature relative to a presumed maximum productivity at $T_{P_{max}} = 25^{\circ}C$, and is inhibited by excessive oxygen levels in a way the represents photorespiration and fire:

905
$$V = k_{npp} \cdot E_{(t_{bp})} \cdot (1.5 - 0.5 \cdot \overline{O}) \cdot \left(1 - \left(\frac{T - T_{P_{max}}}{T_{P_{max}}}\right)^2\right) \cdot \left(\frac{P_{CO_2} - P_{min}}{\frac{P_1 + P_{CO_2} - P_{min}}{\frac{P_1 + P_{CO_$$

906 (40)

Where $k_{npp} = 2$ is a normalizing constant, $E_{(t_{bp})} = 1$ is the terrestrial evolutionary forcing corresponding to the Jurassic, $\bar{O} = \frac{O_2}{O_2 \circ_0}$ is the normalized global oxygen reservoir size, $P_{CO_2} = R_{CO_2} \cdot CO_{2 \circ_0}$ is the atmospheric CO_2 mixing ratio in parts per million, $P_{min} =$ 10 ppm and $P_{\frac{1}{2}} = 183.6$ ppm express the dependence of primary production on P_{CO_2} , $k_{fire} = 3$ expresses a 50% suppression of vegetation today relative to a world with no fire⁶⁰, and *ignit* is a measure of the magnitude of the negative impact of fires on terrestrial production as oxygen's mixing ratio increases, given by Lenton et al (2018)⁵⁹:

914
$$ignit = MIN\left[MAX\left[48 \cdot \left(\frac{\bar{o}}{\bar{o}+3.762}\right) - 9.08, 0\right], 5\right]$$
 (41)

915 Removal of CO_2 at the deep ocean crust via seafloor "weathering" *sfw* is assumed to 916 exhibit a kinetic dependence on temperature comparable to terrestrial basalt 917 weathering:

918
$$sfw = sfw_0 \cdot k_{sfw} \cdot D_{(t_{hn})} \cdot e^{k_T sfw\Delta T}$$
 (42)

919 Where $sfw_0 = 3 \times 10^{12} molyr^{-1}$, $k_{sfw} = 0.068$, $k_T sfw = 0.1332$. Terrestrial silicate and 920 carbonate weathering fluxes are enhanced by the biosphere via *V* using the formulation 921 from the original COPSE model⁵³:

922
$$f_{Tsilw} = e^{0.09\Delta T} \cdot (1 + 0.038\Delta T)^{0.65}$$
 (43)

923
$$f_{CO_2 \ silw} = \sqrt{R_{CO_2}} \left(1 - MIN \left[V \cdot W_{(t_{bp})}, 1 \right] \right) + \left(\frac{2 \cdot R_{CO_2}}{R_{CO_2} + 1} \right)^{0.4} \cdot MIN \left[V \cdot W_{(t_{bp})}, 1 \right]$$
(44)

924
$$silw = silw_0 \cdot U_{(t_{bp})} \cdot f_{Tsilw} \cdot f_{CO_2 silw} \cdot (k_{plants} + (1 - k_{plants}) \cdot MIN [V \cdot W_{(t_{bp})}, 1])$$
 (45)
925 Similarly for the carbonate weathering flux:

926
$$g_{Tcarbw} = 1 + 0.087\Delta T$$
 (46)

$$927 g_{CO_2 \ carbw} = f_{CO_2 \ silw} (47)$$

928
$$carbw = carbw_0 \cdot U_{(t_{bp})} \cdot g_{Tcarbw} \cdot g_{CO_2 carbw} \cdot (k_{plants} + (1 - k_{plants}) \cdot MIN [V \cdot$$

929 $W_{(t_{bp})}, 1])$ (48)

930 The time derivative for the global oxygen reservoir is identical to that of the original 931 model, except for the addition of an oxygen sink for those time steps at which the CH_4 932 input is non-zero (at which points we assume complete and instantaneous oxidation to 933 CO_2 via stoichiometry $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$):

934
$$\frac{do}{dt} = mocb + tocb - oxidw + 2 \cdot (mpsb - pyrw - pyrdeg) - 2 \cdot F_{Clathrate CH_4}$$
(49)

Where the other fluxes are (left to right) marine organic carbon burial, terrestrial organic
carbon burial, oxidative weathering, marine pyrite sulphur burial, pyrite weathering,
pyrite degassing (see Table S9 for a full list of abbreviations). The formulation of each of
these fluxes is:

939
$$mocb = mocb_0(\bar{P}^2) \cdot \alpha e^{-\beta O_2 conc}$$
 (50)

For $\alpha = 2.217$, $\beta = 2277$, and $O_{2 conc}$ is an estimate of the oxygen concentration in surficial seawater corresponding to the global reservoir size $O_{2 conc} = \overline{O} \cdot O_{2 conc 0}$, where $O_{2 conc 0} = 331.5 \,\mu molkg^{-1}$. The sulphur cycle is a key component of the Earth system's response to global anoxic events, including the Toarcian⁶¹. The relationship between burial of marine pyrite, that of marine organic carbon and the oxygen/sulphur marine reservoirs, is written as:

946
$$mpsb_{revised} = mocb \cdot \left(\frac{f_{anox}}{c:S_{anox}} + \frac{1 - f_{anox}}{c:S_{ox}}\right)$$
 (51)

947 Where $C: S_{anox} = 2$, $C: S_{ox} = 3.5^{32}$. The weathering and degassing of pyrite in rock is 948 described by:

949
$$pyrw = pyrw_0 \cdot U_{(t_{bp})} \cdot \frac{PYR}{PYR_0}$$
(52)

950
$$pyrdeg = pyrdeg_0 \cdot D_{(t_{bp})} \cdot \frac{PYR}{PYR_0}$$
 (53)

951 The pyrite rock reservoir *PYR* changes according $\frac{dpyr}{dt} = pyrw + pyrdeg - mpsb$ as 952 described in the original model.
954 Elaboration on modelling results

955 Mass balance calculations

A simple estimate of the mass of ${}^{13}C$ -depleted carbon that must be introduced into the 956 957 exchangeable ocean-atmosphere carbon pool in order to drive the observed negative CIE 958 can be derived from simple mass balance equations (see supplement, model description 959 section 1⁴²). Figure S10 depicts the requisite quantity of methane carbon derived from clathrate-decomposition ($\delta^{13}C_{CH_4\ hyd} = -60\ \%$)⁴⁶ or contact metamorphism 960 $(\delta^{13}C_{CH_{4} therm} \leq -25 \%)^{47}$, as well as that of CO_{2} carbon derived directly from magma 961 $-7\%_{00} \le \delta^{13} C_{CO_2 magma} = -5\%_{00}^{62}$ or thermogenic sources $-27\%_{00} \le \delta^{13} C_{CO_2 therm} \le$ 962 5^{%047}. Additionally depicted for reference is the quantity of organic carbon (assuming 963 $-32.5\% \le \delta^{13}C_{organic} \le -17.5\%$, e.g. Ref. 38) that would need to be removed from the 964 965 exchangeable pool (i.e. buried) in order to explain the positive isotopic excursion (i.e. the 966 recovery from the negative CIE). However in this latter case it is more realistic to conceive 967 of the carbon burial increase as a continuous dynamical change than the discrete 968 perturbation represented by these calculations.

Figure S10: Simple mass balance calculations depicting the quantity of methane (grey) and CO₂ (black)
 needed to drive the observed negative carbon isotopic excursion, and the amount of additional organic
 carbon burial (grey field) necessary to drive the observed positive carbon isotopic excursion, assuming
 different pre-perturbation sizes of the combined organic/inorganic ocean-atmosphere exchangeable
 carbon pool relative to present.

975

- 976
- 977

978 Proxy Inversion model

979 The results of proxy inversion modelling are depicted in **Figure S11**. The inversion 980 temperature $T_{\delta^{18}o}$ is compatible with a hyperthermal interval and supports a $\sim 2 - 4^{\circ}$ C 981 increase precisely in line with the negative CIE, strongly supporting the case for methane 982 induced warming, in the context of a prolonged, baseline hyperthermal state.

983 The organic carbon burial "f' ratio positively covaries with $\delta^{13}C$, reaching a lower limit 984 at the most negative point of the CIE. This is based on the assumption that the organic 985 carbon burial flux is in equilibrium with a carbonate burial flux, which in turn 986 proportionally increases in line with the CO_2/CH_4 input, which is, in turn, tracked by the 987 negative CIE (see model description, equation (10)). However, as $\delta^{13}C$ approaches zero 988 it is highly likely that the system deviates from steady state- with the implication that the 989 "f" ratio estimates at this point are loose approximations only. All other factors being 990 equal, high marine organic carbon burial necessitates both high limiting nutrient 991 concentration (to support the production) and translates into high ocean anoxia (due to 992 the increased oxygen consumption as the organic carbon is remineralized).

993 The marine carbonate carbon burial flux is generally assumed to balance silicate and 994 carbonate weathering over timescales of the order of that represented by the dataset (e.g. 995 Ref. 51); which implicitly assumes continuous carbonate supersaturation in the ocean. 996 We (simplistically) represent a scenario in which this assumption is relaxed (e.g. due to 997 short term changes in marine carbonate alkalinity, and/or insufficient time for carbonate 998 burial to equilibrate with increased weathering), via a formulation in which marine 999 carbonate carbon burial scales with total ocean inorganic carbon (see description). This 1000 translates into a lower carbonate burial flux (and correspondingly higher organic flux in 1001 order to sustain mass balance).

1003 Figure S11: Results of a Geocarb-style inversion model in which the data is used to directly infer temperature, CO₂, carbon cycle fluxes and anoxia. $\delta^{18}O$ (red dotted line) and $\delta^{13}C$ (blue dotted line) data, 1004 temperature inversions (yellow and purple lines) corresponding to the former, and the corresponding 1005 relative atmospheric CO2 level (green line) calculated from the selected (yellow) temperature, using 1006 Geocarbsulf's temperature function. The organic carbon burial "f" ratios $f_{org} = \frac{mocb}{mocb+mccb}$ calculated from 1007 1008 the model temperature and CO_2 and isotopic mass balance (model description, equations (10) and (31)) 1009 under different scenarios for the other carbon cycle fluxes with which marine organic carbon burial is in 1010 mass balance. Grey solid line shows a supply (i.e. rock substrate) limited silicate weathering flux, dashed 1011 black line a kinetically (i.e. CO₂, temperature) flux, black solid line a scenario in which the marine carbonate 1012 carbon burial flux scales with the relative size of the marine inorganic carbon pool (rather than balancing 1013 weathering as in the other scenarios). Dashed grey line shows a "traditional" steady state interpretation of 1014 the $\delta^{13}C$ record in which the organic fraction is calculated from $\delta^{13}C$ assuming constant weathering input $\delta^{13}C_{in} = -0.5\%$ and organic fractionation $\varepsilon = -24.5\%$ (e.g., Ref 51). Global ocean anoxic fraction calculated from the marine organic carbon burial fluxes, combined with the assumption of steady state 1015 1016 1017 marine phosphate. Dashed brown line shows modern value. 1018

1019 Forward biogeochemical modelling

1020 Results of COPSE (Carbon, Oxygen, Phosphorous, Sulphur, Evolution)^{53,59} forward 1021 biogeochemical box modeling using Toarcian-specific tectonic forcings representing large igneous province (LIP)-derived CO_2 and hydrate-derived CH_4 (see model 1022 description) are presented in Figure S12. The greenhouse perturbation translates to an 1023 1024 increase in the input of phosphorous to the ocean via weathering, which boosts 1025 production, marine organic carbon burial and respiratory oxygen demand. This increases 1026 marine anoxia, reducing marine phosphate burial⁶³, further boosting organic carbon 1027 production, within a net positive feedback. The timing of anoxia lags behind that of the 1028 greenhouse input (consistent with the lag between the most negative lower limit of the 1029 δ^{13} C curve and the maximum value of the marine organic carbon burial flux implied by 1030 the inversion model). The hyperthermal interval also lasts longer than the negative CIE (due to the time needed for weathering to consume the CO_2 introduced via the 1031 1032 perturbation).

1033 The OAE terminates as a result of the "extra" (i.e. perturbation induced) CO₂ input being 1034 consumed by the silicate weathering flux, as well as a slight increase in oxygen caused by 1035 the elevated marine organic carbon burial flux (not shown, see supplement). As above, 1036 the time interval required to bring CO₂ down to pre-perturbation levels is increased if 1037 silicate weathering becomes supply limited.

1039 **Figure S12:** Reproduction of the coarse features of the δ^{13} C data by transient injection of CO₂ and CH₄ in 1040 the COPSE forward biogeochemical model. δ^{13} C data and greenhouse forcings relative to baseline fluxes 1041 (model description, equations (7) and (8)). An initial boundary condition of $\delta^{13}C_c = +2 \%_0$ is imposed on 1042 the carbonate carbon rock reservoir. Injected CO₂ is assumed to be thermogenic with δ^{13} C value of -27 $\%_0$. 1043 and assumed δ^{13} C for injected methane is -60 ‰. Modelled global temperature (red line with shading) is 1044 shown together with local temperature reconstructions based on fossil oxygen isotope ratios converted 1045 using equations by Brand et al. (2013)³¹ and Anderson and Arthur (1983)³⁸. Carbon cycle fluxes and relative 1046 size of global ocean-atmosphere CO_2 reservoir (dark grey line). Note the increase in marine organic carbon 1047 burial (dark grey field) and silicate weathering (brown line), given by the minimum of the kinetically 1048 limited and supply limited flux values with $W_{max} = 2 * silw_0$ associated with the anoxic event. Global ocean 1049 anoxic fraction and various fluxes relevant to the marine phosphate cycle. Note the decline in iron-adsorbed 1050 and organic phosphate burial as anoxia increase.

1051

1038

1052 Formulation of ocean anoxic fraction

1053 The representation of the global ocean anoxic fraction depicted in **Figure S12** is defined 1054 as the fraction of the ocean surface area below which the saturation of oxygen in the 1055 oxygen minimum zone would be less than 10%⁶⁴. An alternative formulation⁵⁹ represents 1056 the fraction of the seafloor directly overlain by anoxic waters. This corresponds to a much lower baseline value⁶⁵ but is arguably a better encapsulation of the spatial heterogeneity 1057 1058 in marine redox state. Nevertheless, the qualitative feedback sequence of "greenhouse 1059 gas injection, negative CIE, hyperthermal, elevated organic carbon burial and anoxia, 1060 recovery from perturbation via silicate weathering CO₂ sink" is robust to such changes in 1061 formulation, as is the sustained temperature increase. 1062 The δ^{13} C record can either be evaluated in terms of simple mass balance calculations.

1063 used as an input to proxy inversion models, or a target at which that forward models aim

via appropriate formulation of the underlying biogeochemical dynamics. We brieflyconsider each of these approaches in turn.

1066

1067 Qualitative description of feedback sequence corresponding to model results

1068 The modelling illustrates that the basic feedback sequence resulting from the LIP-1069 associated CO₂ input is as follows: an increase in silicate weathering, leading to an 1070 increase in the size of the marine phosphate reservoir, thus an increase in marine 1071 production (increasing remineralization of organic carbon in the ocean, thus increasing 1072 marine anoxia over a short timescale) and marine organic carbon burial (ultimately 1073 increasing a long-term source of oxygen). The short-term increase in anoxia results in a 1074 decrease (and eventual cessation) of Fe-adsorbed phosphate burial. This leads to a 1075 secondary increase in the marine phosphate reservoir, which in the short-term boosts 1076 production, therefore remineralization, therefore anoxia (i.e. a positive feedback), and in 1077 the long term boosts marine organic carbon burial, therefore oxygen, therefore a 1078 decrease in anoxia (a negative feedback).

1079 Because each of these processes operates over different timescales, predicting the system's net response time is complex. Examples of the timescales over which various 1080 1081 fluxes and reservoirs respond to the greenhouse perturbation are given in Table S1, 1082 which corresponds to a model run based on the same set of parameter choices as those 1083 used to produce the results in the main text (see also **Table S10**). The peak of the CO_2 perturbation shown corresponds to an estimated atmospheric CO_2 reservoir of 1084 1085 ~12.31PAL, which happens at 181.724 million years before present. The fall from this 1086 maximum value corresponds to an *e*-folding time of:

1087 $12.31 \cdot \left(1 - \frac{1}{e}\right) = 7.7814PAL \equiv 293Kyrs.$

1088 This is broadly in line with the error margin placed on the *e*-folding time of 170 - 340 Kyrs, probably ~240*Kyrs*, estimated from more complex climate models⁶⁶.

1090 The anoxia function responds within approximately 18kyrs to the increased nutrient 1091 input, but the above-mentioned feedback involves a sharp decrease in Fe-adsorbed P 1092 burial, which does not become significant until anoxia reaches roughly $f_{anox} > 0.8$. (The 1093 asymptotic nature of Fe-P burial's response to anoxia is due to the fact that anoxia is a 1094 logistic function that increases with increasingly P, but decreases with increasing O, and 1095 is determined by the ratio of these two variables, both of which are increasing in size at 1096 different rates). If the OAE is defined as the entire perturbation of f_{anox} , it lasts for 1097 approximately 565kyrs. If it is defined as the continuous interval of time during which $f_{anox} > 0.8$, it lasts~266 kyrs. This is shorter than (although within a reasonable 1098 "ballpark" estimate of) the~1.4Myr OAE duration that this model system produces⁶⁴ in 1099 1100 the absence of a significant greenhouse perturbation – because the elevated nutrient 1101 input associated with the temperature/ CO₂ pushes the system through the above-1102 mentioned feedback sequence at a faster rate than would occur at, for example, 1PAL CO₂. 1103 It is important to note that the numbers quoted here, and shown in the table, are subject 1104 to an error margin dictated by uncertainty in parameter choices, which in this case have 1105 been selected so as to most accurately reproduce the carbon isotope data. This is 1106 illustrated by the sensitivity analysis depicted in Figure S13, which shows different 1107 values for the climate sensivity parameter k_c .

Model temperature is of the form $T = T_L + k_c \log(\frac{CO_2}{CO_2})$, where T_L describes the increase 1111 1112 in temperature associated with the increase in solar luminosity over Earth's history, whereas k_c represents temperature's sensitivity to log-normalized CO_{20} . The default 1113 value $k_c = 4.328$, corresponds to the widely assumed climate sensitivity of 4.328. 1114 $log(2) \approx 3$ degrees warming per doubling of CO_2 . Figure S1 illustrates the sensitivity of 1115 1116 the depicted feedback sequence to larger and smaller values of k_c , taken from the range explored in the COPSE-reloaded model ⁵⁹. A larger value of k_c means that a smaller unit 1117 1118 CO_2 change will cause the same temperature change – meaning that the greenhouse 1119 perturbation triggers the feedback sequence described more rapidly, and the overall 1120 greenhouse gas change is lower. Similarly a smaller k_c requires a larger CO_2 change to 1121 initiate the feedback sequence, which is spread over a correspondingly larger timescale 1122 (i.e. relative to the response times in Table S11).

1123 Based on previous discussion of the relationship between the silicate weathering and OAE duration⁶⁷, we investigated the idea of supply limitation of this flux. We find that the 1124 best reproduction of the $\delta^{13}C$ data is produced with a maximum kinetic limited silicate 1125 weathering of around twice the modern value (i.e. such that silicate weathering becomes 1126 supply limited rather than kinetically limited above this threshold). However, the 1127 1128 difference, in terms of reproducing the carbon isotope data, is slight relative to silicate 1129 weathering that is solely kinetically limited (Figure S14), because the kinetically limited 1130 flux does not significantly exceed this magnitude in any case. Furthermore, the threshold 1131 at which supply limitation begins is highly uncertain, and a fair case can be made that it 1132 is likely higher than twice the present value. We nevertheless retain the $W_{max} = 2$ 1133 threshold (see model description), because it accurately reproduces the data. Some limitation of terrestrial silicate weathering and its biotic enhancement may also be a 1134 legitimate assumption based on previous arguments⁶⁸ for a link between enhanced fire 1135 1136 probability and repression of growth of the terrestrial biosphere during the Toarcian event. In other words, our modelling is compatible with the idea that the silicate 1137 1138 weathering flux plateaued at about twice its present magnitude, which could have 1139 occurred for a range of reasons.

1144 **References**

- ¹Duarte, L.V., 2007. Lithostratigraphy, sequence stratigraphy and depositional setting of
 the Pliensbachian and Toarcian series in the Lusitanian Basin, Portugal. Pp. 17–23 in
 D. P. Dasha and The Dasisha contribution (Dast and Dast). Contains the definition of the
- R. B. Rocha, ed. The Peniche section (Portugal). Contributions to the definition of theToarcian GSSP. International Subcommission on Jurassic Stratigraphy, Lisbon.
- ²Pittet, B., Suan, G., Lenoir, F., Duarte, L.V., Mattioli, E., 2014. Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal):
 Sea level change at the onset of the Oceanic Anoxic Event. Sedimentary Geology 303, 1–14. Doi: 10.1016/j.sedgeo.2014.01.001.
- ³Rodríguez-Tovar, F. J., Miguez-Salas, O., Duarte, L.V., 2017. Toarcian Oceanic Anoxic
 Event induced unusual behaviour and palaeobiological changes in *Thalassinoides* tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology 485, 46–56.
- ⁴Piazza, V., Duarte, L.V., Renaudie, J., Aberhan, M., 2019. Reductions in body size of benthic
 macroinvertebrates as a precursor of the early Toarcian (Early Juarssic) extinction
 event in the Lusitanian Basin, Portugal. Paleobiology 45 (2), 296–316. doi:
 10.1017/pab.2019.11.
- ⁵Gómez, J. J., Goy, A., 2005. Late Triassic and Early Jurassic palaeogeographic evolution
 and depositional cycles of the Western Tethys Iberian platform system (Eastern
 Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 222, 77–94.
- ⁶Goy, A., Gómez, J.J., Yébenes, A., 1976. El Jurásico de la Rama Castellana de la Cordillera
 Ibérica (Mitad Norte). I. Unidades litoestratigráficas 32, 391–423.
- ⁷Gahr, M.E., 2002. Palökologie des Makrobenthos aus dem Unter-Toarc SW-Europas.
 Beringeria 31, 3–204.
- ⁸García Joral, F., Goy, A., 2010. Rhynchonellida (Brachiopoda) Biozones of the Toarcian in the Iberian and Cantabrian Cordilleras (Spain). In: Comunicaciones del V Congreso del Jurásico de España. Museo del Jurásico de Asturias (MUJA), Colunga, 8-11 de septiembre de 2010 (J.I. Ruiz-Omeñaca, L. Piñuela & J.C. García-Ramos, Eds.). Museo del Jurásico de Asturias, Colunga, 3–9.
- ⁹Gahr, M.E., 2005. Response of Lower Toarcian (Lower Jurassic) macrobenthos of the
 Iberian Peninsula to sea level changes and mass extinction. Journal of Iberian Geology
 31, 197–215.
- ¹⁰Fürsich, F.T., Berndt, R., Scheuer, T., Gahr, M., 2001. Comparative ecological analysis of
 Toarcian (Lower Jurassic) benthic faunas from southern France and east-central
 Spain. Lethaia 34, 169–199.
- ¹¹Aurell, M., Robles, S., Bádenas, B., Rosales, I., Quesada, S., Meléndez, G., García-Ramos,
 J.C., 2003. Transgressive-regressive cycles and Jurassic palaeogeography of northeast
 Iberia. Sedimentary Geology 162, 239–271.
- ¹²Duarte, L.V., Soares, A.F., 2002. Litostratigraphy of the Lower Jurassic marly limestone
 units from the Lusitanian Basin (Portugal). Comun. Inst. Geol. e Mineiro 89, 135–154.
- ¹³Mouterde, R., Ruget, C., Moitinho de Almeida, F., 1964-1965. Coupe du Lias au Sud de Condeixa. Comunicações dos Serviços Geológicas de Portugal 48, 61–91.
- ¹⁴Comas-Rengifo, M. J., Duarte, L.V., García Joral, F., Goy, A., 2013. The brachiopod record
 in the Lower Toarcian (Jurassic) of the Rabaçal Condeixa region (Portugal):
 stratigraphic distribution and palaeobiogeography. Comunicações Geológicas 100,
 37–42.
- ¹⁵Perilli, N., Duarte, L.V., 2006. Toarcian nannobiohorizons from Lusitanian Basin
 (Portugal) and their calibration against ammonite zones. Rivista Italiana di
 Paleontologia e Stratigrafia 112, 417–434.

- ¹⁶Correia, V.D.P.F., 2018. Jurassic dinoflagellate cyst biostratigraphy of the Lusitanian
 Basin, West-central Portugal, and its relevance to the opening of the North Atlantic and
 petroleum geology, PhD thesis, Universidade do Algarve, 315pp.
- ¹⁷Duarte, L.V., 1997. Facies analysis and sequential evolution of the Toarcian-Lower
 Aalenian series in the Lusitanian Basin (Portugal). Communicações do Instituto
 Geológico e Mineiro 83, 65–94.
- ¹⁸Duarte, L.V., Perilli, N., Dino, R., Rodrigues, R., Paredes, R., 2004. Lower to Middle
 Toarcian from the Coimbra region (Lusitanian Basin, Portugal): sequence stratigraphy,
 calcareous nannofossils and stable-isotope evolution. Rivista Italiana di Paleontologia
 e Stratigrafia 110, 115–127.
- ¹⁹Duarte, L.V., Oliveira, L.C., Rodrigues, R., 2007. Carbon isotopes as a sequence
 stratigraphic tool: examples from the Lower to Middle Toarcian marly limestones of
 Portugal. Boletín Geológico y Minero 118, 3–18.
- ²⁰Kullberg, J.C., Oloriz, F., Marques, B., Caetano, P.S., Rocha, R.B., 2001. Sedimentary
 Geology 139, 49–70.
- ²¹Röhl, H.-J., Schmidt-Röhl, A., Oschmann, W., Frimmel, A., Schwark, L., 2001. The
 Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem
 controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology,
 Palaeoecology 165, 27–52.
- ²²Wignall, P.B., Bond, D.P.G., 2008. The end-Triassic and Early Jurassic mass extinction
 records in the British Isles. Proceedings of the Geologists' Association 119, 73–84.
- ²³Danise, S., Twitchett, R.J., Little, C.T.S., 2015. Environmental controls on Jurassic marine
 ecosystems during global warming. Geology 43, 263–266.
- ²⁴Martindale, R.C., Aberhan, M., 2017. Response of microbenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Paleogeography, Palaeoclimatology, Palaeoecology 478, 103–120. doi: 10.1016/j.palaeo.2017.01.009.
- ²⁵Duarte, L.V., Rodrigues, R., Oliveira, L.C., Silva, F., 2005. Avaliação preliminar das variações do carbono orgânico total nos sedimentos margosos do Jurássico inferior da Bacia Lusitânica (Portugal). Pp. 39-43 *in* XIV Semana de Geoquímica and VIII
 Congresso de Geoquímica dos Países de Lingua Portuguesa, Aveiro, I.
- ²⁶García Joral, F., Gómez, J.J., Goy, A., 2011. Mass extinction and recovery of the Early
 Toarcian (Early Jurassic) brachiopods linked to climate change in Northern and
 Central Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 367–380.
- ²⁷Miguez-Salas, O., Rodríguez-Tovar, F.J., Duarte, L.V., 2017. Selective incidence of the
 Toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from
 the Lusitanian basin, Portugal. Lethaia 50, 548–560.
- ²⁸Rodríguez-Tovar, F. J., Miguez-Salas, O., Dorador, J., Duarte, L.V., 2019. Opportunistic
 behaviour after the Toarcian Oceanic Anoxic Event: The trace fossil *Halimedides*.
 Palaeogeography, Palaeoclimatology, Palaeoecology 520, 240–256. Doi:
 10.1016/j.palaeo.2019.01.036.
- ²⁹Canudo, J.I., 2018. The collection of type fossils of the Natural Science Museum of the
 University of Zaragoza (Spain). Geoheritage 10 (3), 385–392. doi: 10.1007/s12371017-0228-1.
- ³⁰Imai N., Terashima S., Itoh S, Ando A., 1996. 1996 Compilation of analytical data on nine
 GSJ geochemical reference samples, "sedimentary rock series". Geostandards
 Newsletter 20 (2), 165–216.
- ³¹Govindaraju K., 1994. 1994 Compilation of working values and sample description for
 383 geostandards. Geostandards Newsletter 18, 1–158.

- ³²Brand, U., Azmy, K., Bitner, M.A., Logan, A., Zuschin, M., Came, R., Ruggiero, E., 2013.
 Oxygen isotopes and MgCO3 in brachiopod calcite and a new paleotemperature equation. Chemical Geology 359, 23–31. doi: 10.1016/j.chemgeo.2013.09.014.
- ³³Suan, G., Mattioli, E., Pittet, B., Mailliot, S., Lécuyer, C., 2008. Evidence for major
 environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic
 anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202, doi:
 10.1029/2007PA001459.
- ³⁴Ullmann, C.V., Böhm, F., Rickaby, R.E.M., Wiechert, U., Korte, C., 2013. The Giant Pacific
 Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C)
 and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies. Geochemistry, Geophysics, Geosystems
 14 (10), 4109–4120. doi: 10.1002/ggge.20257.
- ³⁵Ullmann, C.V., Korte, C., 2015. Diagenetic alteration in low-Mg calcite from macrofossils:
 a review. Geological Quarterly 59 (1), 3–20.
- ³⁶McConnaughey, T., 1989. ¹³C and ¹⁸O isotopic disequilibrium in biological carbonates: I.
 Patterns. Geochimica et Cosmochimica Acta 53, 151–162.
- ³⁷Wefer, G., Berger, W.H., 1991. Isotope paleontology: growth and composition of extant
 calcareous species. Marine Geology 100, 207–248.
- ³⁸Ullmann, C.V., Frei, R., Korte, C., Lüter, C., 2017. Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralisation. Chemical Geology 460, 15–24. doi: 10.1016/j.chemgeo.2017.03.034.
- ³⁹Anderson, T.F., Arthur, M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (Eds.), Stable Isotopes in Sedimentary Geology. SEPM, Dallas, Texas, pp. 1–151.
- ⁴⁰Jiménez-López, C., Romanek, C.S., Huertas, F.J., Ohmoto, H., Caballero, E., 2004. Oxygen
 isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta
 68 (16), 3367–3377.
- ⁴¹Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G. (eds.), 2012. The geologic time scale 2012.
 elsevier.
- ⁴²Holser, W.T., Schidlowski, M., Mackenzie, F.T., Maynard, J.B., 1988. in Chemical Cycles in the Evolution of the Earth, eds. Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B. (Wiley, New York), pp. 105–173.
- ⁴³Dickens, G.R., O'Neill, J.R., Rea, D.K., Owen, R.M., 1995. Dissociation of oceanic methane
 as the cause of the carbon isotopic excursion at the end of the Paleocene.
 Paleoceanography 10 (6), 965–971.
- ⁴⁴Hesselbo, S.P., Gröcke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Morgans Bell, H.S.,
 Green, O.R., 2000. Massive dissociation of gas hydrate during an oceanic anoxic event.
 Nature 406, 392–395.
- ⁴⁵Jiao, N., Herndl, G.J., Hansell, D.A., Benner R., Kattner G., Wilhelm, S.W., Kirchman, D.L.,
 Weinbauer M.G., Luo, T., Chen, F., Azam, F., 2010. Microbial production of recalcitrant
 dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev.
 Microbiol. 8, 593–599.
- ⁴⁶Kvenvolden, K.A., 2002. Methane Hydrate in the global carbon cycle. Terra Nova 14, 302–306.
- ⁴⁷Dunkley-Jones, T., Ridgwell, A., Lunt, D.J., Maslin, M.A., Schmidt, D.N., Valdes, P.J., 2010.
 A Palaeogene perspective on climate sensitivity and methane hydrate instability. Phil.
- 1287 Trans. R. Soc. A 368, 2395–2415.

- ⁴⁸Jones, M.T., Jerram, D.A. Svensen, H.H., Grove, C., 2016. The effects of large igneous
 provinces on the global carbon and sulphur cycles. Paleogeography,
 Palaeoclimatology, Palaeoecology 441 4–21.
- ⁴⁹Beerling, D.J., Lomas, M.R., Gröcke, D.R., 2002. On the nature of methane gas hydrate
 dissociation during the Toarcian and Aptian oceanic anoxic events. Am. J. Sci. 302, 28–
 49.
- ⁵⁰Dera, G., Donnadieu, Y., 2012. Modeling evidences for global warming, Arctic seawater
 freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event.
 Paleoceanography 27, PA2211. doi: 10.1029/2012PA002283.
- ⁵¹Kump, L.R., Arthur, M.A., 1999. Interpreting carbon isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198.
- ⁵²Betts, R.A., Holland, H.D., 1991. The oxygen content of ocean bottom waters, the burial
 efficiency of organic carbon, and the regulation of atmospheric oxygen.
 Palaeogeography, Palaeoclimatology, Palaeoecology 97, 5–8.
- ⁵³Bergman, N.M., Lenton, T.M., Watson, A.J., 2004. COPSE: a new model of biogeochemical
 cycling over Phanerozoic time. Am. J. Sci. 304, 397–437.
- ⁵⁴Berner, R.A., 1994. Geocarb II. A revised model of atmospheric CO₂ over geologic time.
 Am. J. Sci. 294, 55–91.
- ⁵⁵Royer, D.L., Donnadieu, Y., Park, J., Kowalczyk, J. Godderis, Y., 2014. Error analysis of CO₂
 and O₂ estimates from the long-term geochemical model Geocarbsulf. Am. J. Sci. 314,
 1259-1284.
- ⁵⁶Berner, R.A., 2006. Geocarbsulf: A combined model for Phanerozoic atmospheric O₂ and
 CO₂. Geochimica et Cosmochimica Acta 70 (23), 5653–5664.
- ⁵⁷Caldeira, K. & Kasting, J. F. 1992, The life span of the biosphere revisited: Nature 360,
 721–723.
- ⁵⁸Mills, B.J.W, Watson, A.J., Goldblatt, C., Boyle, R.A., Lenton, T.M.L., 2011. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature Geoscience 4, 861–864.
- ⁵⁹Lenton, T.M., Daines, S.J., Mills, B.M., 2018. COPSE reloaded: An improved model of
 biogeochemical cycling over Phanerozoic time. Earth Sci. Rev 178, 1–28.
- ⁶⁰Bond, W.J., Woodward, F.I., Midgley, G.F., 2005. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538.
- ⁶¹Gill, B.C., Lyons, T.W., Jenkyns, H.C., 2011. A global perturbation to the sulphur cycle
 during the Toarcian ocean. Earth Plan. Sci. Lett. 312, 484–496.
- ⁶²Cervantes, P., Wallace, P.J., 2003. Role of H₂O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235–238.
- ⁶³Van Cappellen, P., Ingall, E.D. 1994. Benthic phosphorus Regeneration, primary
 production, and ocean anoxia: A model of the coupled marine biogeochemical cycles
 of carbon and phosphorus Paleoceanography 9, (5), 677–692.
- ⁶⁴Handoh, I.C., Lenton, T.M., 2003. Periodic mid-Cretaceous oceanic anoxic events linked
 by oscillations of the phosphorus and oxygen biogeochemical cycles. Global.
 Biogeochem. Cycles. 17 (4), 1092.
- ⁶⁵Helly, J.J., Levin, L.A., 2004. Global distribution of naturally occurring marine hypoxia on
 continental margins. Deep-Sea Res. I. Oceanogr. Res. Pap. 51 (9), 1159–1168.
- ⁶⁶Colbourn, G., Ridgwell, A., Lenton, T.M., 2015. The timescale of the silicate weathering
 negative feedback on atmospheric CO₂. Global Biogeochemical cycles 29, 583-596.
- ⁶⁷Kump, L.R., 2013. Prolonged Late Permian–Early Triassic hyperthermal: A failure of
 climate regulation? Phil. Trans. R. Soc. A 376: 20170078.

- ⁶⁸Baker, S.J., Hesselbo, S.P., Lenton, T.M., Duarte. L.V., Belcher, C.M. Charcoal evidence that
 rising atmospheric oxygen terminated Early Jurassic ocean anoxia. Nat. Comm.
- 1339 8:15018.

Table S1: Occurences of macrofossils in the studied sections

locality		sample	height		Bivalvia						Brachiopoda					
		name	m	Belemnites	Cryphaea	Cirna	Cibhirbunchia	Nannirhunchia	Rhynch	onellida Tetrarhynchia	Choffatirhynchia	Homogorhynchia	Sograsirhynchig	Terebratulida	Spiriferinida	Lingulida
Barranco de la Cañada		BC23	27 90	Determintes	Gryphaea	Cirpu	Gibbii fiynchiu	Nunninnynchiu	Quuuruurnynchiu	Tetrurnyntmu	chojjutii nynchiu	потоеогнупсти	Souresinnynchiu	7		
Barranco de la Cañada		BC22	26.70		1							10		37		
Barranco de la Cañada		BC21	25.55		1							6		4		
Barranco de la Cañada		BC20	24.55	1								20		12		
Barranco de la Cañada		BC19	23.45									1		5		
Barranco de la Cañada		BC18	22.65									1		3		
Barranco de la Cañada		BC17	21.45								1			12		
Barranco de la Cañada		BC16	20.45		2							2		1		
Barranco de la Cañada		BC15	19.85		2						1	2		13		
Barranco de la Callada		BC14 BC12	19.35		3							2 1		9		
Barranco de la Cañada		BC13 BC12	18.35									1		13		
Barranco de la Cañada		BC12 BC11	17.95									1		6		
Barranco de la Cañada		BC10	17.30		3						1	3		10		
Barranco de la Cañada		BC9	16.70		5						2	6		44		
Barranco de la Cañada		BC8	16.05								1	5		9		1
Barranco de la Cañada		BC7	15.25		1							8		10		
Barranco de la Cañada		BC6	14.85		5						13	41		1		
Barranco de la Cañada		BC5	14.25									11		11		
Barranco de la Cañada		BC4	13.75				9				2	17		11		
Barranco de la Cañada		BC3	13.20	1 1	1		10				2	3		32		1
Darranco de la Cañada Barranco de la Cañada		ԾԵ2 RC1Խ	12.0U 12.25	1 1	2		12				19			20 27		Ţ
Barranco de la Cañada		RC1a	12.33 12.10	Ţ	2		10				U		5	<i>L I</i>		
Barranco de la Cañada		C37h	11.80										1			5
Barranco de la Cañada		C37a	11.30										31			-
Barranco de la Cañada		C33b	11.10		1								30			1
Barranco de la Cañada		C33a	10.80										13			3
Barranco de la Cañada		C31	10.40										5			1
Barranco de la Cañada		C30	10.20										4			1
Barranco de la Cañada		C29	10.00										6			1
Barranco de la Cañada		C28	9.40		20								148			3
Barranco de la Cañada		625h	8.90		20								13/			
Barranco de la Cañada		C250	840		1				81				12			J 1
Barranco de la Cañada		C22	7.80		12				01						1	2
Barranco de la Cañada		C21	7.20											91	-	-
Barranco de la Cañada		C20	6.70		19									93		
Barranco de la Cañada		C19	6.20		44				11	5				1		
Barranco de la Cañada		C18c	5.90		69		3		15							
Barranco de la Cañada		C18b	5.60		80				5					2	1	
Barranco de la Cañada		C18a	5.20	2	77				6	2				1		
Barranco de la Cañada		C15b	4.60		34		2		4	<i>,</i>				6		
Barranco de la Canada		C15a	4.00		88		3		1	6				7 2F		
Barranco de la Cañada		C120	5.40 2.80		42		1		17					35 Q		
Barranco de la Cañada		C7b	2.00		63		Ŧ		17					4		
Barranco de la Cañada		C7a	0.80	8	36		1							3		
Barranco de la Cañada		C5	0.40	4	35		28							2		
Fonte Coberta / Rabaçal	Rabaçal	R24b	28.35											17		
Fonte Coberta / Rabaçal	Rabaçal	R24a	27.65									2		4		
Fonte Coberta / Rabaçal	Rabaçal	R23e	27.30		1							1		0		
Fonte Coberta / Rabaçal	Rabaçal	R230	27.00		1							1		9		
Fonte Coberta / Rabaçal	Rabaçal	R230 R23h	26.60									1		24 1		
Fonte Coberta / Rabaçal	Rabaçal	R230	25.25											9		
Fonte Coberta / Rabaçal	F.C.	FC22h	24.35											1		
Fonte Coberta / Rabaçal	F.C.	FC22a	23.85											- 1		
Fonte Coberta / Rabaçal	F.C.	FC21b	23.25											6		1
Fonte Coberta / Rabaçal	F.C.	FC21a	22.25											5		
Fonte Coberta / Rabaçal	F.C.	FC19c	21.40										21	1		
Fonte Coberta / Rabaçal	F.C.	FC19b	20.30													
Fonte Coberta / Rabaçal	F.C. (trench)	FC19a	19.05										1			
ronie Coberta / Kabaçal Fonte Coberta / Pabacal	r.u. (trench)	FC176	17./5 17.25										Ę	2		
Fonte Coberta / KaDaçal	F.C. (trench)	гст7е ГС174	17.25 16.90										5 7	Э Л.		
Fonte Coberta / Rabaçal	F.C. (trench)	FC17c	16.35										2	т 1		
Fonte Coberta / Rabaçal	F.C. (trench)	FC17b	15.85										2	1		
Fonte Coberta / Rabacal	F.C. (trench)	FC17a	15.40										- 9	6		
Fonte Coberta / Rabaçal	F.C. (trench)	FC16e	14.80										12	4		
Fonte Coberta / Rabaçal	F.C. (trench)	FC16d	14.20										4			
Fonte Coberta / Rabaçal	F.C. (trench)	FC16c	13.75													
Fonte Coberta / Rabaçal	F.C. (trench)	FC16b	13.25													
Fonte Coberta / Rabaçal	F.C. (trench)	FC16a	13.00													
Fonte Coberta / Kabaçal	F.C. (trench)	FC141 FC144	12.30													
Fonte Coberta / Kabaçal	r.c. (trench)	г с 14П	11.00		I											I

Fonte Coberta / Rabaçal	F.C. (trench)	FC14g	10.60										
Fonte Coberta / Rabaçal	F.C. (trench)	FC14f	9.60										
Fonte Coberta / Rabaçal	F.C. (trench)	FC14e	8.75										
Fonte Coberta / Rabaçal	F.C.	FC14d	7.90								1		
Fonte Coberta / Rabaçal	F.C.	FC14c	7.30	1		1		24			8		
Fonte Coberta / Rabaçal	F.C.	FC14b	6.90					50			4		
Fonte Coberta / Rabaçal	F.C.	FC14a	6.45	4				10			3		
Fonte Coberta / Rabaçal	F.C.	FC13e	6.10	1				66			5		
Fonte Coberta / Rabaçal	F.C.	FC13d	5.50	3				7			14	1	
Fonte Coberta / Rabaçal	F.C.	FC13c	4.90	3				8			17	1	
Fonte Coberta / Rabaçal	F.C.	FC13b	4.25	10		1		16			21	12	
Fonte Coberta / Rabaçal	F.C.	FC13a	3.30	3		1		12			20	7	
Fonte Coberta / Rabaçal	F.C.	FC12	2.35	7		5		10		2	9	21	2
Fonte Coberta / Rabaçal	F.C.	FC11	1.85	2				1			8	17	2
Fonte Coberta / Rabaçal	F.C.	FC10	1.45	4				14			9	11	
Fonte Coberta / Rabaçal	F.C.	FC09	1.05	1				27			10	17	
Fonte Coberta / Rabaçal	F.C.	FC08	0.80				3	31		1	17	14	
Fonte Coberta / Rabaçal	F.C.	FC07	0.40				1	3			12	1	
Fonte Coberta / Rabaçal	F.C.	FC06	0.00		4	4					15	4	

Table S2:	Analytical result	s for element-C Mg/Ca mmol/mol	Ca standards n Sr/Ca mmol/mol	neasured alon Mn/Ca mmol/mol	igside studied Fe/Ca mmol/mol	samples. Note S/Ca mmol/mol	that samples from P/Ca mmol/mol	Portugal we	re measured usin _i	g a different ba Mg/Ca mmol/mol	atch of AK and Sr/Ca mmol/mol	BCQC and stat Mn/Ca mmol/mol	ndard data the Fe/Ca mmol/mol	erefore differ fo S/Ca mmol/mol	or these two stock P/Ca mmol/mol	solutions.		Mg/Ca mmol/mol 13,281	Sr/Ca mmol/mol 0.923	Mn/Ca mmol/mol 0.730	Fe/Ca mmol/mol 1.445	S/Ca mmol/mol 2.518	P/Ca mmol/mol 2.613
bias % avg 2ds 2rsd n		15.37 0.07 0.46 72	0.341 0.005 1.40 72	0.032 0.001 2.8 72	0.142 0.010 7.2 72	0.434 0.221 51 72	0.411 0.169 41 72			2.472 0.017 0.67 48	3.044 0.013 0.44 48	0.043 0.001 2.2 48	1.110 0.059 5.3 48	1.731 0.182 11 48	0.388 0.167 43 48			0.28 13.318 0.079 0.59 24	0.23 0.926 0.009 0.97 24	-0.27 0.728 0.003 0.43 24	-0.79 1.434 0.013 0.91 24	0.74 2.536 0.220 9 24	-0.34 2.604 0.110 4 24
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018	$\begin{array}{c} 15.412 \\ 15.311 \\ 15.362 \\ 15.387 \\ 15.407 \\ 15.389 \\ 15.383 \\ 15.386 \\ 15.382 \\ 15.388 \\ 15.437 \\ 15.401 \end{array}$	$\begin{array}{c} 0.343\\ 0.342\\ 0.343\\ 0.343\\ 0.343\\ 0.343\\ 0.343\\ 0.342\\ 0.343\\ 0.343\\ 0.343\\ 0.343\\ 0.343\\ 0.343\end{array}$	$\begin{array}{c} 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.031\end{array}$	0.150 0.152 0.150 0.148 0.152 0.148 0.143 0.142 0.143 0.144 0.142 0.143 0.142 0.143	0.337 0.414 0.565 0.364 0.432 0.480 0.520 0.496 0.364 0.364 0.484 0.573 0.404	0.544 0.398 0.549 0.182 0.484 0.347 0.326 0.498 0.431 0.425 0.369 0.294	AK AK AK AK AK AK	01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018	2.481 2.475 2.470 2.467 2.473 2.478 2.480 2.472	3.052 3.045 3.044 3.029 3.041 3.041 3.050 3.032	$\begin{array}{c} 0.042\\ 0.042\\ 0.042\\ 0.043\\ 0.042\\ 0.043\\ 0.043\\ 0.043\\ 0.043\end{array}$	$\begin{array}{c} 1.078 \\ 1.070 \\ 1.074 \\ 1.069 \\ 1.069 \\ 1.069 \\ 1.076 \\ 1.066 \end{array}$	1.645 1.707 1.640 1.709 1.750 1.721 1.615 1.746	0.265 0.347 0.468 0.429 0.369 0.376 0.366 0.418	BCQC BCQC BCQC BCQC	01/06/2018 01/06/2018 01/06/2018 01/06/2018	13.270 13.349 13.323 13.336	0.926 0.925 0.925 0.927	0.728 0.730 0.727 0.728	1.428 1.440 1.429 1.433	2.652 2.406 2.572 2.432	2.646 2.721 2.615 2.691
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018	$\begin{array}{c} 15.458\\ 15.311\\ 15.355\\ 15.353\\ 15.407\\ 15.353\\ 15.345\\ 15.362\\ 15.350\\ 15.376\\ 15.376\\ 15.343\\ 15.366\end{array}$	$\begin{array}{c} 0.344\\ 0.342\\ 0.342\\ 0.342\\ 0.343\\ 0.342\\ 0.341\\ 0.342\\ 0.342\\ 0.342\\ 0.342\\ 0.341\\ 0.342\end{array}$	$\begin{array}{c} 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.031\\ 0.031\\ 0.031\\ 0.032\\ 0.032\end{array}$	$\begin{array}{c} 0.147\\ 0.147\\ 0.147\\ 0.147\\ 0.143\\ 0.143\\ 0.151\\ 0.150\\ 0.152\\ 0.152\\ 0.152\\ 0.149\\ 0.151\end{array}$	0.414 0.405 0.518 0.508 0.434 0.428 0.396 0.550 0.689 0.336 0.398 0.308	0.323 0.401 0.393 0.386 0.413 0.372 0.446 0.384 0.465 0.465 0.462 0.501 0.342	AK AK AK AK AK AK	04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018 04/06/2018	2.487 2.469 2.471 2.479 2.474 2.469 2.478 2.478	3.064 3.046 3.051 3.049 3.042 3.047 3.048 3.056	$\begin{array}{c} 0.042\\ 0.043\\ 0.043\\ 0.042\\ 0.043\\ 0.042\\ 0.042\\ 0.042\\ 0.043\\ \end{array}$	1.088 1.089 1.082 1.087 1.087 1.095 1.088 1.086	1.857 1.806 1.696 1.560 1.786 1.788 1.746 1.688	0.240 0.290 0.465 0.413 0.482 0.552 0.452 0.561	BCQC BCQC BCQC BCQC	04/06/2018 04/06/2018 04/06/2018 04/06/2018	13.347 13.394 13.350 13.344	0.927 0.932 0.928 0.928	0.727 0.727 0.728 0.730	1.432 1.433 1.436 1.445	2.451 2.685 2.630 2.542	2.570 2.618 2.642 2.685
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018	$\begin{array}{c} 15.407\\ 15.359\\ 15.395\\ 15.369\\ 15.393\\ 15.403\\ 15.385\\ 15.401\\ 15.406\\ 15.403\\ 15.390\\ 15.392\end{array}$	$\begin{array}{c} 0.342\\ 0.343\\ 0.342\\ 0.342\\ 0.343\\ 0.344\\ 0.342\\ 0.342\\ 0.342\\ 0.342\\ 0.341\\ 0.343\\ 0.344\end{array}$	$\begin{array}{c} 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.031\\ 0.032\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ \end{array}$	0.146 0.142 0.139 0.140 0.143 0.141 0.138 0.136 0.135 0.135 0.134 0.139	$\begin{array}{c} 0.328\\ 0.740\\ 0.573\\ 0.514\\ 0.519\\ 0.414\\ 0.575\\ 0.424\\ 0.452\\ 0.509\\ 0.418\\ 0.449\end{array}$	0.162 0.456 0.527 0.438 0.417 0.277 0.431 0.541 0.683 0.528 0.424 0.396	AK AK AK AK AK AK AK	08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018 08/06/2018	2.473 2.478 2.480 2.464 2.474 2.472 2.468 2.475	3.044 3.045 3.050 3.045 3.037 3.049 3.045 3.049	$\begin{array}{c} 0.044\\ 0.043\\ 0.042\\ 0.042\\ 0.043\\ 0.042\\ 0.042\\ 0.042\\ 0.042\end{array}$	1.094 1.103 1.098 1.091 1.090 1.093 1.090 1.092	1.753 1.858 1.854 1.755 1.590 1.702 2.040 1.591	0.457 0.237 0.375 0.152 0.470 0.521 0.501 0.365	BCQC BCQC BCQC BCQC	08/06/2018 08/06/2018 08/06/2018 08/06/2018	13.295 13.316 13.317 13.292	0.927 0.931 0.930 0.929	0.728 0.728 0.727 0.728	1.428 1.428 1.426 1.425	2.475 2.519 2.660 2.645	2.513 2.591 2.636 2.535
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018	$\begin{array}{c} 15.446 \\ 15.290 \\ 15.367 \\ 15.358 \\ 15.307 \\ 15.378 \\ 15.341 \\ 15.372 \\ 15.422 \\ 15.406 \\ 15.401 \\ 15.384 \end{array}$	$\begin{array}{c} 0.344\\ 0.343\\ 0.343\\ 0.342\\ 0.341\\ 0.341\\ 0.341\\ 0.343\\ 0.343\\ 0.343\\ 0.343\\ 0.343\\ 0.342\\ 0.343\\ 0.342\end{array}$	0.032 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	0.143 0.138 0.142 0.138 0.137 0.141 0.138 0.139 0.137 0.141 0.141 0.140 0.138	0.319 0.229 0.388 0.335 0.520 0.345 0.206 0.348 0.331 0.240 0.279 0.391	0.323 0.551 0.481 0.349 0.462 0.435 0.450 0.506 0.432 0.430 0.489 0.471	AK AK AK AK AK AK	25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018 25/06/2018	2.491 2.477 2.480 2.472 2.471 2.477 2.485 2.478	3.044 3.043 3.041 3.039 3.041 3.052 3.049 3.048	$\begin{array}{c} 0.043\\ 0.042\\ 0.042\\ 0.043\\ 0.043\\ 0.043\\ 0.042\\ 0.043\end{array}$	$1.148 \\ 1.137 \\ 1.134 \\ 1.128 \\ 1.135 \\ 1.124 \\ 1.133 \\ 1.128$	1.779 1.699 1.762 1.657 1.552 1.625 1.665 1.795	0.425 0.416 0.367 0.292 0.404 0.397 0.430 0.479	BCQC BCQC BCQC BCQC	25/06/2018 25/06/2018 25/06/2018 25/06/2018	13.279 13.331 13.368 13.397	0.930 0.927 0.930 0.932	0.730 0.730 0.731 0.730	1.432 1.433 1.421 1.433	2.592 2.552 2.363 2.490	2.607 2.625 2.565 2.585
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018	$\begin{array}{c} 15.439\\ 15.312\\ 15.392\\ 15.407\\ 15.348\\ 15.407\\ 15.396\\ 15.391\\ 15.366\\ 15.348\\ 15.367\\ 15.367\\ 15.382\end{array}$	0.338 0.338 0.337 0.337 0.338 0.338 0.338 0.338 0.338 0.338 0.337 0.337	$\begin{array}{c} 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.031\\ 0.032\\ 0.032\\ 0.032\\ 0.031\\ 0.031\\ 0.031\\ 0.032\\ 0.032\\ 0.032\end{array}$	$\begin{array}{c} 0.138\\ 0.138\\ 0.140\\ 0.139\\ 0.140\\ 0.137\\ 0.141\\ 0.140\\ 0.140\\ 0.143\\ 0.139\\ 0.137\end{array}$	$\begin{array}{c} 0.397\\ 0.728\\ 0.661\\ 0.512\\ 0.339\\ 0.412\\ 0.572\\ 0.472\\ 0.472\\ 0.409\\ 0.471\\ 0.382\\ 0.574\end{array}$	0.426 0.365 0.378 0.453 0.478 0.415 0.371 0.331 0.275 0.396 0.324 0.492	AK AK AK AK AK AK	06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018 06/07/2018	2.457 2.457 2.464 2.454 2.460 2.457 2.464 2.462	3.027 3.045 3.048 3.031 3.042 3.042 3.039 3.039	$\begin{array}{c} 0.043\\ 0.042\\ 0.043\\ 0.043\\ 0.043\\ 0.043\\ 0.043\\ 0.043\\ 0.043\end{array}$	$1.158 \\ 1.167 \\ 1.174 \\ 1.156 \\ 1.147 \\ 1.143 \\ 1.140 \\ 1.145$	1.696 1.794 1.771 1.705 1.781 1.643 1.824 1.697	0.389 0.365 0.312 0.391 0.348 0.311 0.379 0.429	BCQC BCQC BCQC BCQC	06/07/2018 06/07/2018 06/07/2018 06/07/2018	13.230 13.285 13.311 13.283	0.919 0.917 0.921 0.919	0.727 0.727 0.727 0.727	1.436 1.439 1.445 1.443	2.764 2.501 2.442 2.468	2.587 2.560 2.565 2.484
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	02/08/2018 02/08/2018 02/08/2018 02/08/2018 02/08/2018 02/08/2018	15.384 15.307 15.331 15.371 15.311 15.357	0.339 0.337 0.337 0.338 0.336 0.336	0.032 0.031 0.031 0.031 0.031 0.031	0.138 0.140 0.141 0.141 0.140 0.136	0.467 0.344 0.365 0.363 0.345 0.309	0.402 0.420 0.384 0.364 0.349 0.345	AK AK AK AK AK	02/08/2018 02/08/2018 02/08/2018 02/08/2018 02/08/2018 02/08/2018	2.467 2.468 2.476 2.471 2.475 2.463	3.039 3.045 3.043 3.040 3.052 3.045	0.044 0.042 0.043 0.043 0.043 0.043	1.120 1.120 1.120 1.117 1.126 1.121	1.684 1.775 1.801 1.627 1.799 1.823	0.381 0.248 0.356 0.311 0.450 0.379	BCQC BCQC BCQC BCQC	02/08/2018 02/08/2018 02/08/2018 02/08/2018	13.290 13.283 13.335 13.315	0.921 0.921 0.921 0.922	0.730 0.728 0.729 0.732	1.435 1.435 1.441 1.443	2.416 2.360 2.646 2.611	2.641 2.631 2.594 2.583

JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	02/08/2018 02/08/2018 02/08/2018 02/08/2018 02/08/2018 02/08/2018	15.353 15.295 15.370 15.379 15.345 15.408	0.338 0.337 0.337 0.338 0.338 0.338	$\begin{array}{c} 0.031 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.032 \\ 0.032 \\ 0.032 \end{array}$	0.138 0.137 0.135 0.136 0.132 0.134	$\begin{array}{c} 0.317\\ 0.570\\ 0.465\\ 0.316\\ 0.387\\ 0.412\end{array}$	0.400 0.389 0.321 0.454 0.333 0.338	AK AK	02/08/2018 02/08/2018	2.466 2.487	3.041 3.041	0.043 0.043	1.120 1.128	1.708 1.823	0.439 0.331								
		Mg/Ca mmol/mol	Sr/Ca mmol/mol	Mn/Ca mmol/mol	Fe/Ca mmol/mol	S/Ca mmol/mol	P/Ca mmol/mol			Mg/Ca mmol/mol	Sr/Ca mmol/mol	Mn/Ca mmol/mol	Fe/Ca mmol/mol	S/Ca mmol/mol	P/Ca mmol/mol			Mg/Ca mmol/mol	Sr/Ca mmol/mol	Mn/Ca mmol/mol	Fe/Ca mmol/mol	S/Ca mmol/mol	P/Ca mmol/mol
should				minor, mo		minor, mor							minor, mor					13.26	1.831	0.726	1.433	5.004	5.179
bias % avg 2sd 2rsd n		15.354 0.097 0.63 24	0.343 0.002 0.59 24	0.032 0.002 4.82 24	0.155 0.004 2.61 24	0.498 0.284 57.05 24	0.432 0.093 21.62 24			2.643 0.053 2.00 16	3.042 0.018 0.59 16	0.045 0.002 3.77 16	1.366 0.007 0.51 16	1.825 0.206 11.29 16	0.397 0.150 37.77 16			0.52 13.331 0.043 0.32 8	-0.16 1.829 0.005 0.27 8	0.19 0.728 0.002 0.28 8	-0.36 1.428 0.008 0.57 8	2.58 5.133 0.259 5.04 8	-0.42 5.157 0.037 0.72 8
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019	$15.366 \\ 15.264 \\ 15.367 \\ 15.308 \\ 15.342 \\ 15.312 \\ 15.311 \\ 15.287 \\ 15.339 \\ 15.339 \\ 15.322 \\ 15.322 \\ 15.362$	$\begin{array}{c} 0.3421\\ 0.3449\\ 0.3450\\ 0.3442\\ 0.3433\\ 0.3430\\ 0.3441\\ 0.3428\\ 0.3435\\ 0.3435\\ 0.3439\\ 0.3439\\ 0.3446\end{array}$	$\begin{array}{c} 0.0321\\ 0.0322\\ 0.0319\\ 0.0332\\ 0.0328\\ 0.0333\\ 0.0330\\ 0.0328\\ 0.0325\\ 0.0311\\ 0.0317\\ 0.0327\end{array}$	$\begin{array}{c} 0.155\\ 0.156\\ 0.154\\ 0.156\\ 0.154\\ 0.157\\ 0.154\\ 0.157\\ 0.156\\ 0.156\\ 0.156\\ 0.154\\ 0.155\end{array}$	$\begin{array}{c} 0.33\\ 0.43\\ 0.64\\ 0.72\\ 0.61\\ 0.43\\ 0.47\\ 0.62\\ 0.31\\ 0.27\\ 0.49\\ 0.30\\ \end{array}$	$\begin{array}{c} 0.42 \\ 0.36 \\ 0.41 \\ 0.57 \\ 0.47 \\ 0.41 \\ 0.50 \\ 0.45 \\ 0.41 \\ 0.41 \\ 0.45 \\ 0.43 \end{array}$	AK AK AK AK AK AK	17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019 17/04/2019	2.665 2.669 2.670 2.671 2.667 2.661 2.666 2.665	3.0489 3.0471 3.0542 3.0465 3.0464 3.0523 3.0507 3.0483	$\begin{array}{c} 0.0453\\ 0.0452\\ 0.0462\\ 0.0463\\ 0.0453\\ 0.0463\\ 0.0441\\ 0.0459 \end{array}$	$\begin{array}{c} 1.362 \\ 1.362 \\ 1.365 \\ 1.370 \\ 1.365 \\ 1.362 \\ 1.369 \\ 1.363 \end{array}$	1.72 1.75 1.86 1.96 1.84 1.73 1.87 1.74	$\begin{array}{c} 0.45\\ 0.36\\ 0.42\\ 0.48\\ 0.43\\ 0.43\\ 0.43\\ 0.46\\ 0.40\\ \end{array}$	BCQ2 BCQ2 BCQ2 BCQ2	17/04/2019 17/04/2019 17/04/2019 17/04/2019	13.322 13.326 13.310 13.326	1.8304 1.8325 1.8249 1.8307	0.7270 0.7273 0.7263 0.7275	1.423 1.430 1.425 1.428	5.08 4.94 5.08 5.06	5.17 5.16 5.14 5.19
JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1 JLs-1	24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019	15.439 15.272 15.349 15.365 15.401 15.405 15.363 15.336 15.395 15.422 15.397 15.431	$\begin{array}{c} 0.3417\\ 0.3414\\ 0.3422\\ 0.3424\\ 0.3427\\ 0.3428\\ 0.3422\\ 0.3417\\ 0.3425\\ 0.3432\\ 0.3431\\ \end{array}$	$\begin{array}{c} 0.0334\\ 0.0311\\ 0.0311\\ 0.0314\\ 0.0308\\ 0.0311\\ 0.0317\\ 0.0321\\ 0.0319\\ 0.0319\\ 0.0319\\ 0.0320\\ 0.0317\end{array}$	$\begin{array}{c} 0.159\\ 0.157\\ 0.158\\ 0.151\\ 0.154\\ 0.152\\ 0.154\\ 0.159\\ 0.156\\ 0.155\\ 0.155\\ 0.152\\ 0.155\end{array}$	$\begin{array}{c} 0.37\\ 0.59\\ 0.32\\ 0.42\\ 0.39\\ 0.76\\ 0.54\\ 0.67\\ 0.60\\ 0.60\\ 0.57\\ 0.49\end{array}$	$\begin{array}{c} 0.42\\ 0.51\\ 0.41\\ 0.46\\ 0.41\\ 0.43\\ 0.38\\ 0.40\\ 0.37\\ 0.46\\ 0.39\\ 0.42\end{array}$	АК АК АК АК АК АК	24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019	2.638 2.626 2.627 2.630 2.602 2.608 2.604 2.617	3.0443 3.0233 3.0421 3.0312 3.0314 3.0395 3.0310 3.0384	0.0460 0.0442 0.0441 0.0437 0.0445 0.0447 0.0447 0.0450	$ 1.370 \\ 1.366 \\ 1.369 \\ 1.371 \\ 1.364 \\ 1.369 \\ 1.365 \\ 1.360 \\ $	1.64 1.73 1.90 1.96 1.87 1.79 2.01 1.84	$\begin{array}{c} 0.32 \\ 0.36 \\ 0.53 \\ 0.46 \\ 0.39 \\ 0.26 \\ 0.34 \\ 0.27 \end{array}$	BCQ2 BCQ2 BCQ2 BCQ2	24/04/2019 24/04/2019 24/04/2019 24/04/2019	13.316 13.331 13.335 13.380	1.8261 1.8279 1.8277 1.8281	0.7288 0.7293 0.7285 0.7280	1.436 1.432 1.428 1.426	5.09 5.33 5.28 5.19	5.14 5.14 5.14 5.17

1.120	1.708	0.439
1.128	1.823	0.331

Table S3: Analytical results for isotope standards measured alongside the studied samples.

	date	δ ¹³ C	δ ¹⁸ 0	0		date	% CaCO ₃	δ ¹³ C	δ ¹⁸ 0
		‰ VPDB	‰ VPDB					‰ VPDB	% VPDB
n 2sd	179	0.06	0.14			80	97.1 1.5	0.09	0.33
CAR	10/08/2018	2.10	-2.08	N	NCA	10/08/2018	97.2	-5.56	-21.98
CAR	10/08/2018	2.11	-1.99	N	NCA	10/08/2018	97.3	-5.59	-21.97
CAR	10/08/2018	2.11	-1.99	IN N	NCA JCA	10/08/2018	97.7 97.7	-5.67	-22.02
CAR	10/08/2018	2.08	-2.03	N		10/08/2018	97.8	-5.65	-22.01
CAR	10/08/2018	2.11	-2.15	N	NCA	10/08/2018	97.7	-5.64	-21.96
CAR	10/08/2018	2.12	-2.01	N	NCA	10/08/2018	97.8	-5.68	-21.83
CAR	10/08/2018	2.09	-2.02	N	NCA	10/08/2018	98.0	-5.68	-21.67
CAR	10/08/2018	2.08	-2.03						
CAR	10/08/2018	2.08	-2.02						
CAR	10/08/2018	2.10	-2.08						
CAR	10/08/2018	2.08	-2.15						
CAR	10/08/2018	2.08	-1.94						
CAR	10/08/2018	2.14	-1.96						
CAR	10/08/2018	2.08	-2.00						
CAR	10/08/2018	2.09	-1.99						
CAR	12/08/2018	2.13	-1.91	N		12/08/2018	96.7	-5.67	-22.11
CAR CAR	12/08/2018	2.07	-2.15	IN N		12/08/2018	98.6 96.1	-5.62	-22.05
CAR	12/08/2018	2.06	-2.04	N		12/08/2018	97.7	-5.55	-21.80
CAR	12/08/2018	2.12	-2.00	N	NCA	12/08/2018	98.2	-5.67	-22.00
CAR	12/08/2018	2.11	-2.01	Ν	NCA	12/08/2018	98.3	-5.65	-21.71
CAR	12/08/2018	2.14	-1.94	N		12/08/2018	98.2	-5.62	-21.73
CAR	12/08/2018	2.08	-2.07	IN	NCA	12/08/2018	97.7	-5.59	-21.94
CAR	12/08/2018	2.10	-2.12						
CAR	12/08/2018	2.08	-1.98						
CAR	12/08/2018	2.15	-1.99						
CAR	12/08/2018	2.18	-1.97						
CAR	12/08/2018	2.04	-2.07						
CAR	12/08/2018	2.12	-2.05						
CAR	12/08/2018	2.11	-2.07						
CAR	12/08/2018	2.09	-1.99						
CAR	13/08/2018	2.09	-2.13	N	NCA	13/08/2018	96.0	-5.70	-22.22
CAR	13/08/2018	2.12	-1.92	N	NCA	13/08/2018	96.4	-5.62	-22.06
CAR	13/08/2018	2.10	-2.03	N		13/08/2018	97.0 93 5	-5.68	-21.96 -21.54
CAR	13/08/2018	2.12	-2.01	N		13/08/2018	96.9	-5.68	-22.16
CAR	13/08/2018	2.07	-2.09	N	NCA	13/08/2018	97.1	-5.56	-21.62
CAR	13/08/2018	2.13	-2.03	N	NCA	13/08/2018	96.8	-5.64	-22.03
CAR	13/08/2018	2.12	-1.94	N	NCA	13/08/2018	97.2	-5.53	-21.61
CAR	13/08/2018	2.07	-2.03						
CAR	13/08/2018	2.07	-2.13						
CAR	13/08/2018	2.11	-1.95						
CAR	13/08/2018	2.08	-2.23						
CAR	13/08/2018	2.14	-1.92						
CAR	13/08/2018	2.07	-1.98 -2.07						
CAR	13/08/2018	2.11	-2.07						
CAR	13/08/2018	2.10	-2.17						
CAR	14/08/2018	2.09	-1.94	N		14/08/2018	97.2	-5.62	-22.08
CAR CAR	14/08/2018 14/08/2018	2.12 2.07	-2.11 -2.07	N N	NCA ICA	14/08/2018 14/08/2018	97.0 97.6	-5.67 -2 28	-22.05 -21.87
CAR	14/08/2018	2.07	-2.07	IN N	NCA	14/08/2018	97.4	-5.69	-21.07
CAR	14/08/2018	2.16	-1.97	N	ICA	14/08/2018	97.6	-5.64	-21.82
CAR	14/08/2018	2.08	-1.88	N	ICA	14/08/2018	97.9	-5.63	-21.83
CAR	14/08/2018	2.05	-2.26	N		14/08/2018	97.5	-5.62	-21.80
CAR CAR	14/08/2018 14/08/2018	2.11 2.07	-2.02 -1.07	Ν	NLA	14/08/2018	97.4	-5.59	-21.81
CAR	14/08/2018	2.07	-1.97						
CAR	14/08/2018	2.07	-2.05						

CAR	14/08/2018	2.11	-2.04					
CAR	14/08/2018	2.08	-2.15					
CAR	14/08/2018	2.15	-1.88					
CAR	14/08/2018	2.06	-2.04					
CAR	14/08/2018	2.12	-2.05					
CAR	14/08/2018	2.10	-2.01					
CAR	14/08/2018	2.10	-2.04					
onne	11/00/2010	2.10	2.01					
CAR	15/08/2018	2 1 1	-1 98	NCA	15/08/2018	95 7	-5 67	-22 10
CAD	15/00/2010	2.11	2.07	NCA	15/00/2010	06.1	-5.07 E E 0	21.04
	15/06/2010	2.12	-2.07	NCA	15/00/2010	90.1	-5.50	-21.94
CAR	15/08/2018	2.07	-2.08	NCA	15/08/2018	96.9	-5.67	-22.16
CAR	15/08/2018	2.05	-2.03	NCA	15/08/2018	96.6	-5.63	-21.90
CAR	15/08/2018	2.17	-1.89	NCA	15/08/2018	95.9	-5.68	-21.76
CAR	15/08/2018	2.11	-2.10	NCA	15/08/2018	97.0	-5.49	-21.71
CAR	15/08/2018	2.12	-2.09	NCA	15/08/2018	97.0	-5.68	-21.82
CAR	15/08/2018	2.11	-1.96	NCA	15/08/2018	96.9	-5.65	-21.81
CAR	15/08/2018	2.09	-1.98					
CAR	15/08/2018	2.05	-2.17					
CAR	15/08/2018	2.03	-2.01					
CAR	15/08/2018	2.09	-1.97					
CAR	15/08/2018	2.19	-2.07					
CAR	15/08/2018	2 20	-1 99					
CAR	15/08/2018	2.20	-2.00					
	15/00/2010	2.04	2.00					
	15/06/2016	2.04	-2.00					
	15/08/2018	2.09	-2.04					
CAR	15/08/2018	2.13	-2.02					
CAD	16/00/2010	2.07	2.01	NCA	16/00/2010	06.4	5 (0	00.47
CAR	16/08/2018	2.07	-2.01	NCA	16/08/2018	96.4	-5.68	-22.17
CAR	16/08/2018	2.13	-2.04	NCA	16/08/2018	96.5	-5.65	-22.13
CAR	16/08/2018	2.10	-2.02	NCA	16/08/2018	97.6	-5.60	-21.90
CAR	16/08/2018	2.09	-2.09	NCA	16/08/2018	97.1	-5.59	-21.94
CAR	16/08/2018	2.10	-1.91	NCA	16/08/2018	97.1	-5.64	-21.87
CAR	16/08/2018	2.11	-2.10	NCA	16/08/2018	96.1	-5.61	-21.78
CAR	16/08/2018	2.12	-2.03	NCA	16/08/2018	97.5	-5.64	-21.72
CAR	16/08/2018	2.08	-2.04	NCA	16/08/2018	95.9	-5.62	-21.69
CAR	16/08/2018	2.09	-2.04					
CAR	16/08/2018	2.09	-2.01					
CAR	16/08/2018	2.12	-2.04					
CAR	16/08/2018	2.12	-2.10					
	16/09/2010	2.11	2.10					
	16/00/2010	2.01	-2.02					
	10/00/2010	2.10	-1.94					
CAR	air leak	0.14	2.07					
CAR	16/08/2018	2.11	-2.06					
CAR	16/08/2018	2.07	-2.15					
CAR	16/08/2018	2.12	-1.91					
	1 - 100 10010	2		NGA		0.4.0		00.40
CAR	17/08/2018	2.09	-2.05	NCA	17/08/2018	96.8	-5.70	-22.18
CAR	17/08/2018	2.11	-2.00	NCA	17/08/2018	96.7	-5.69	-22.31
CAR	17/08/2018	2.08	-2.04	NCA	17/08/2018	97.5	-5.63	-21.91
CAR	17/08/2018	2.14	-2.02	NCA	17/08/2018	97.4	-5.60	-21.99
CAR	17/08/2018	2.03	-2.03	NCA	17/08/2018	97.0	-5.63	-21.68
CAR	17/08/2018	2.11	-2.09	NCA	17/08/2018	95.7	-5.61	-21.68
CAR	17/08/2018	2.11	-1.94	NCA	17/08/2018	97.6	-5.59	-21.82
CAR	17/08/2018	2.16	-2.00	NCA	17/08/2018	97.5	-5.59	-21.64
CAR	17/08/2018	2.10	-2.11		, ,			
CAR	17/08/2018	2.08	-2.03					
CAR	17/08/2018	2.10	-2.06					
CAR	17/08/2018	2.10	-2.00					
	17/00/2010	2.00	-2.02					
	17/00/2010	2.10	-2.12					
	17/00/2010	2.15	-1.00					
CAR	17/08/2018	2.07	-2.18					
CAR	17/08/2018	2.11	-1.94					
CAR	17/08/2018	2.10	-2.03					
CAR	17/08/2018	2.10	-2.03					
a								
CAR	30/03/2019	2.08	-2.03	NCA	30/03/2019	96.1	-5.62	-22.04
CAR	30/03/2019	2.11	-2.04	NCA	30/03/2019	96.6	-5.60	-22.09
CAR	30/03/2019	2.09	-2.00	NCA	30/03/2019	97.7	-5.65	-21.87
CAR	30/03/2019	2.12	-2.03	NCA	30/03/2019	97.6	-5.68	-21.71
CAR	30/03/2019	2.12	-2.01	NCA	30/03/2019	97.9	-5.61	-21.88
CAR	30/03/2019	2.06	-2.09	NCA	30/03/2019	98.1	-5.60	-21.81
CAR	30/03/2019	2.11	-2.04	NCA	30/03/2019	97.0	-5.60	-21.91
CAR	30/03/2019	2.09	-2.00	NCA	30/03/2019	97.2	-5.68	-21.90
CAR	30/03/2019	2.11	-2.05		, , ·	-		0
CAR	30/03/2019	2.09	-2.01					

CAR	30/03/2019	2.14	-2.01					
CAR	30/03/2019	2.09	-2.04					
CAR	30/03/2019	2.06	-2.08					
CAR	30/03/2019	2.11	-1.99					
CAR	30/03/2019	2.08	-2.10					
CAR	30/03/2019	2.14	-1.96					
CAR	30/03/2019	2.09	-1.97					
CAR	30/03/2019	2.11	-2.08					
	, ,							
CAR	18/04/2019	2.08	-2.13	NCA	18/04/2019	98.0	-5.67	-22.05
CAR	18/04/2019	2.12	-1.95	NCA	18/04/2019	97.1	-5.63	-21.96
CAR	18/04/2019	2.12	-2.00	NCA	18/04/2019	97.5	-5.61	-22.03
CAR	18/04/2019	2.08	-1.93	NCA	18/04/2019	97.4	-5.63	-21.94
CAR	18/04/2019	2.08	-2.10	NCA	18/04/2019	97.6	-5.63	-21.85
CAR	18/04/2019	2.12	-2.19	NCA	18/04/2019	97.4	-5.64	-21.78
CAR	18/04/2019	2.09	-1.95	NCA	18/04/2019	97.9	-5.64	-21.83
CAR	18/04/2019	2.10	-2.03	NCA	18/04/2019	97.8	-5.60	-21.75
CAR	18/04/2019	2.08	-1.90		,,			
CAR	18/04/2019	2.16	-2.03					
CAR	18/04/2019	2.00	-2.15					
CAR	18/04/2019	2.15	-1.96					
CAR	18/04/2019	2.07	-2.12					
CAR	18/04/2019	2.16	-2.06					
CAR	18/04/2019	2.10	-2.07					
CAR	18/04/2019	2.09	-1.87					
CAR	18/04/2019	2.05	-2.17					
CAR	18/04/2019	2.14	-1.94					
CAR	21/04/2019	2.08	-2.04	NCA	21/04/2019	97.4	-5.71	-22.15
CAR	21/04/2019	2.11	-2.00	NCA	21/04/2019	97.0	-5.71	-22.05
CAR	21/04/2019	2.13	-2.08	NCA	21/04/2019	97.5	-5.60	-22.02
CAR	21/04/2019	2.08	-2.04	NCA	21/04/2019	98.0	-5.64	-21.90
CAR	21/04/2019	2.06	-2.02	NCA	21/04/2019	97.5	-5.65	-22.00
CAR	21/04/2019	2.11	-1.94	NCA	21/04/2019	97.3	-5.62	-21.68
CAR	21/04/2019	2.10	-2.07	NCA	21/04/2019	97.9	-5.57	-21.81
CAR	21/04/2019	2.11	-2.04	NCA	21/04/2019	97.7	-5.55	-21.60
CAR	21/04/2019	2.10	-2.06					
CAR	21/04/2019	2.12	-2.04					
CAR	21/04/2019	2.10	-1.94					
CAR	21/04/2019	2.05	-2.09					
CAR	21/04/2019	2.11	-1.94					
CAR	21/04/2019	2.13	-2.09					
CAR	21/04/2019	2.12	-2.10					
CAR	21/04/2019	2.07	-2.01					
CAR	21/04/2019	2.06	-1.92					
CAR	21/04/2019	2.14	-2.12					
Grift	21/01/2017	2.1 T	<i>L</i> , <i>LL</i>					

Table S4: Geochemical data acquired for fossils from Lower Toarcian sections in Spain and Po	rtugal
--	--------

collection	ical data acquired for lab number	tossils from Lower Toarci	an sections in atigraphy	i Spain and Portugal.	sample specimen	species	type	description	prepared	measured TE	Са	Mg/Ca Sr/Ca	Mn/Ca	Fe/Ca	S/Ca	P/Ca	measured ISO	CaCO3	δ ¹³ C	δ ¹⁸ 0
number	CUUL 1 2024	locality	interval	height (m)	ID number	TT 1 1 · · · 1· 1·		. 1	date	date	wt%	mmol/mol mmol/n	nol mmol/mo	 mmol/mol	 	mmol/mol	date	%	% VPDB	% VPDB
MPZ 2019/482 MPZ 2019/482	CVU_carb_3831 CVU carb 3832	Barranco de la Canada Barranco de la Cañada	BC22 BC22	26.70 26.70	$\begin{array}{ccc}1 & 1\\1 & 1\end{array}$	Homoeorhynchia meridionalis Homoeorhynchia meridionalis	brachiopod brachiopod	ventral ventral	28/06/2018 28/06/2018	06/07/2018 06/07/2018	38.2 38.2	2.55 1.172 2.37 1.168	0.013 0.012	0.07 0.05	6.93 6.62	0.05	16/08/2018 16/08/2018	96.9 97.8	3.06 2.96	-2.39 -2.16
MPZ 2019/482	CVU_carb_3833	Barranco de la Cañada	BC22	26.70	1 1	Homoeorhynchia meridionalis	brachiopod	ventral	28/06/2018	06/07/2018	39.1	2.73 1.184	0.012	0.07	7.31	0.07	16/08/2018	97.5	3.00	-2.54
MPZ 2019/482	CVU_carb_3977	Barranco de la Cañada	BC22 BC21	26.70	$ \begin{array}{ccc} 1 & 1 \\ 2 & 1 \end{array} $	Homosorhunchia maridionalic	calcite cement	calcite cement	19/07/2018	02/08/2018	37.6	11.78 0.298	0.648	6.91	1.07	0.03	17/08/2018	99.6 98.0	1.86	-10.41
MPZ 2019/479	CVU_carb_3827	Barranco de la Cañada	BC21 BC21	25.55	2 1 2 1	Homoeorhynchia meridionalis	brachiopod		28/06/2018	06/07/2018	30.3 38.5	5.23 1.164	0.033	0.29	6.75	0.04	15/08/2018	98.7	2.75	-2.73
MPZ 2019/480	CVU_carb_3828	Barranco de la Cañada	BC21	25.55	2 2	Homoeorhynchia meridionalis	brachiopod		28/06/2018	06/07/2018	38.1	4.74 1.194	0.035	0.37	7.23	0.07	16/08/2018	96.2	2.60	-2.92
MPZ 2019/481 MPZ 2019/481	CVU_carb_3829	Barranco de la Cañada Barranco de la Cañada	BC21 BC21	25.55	2 3	Homoeorhynchia meridionalis	brachiopod bulk rock	hulk rock	28/06/2018	06/07/2018	38.2 33.0	2.41 1.183 27.95 0.454	0.010 0.549	0.10 12.46	6.24 1.38	0.08 1.38	16/08/2018	96.0 85.4	2.66 2.06	-2.23 -4 47
MPZ 2019/478	CVU_carb_3949	Barranco de la Cañada	BC21	25.55	1 1		brachiopod	terebratulid	18/07/2018	02/08/2018	39.3	9.01 0.886	0.040	0.35	3.45	0.10	17/08/2018	100.4	3.04	-1.81
MPZ 2019/476	CVU_carb_3815	Barranco de la Cañada	BC20	24.55	2 1	Homoeorhynchia meridionalis	brachiopod		28/06/2018	06/07/2018	38.3	4.26 1.206	0.029	0.28	7.32	0.13	15/08/2018	97.6	2.58	-2.13
MPZ 2019/476 MPZ 2019/476	CVU_carb_3816 CVU_carb_3817	Barranco de la Cañada Barranco de la Cañada	BC20 BC20	24.55 24.55	2 1 2 1	Homoeorhynchia meridionalis Homoeorhynchia meridionalis	brachiopod		28/06/2018 28/06/2018	06/07/2018	38.7 38.4	3.66 1.095 3.63 1.189	0.055	0.30 0.17	6.86 7.26	0.01 0.00	15/08/2018	97.4 97.3	2.44	-2.02 -1 93
MPZ 2019/476	CVU_carb_3818	Barranco de la Cañada	BC20	24.55	2 1	Tomocol Hynema mertatohans	calcite cement	calcite cement	28/06/2018	06/07/2018	38.6	6.84 0.047	2.494	2.98	0.50	0.08	15/08/2018	99.9	1.46	-6.07
MPZ 2019/476	CVU_carb_3819	Barranco de la Cañada	BC20	24.55	2 1		bulk rock	bulk rock	28/06/2018	06/07/2018	34.9	24.86 0.436	0.471	11.34	1.42	0.25	15/08/2018	90.6	1.99	-3.95
MPZ 2019/477 MPZ 2019/473	CVU_carb_3820 CVU carb 3821	Barranco de la Canada Barranco de la Cañada	BC20 BC20	24.55 24.55	2 2 1 1	Homoeorhynchia meridionalis Homoeorhynchia meridionalis	brachiopod		28/06/2018 28/06/2018	06/07/2018	38.6 38.3	3.78 1.230 3.31 1.145	0.020	0.17 0.14	6.14 6.37	0.00	15/08/2018	98.6 98.0	2.62 3.25	-2.60 -2.03
MPZ 2019/473	CVU_carb_3822	Barranco de la Cañada	BC20	24.55	1 1	Homoeorhynchia meridionalis	brachiopod		28/06/2018	06/07/2018	38.3	7.90 1.239	0.035	0.44	7.69	0.09	15/08/2018	98.3	3.06	-1.99
MPZ 2019/474	CVU_carb_3823	Barranco de la Cañada	BC20	24.55	1 2	Homoeorhynchia meridionalis	brachiopod		28/06/2018	06/07/2018	38.2	4.06 1.128	0.034	0.22	9.05	0.12	15/08/2018	98.4	2.60	-2.61
MPZ 2019/4/4 MPZ 2019/475	CVU_carb_3824 CVU_carb_3825	Barranco de la Canada Barranco de la Cañada	BC20 BC20	24.55 24.55	1 2 1 3	Homoeornynchia meriaionalis Homoeorhynchia meridionalis	brachiopod		28/06/2018 28/06/2018	06/07/2018	38.3 38.2	3.59 1.124 3.39 1.200	0.025	0.13 0.19	8.36 7.54	0.05	15/08/2018	98.2 98.0	2.57	-2.69 -2.52
MPZ 2019/472	CVU_carb_3751	Barranco de la Cañada	BC19	23.45	1 1	Homoeorhynchia batalleri	brachiopod	dorsal	17/06/2018	25/06/2018	37.9	8.93 1.157	0.090	1.94	5.58	0.05	15/08/2018	96.9	2.11	-2.58
MPZ 2019/472	CVU_carb_3752	Barranco de la Cañada	BC19	23.45	1 1	Homoeorhynchia batalleri	brachiopod	dorsal	17/06/2018	25/06/2018	38.2	9.38 1.205	0.079	0.86	6.40	0.18	15/08/2018	97.9	1.83	-2.47
MPZ 2019/472 MPZ 2019/472	CVU_carb_3753 CVU_carb_3754	Barranco de la Cañada Barranco de la Cañada	BC19 BC19	23.45	$\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}$	Homoeorhynchia batalleri	brachiopod	ventral bulk rock from fossil fill	17/06/2018	25/06/2018	38.4 32.7	7.69 1.107 26.76 0.356	0.079	0.83 25 31	5.26 1.16	0.18 1 79	15/08/2018	98.5 85.4	2.06	-2.47 -3.16
MPZ 2019/471	CVU_carb_3755	Barranco de la Cañada	BC18	22.65	1 1	Homoeorhynchia batalleri	brachiopod	dorsal	17/06/2018	25/06/2018	38.2	6.68 1.006	0.140	0.97	4.72	0.06	15/08/2018	98.2	2.29	-3.07
MPZ 2019/471	CVU_carb_3756	Barranco de la Cañada	BC18	22.65	1 1	Homoeorhynchia batalleri	brachiopod	dorsal	17/06/2018	25/06/2018	38.3	5.67 1.167	0.090	0.39	4.93	-0.08	15/08/2018	97.6	2.26	-2.84
MPZ 2019/471 MPZ 2019/471	LVU_carb_3757 CVII_carb_3758	Barranco de la Cañada Barranco de la Cañada	BC18 RC18	22.65 22.65	1 1 1 1	Homoeorhynchia batalleri Homoeorhynchia batalleri	brachiopod brachiopod	dorsal dorsal	17/06/2018 17/06/2018	25/06/2018 25/06/2018	38.3 38.1	6.02 1.222 5 4 4 1 217	0.094 0.083	0.40 0.33	5.26 5.01	0.09 0.07	15/08/2018 15/08/2018	98.8 97 9	2.16 2.49	-2.73 -2.55
MPZ 2019/471	CVU_carb_3759	Barranco de la Cañada	BC18	22.65	1 1	Homoeorhynchia batalleri	brachiopod	dorsal	17/06/2018	25/06/2018	38.2	5.62 1.113	0.104	0.45	5.05	0.18	15/08/2018	97.5	2.33	-2.57
MPZ 2019/471	CVU_carb_3760	Barranco de la Cañada	BC18	22.65	1 1	Homoeorhynchia batalleri	brachiopod	dorsal	17/06/2018	25/06/2018	38.2	5.81 1.165	0.109	0.67	4.83	0.04	15/08/2018	99.8	2.26	-2.95
MPZ 2019/471 MPZ 2019/470	CVU_carb_3761	Barranco de la Cañada Barranco de la Cañada	BC18 RC17	22.65 21 45	1 1 1 1	Choffatirhynchia vasconcollosi	bulk rock	bulk rock trom fossil fill ventral	17/06/2018 07/06/2018	25/06/2018 25/06/2018	32.3 37 0	93.17 0.357 633 1.242	0.876 0.027	22.22 0.12	1.28 4.60	0.02	15/08/2018 14/08/2018	88.1 98 8	2.08	-6.35 -2.05
MPZ 2019/470	CVU_carb_3682	Barranco de la Cañada	BC17 BC17	21.45	1 1	Choffatirhynchia vasconcellosi	brachiopod	ventral	07/06/2018	25/06/2018	38.6	5.57 1.182	0.027	0.12	4.34	0.23	14/08/2018	98.9	2.50	-2.23
MPZ 2019/470	CVU_carb_3683	Barranco de la Cañada	BC17	21.45	1 1	Choffatirhynchia vasconcellosi	brachiopod	ventral	07/06/2018	25/06/2018	38.5	5.43 1.134	0.031	0.14	4.67	0.16	14/08/2018	98.6	2.35	-2.03
MPZ 2019/470 MPZ 2019/470	CVU_carb_3684	Barranco de la Cañada Barranco de la Cañada	BC17	21.45 21 45	1 1 1 1	Choffatirhynchia vasconcellosi Choffatirhynchia vasconcellosi	brachiopod brachiopod	dorsal dorsal	07/06/2018	25/06/2018	38.1 28 1	5.47 1.138	0.041	0.38	4.47 4.65	0.12	14/08/2018 14/08/2019	98.4 98.1	2.51	-2.07 -1.96
MPZ 2019/470 MPZ 2019/470	CVU_carb_3686	Barranco de la Cañada	BC17 BC17	21.45	1 1	Choffatirhynchia vasconcellosi	brachiopod	dorsal	08/06/2018	25/06/2018	38.1	5.55 1.152	0.041	0.37	4.03	0.05	14/08/2018	97.5	2.39	-2.08
MPZ 2019/470	CVU_carb_3687	Barranco de la Cañada	BC17	21.45	1 1		bulk rock	bulk rock, fossil interior	08/06/2018	25/06/2018	33.8	22.30 0.338	0.564	23.38	0.83	0.81	14/08/2018	86.7	1.88	-3.03
MPZ 2019/469	CVU_carb_3931	Barranco de la Cañada	BC15 BC15	19.85	1 1	Gryphaea cf. dumortieri	bivalve	hullt rock	09/07/2018	02/08/2018	37.7	10.34 0.725	0.362	4.06	2.16	0.37	17/08/2018	96.5 76.0	2.93	-1.85
MPZ 2019/409 MPZ 2019/467	CVU carb 3784	Barranco de la Cañada	BC13 BC14	19.85	1 1 2 1	Homoeorhynchia meridionalis	brachiopod	DUIRTOCK	22/06/2018	25/06/2018	38.0	5.28 1.310	0.000	0.10	4.60	0.89	15/08/2018	98.2	2.30 3.12	-4.23 -2.89
MPZ 2019/467	CVU_carb_3785	Barranco de la Cañada	BC14	19.35	2 1	Homoeorhynchia meridionalis	brachiopod		22/06/2018	25/06/2018	38.2	3.83 1.181	0.022	0.08	4.86	0.10	15/08/2018	95.6	3.53	-2.92
MPZ 2019/467	CVU_carb_3786	Barranco de la Cañada	BC14	19.35	2 1	Homoeorhynchia meridionalis	brachiopod	other valve than 3784-3785	22/06/2018	25/06/2018	38.3	4.28 1.115	0.044	0.16	4.73	0.08	15/08/2018	98.1 08.1	3.39	-2.65
MPZ 2019/467 MPZ 2019/468	CVU_carb_3787	Barranco de la Cañada Barranco de la Cañada	BC14 BC14	19.35		Homoeornynchia meriaionalis Homoeorhynchia meridionalis	brachiopod	other valve than 3784-3785	22/06/2018	25/06/2018	38.0 37.9	4.15 1.097 7.64 1.282	0.050	0.20	4.84 7.18	0.21	15/08/2018	98.1 98.0	3.21 3.14	-2.95 -2.52
MPZ 2019/468	CVU_carb_3789	Barranco de la Cañada	BC14	19.35	2 2	Homoeorhynchia meridionalis	brachiopod	ventral	22/06/2018	25/06/2018	38.0	6.35 1.235	0.022	0.13	6.65	0.09	15/08/2018	97.6	2.93	-2.51
MPZ 2019/468	CVU_carb_3790	Barranco de la Cañada	BC14	19.35	2 2	Homoeorhynchia meridionalis	brachiopod	dorsal	22/06/2018	25/06/2018	38.1	5.28 1.197	0.031	0.21	5.78	0.12	15/08/2018	97.8	3.13	-2.44
MPZ 2019/468 MPZ 2019/465	CVU_carb_3791 CVU_carb_3889	Barranco de la Cañada Barranco de la Cañada	BC14 BC14	19.35 19.35	2 2	Grynhaea of dumortieri	bulk rock bivalve	bulk rock	22/06/2018	25/06/2018	31.0 38.8	28.78 0.446	0.659	18.95 0 79	0.95 1.21	0.41	15/08/2018	80.6 100 1	2.71	-4.34 -2.28
MPZ 2019/465	CVU_carb_3890	Barranco de la Cañada	BC14 BC14	19.35	1 1	Gryphaea cf. dumortieri	bivalve		02/07/2018	06/07/2018	39.0	3.23 0.803	0.117	1.06	1.04	0.08	16/08/2018	100.1	3.53	-1.94
MPZ 2019/465	CVU_carb_3891	Barranco de la Cañada	BC14	19.35	1 1	Gryphaea cf. dumortieri	bivalve		02/07/2018	06/07/2018	39.0	3.06 0.767	0.120	0.93	0.92	0.12	16/08/2018	100.1	3.47	-2.06
MPZ 2019/466	CVU_carb_3892	Barranco de la Cañada	BC14 BC14	19.35	1 2	Gryphaea cf. dumortieri Cryphaea cf. dumortieri	bivalve		02/07/2018	06/07/2018	38.8	2.30 0.777	0.033	0.26	0.75	0.20	16/08/2018	101.3	3.70	-2.17
MPZ 2019/466	CVU_carb_3894	Barranco de la Cañada	BC14 BC14	19.35	1 2	Gryphaea cf. dumortieri	bivalve		02/07/2018	06/07/2018	39.0	3.25 0.779	0.033	0.25	1.89	0.17	16/08/2018	100.7	4.21	-2.82
MPZ 2019/462	CVU_carb_3742	Barranco de la Cañada	BC13	18.85	1 1	Lobothyris hispanica	brachiopod		17/06/2018	25/06/2018	38.3	6.31 0.923	0.119	1.01	2.16	0.09	14/08/2018	99.1	3.24	-2.65
MPZ 2019/462	CVU_carb_3743	Barranco de la Cañada	BC13 BC13	18.85 18.85	1 1	Lobothyris hispanica Lobothyris hispanica	brachiopod		17/06/2018	25/06/2018	38.0 28.4	8.71 1.204	0.108	0.82	3.59	0.08	14/08/2018	97.1 00.2	2.83	-2.61
MPZ 2019/402 MPZ 2019/462	CVU carb 3745	Barranco de la Cañada	BC13 BC13	18.85	1 1	Lobolnyns mspunicu	bulk rock	bulk rock	17/06/2018	25/06/2018	30.4	29.39 0.477	0.102	0.33 19.19	0.92	0.03	14/08/2018	99.2 79.7	2.60	-2.04 -4.76
MPZ 2019/463	CVU_carb_3746	Barranco de la Cañada	BC13	18.85	1 2	Homoeorhynchia meridionalis	brachiopod		17/06/2018	25/06/2018	38.1	6.07 1.098	0.209	1.38	5.96	0.20	14/08/2018	98.4	2.93	-2.40
MPZ 2019/463	CVU_carb_3747	Barranco de la Cañada	BC13	18.85	1 2	Homoeorhynchia meridionalis	brachiopod		17/06/2018	25/06/2018	37.9	6.03 1.068	0.216	1.99	5.45	0.17	14/08/2018	98.3	3.07	-2.59
MPZ 2019/464	CVU_carb_3748	Barranco de la Cañada	BC13 BC13	18.85	1 3	Homoeorhynchia meridionalis	brachiopod		17/06/2018	25/06/2018	30.2 38.1	5.83 1.126	0.139	1.10	7.23	0.17	15/08/2018	90.2 97.8	3.42	-2.73
MPZ 2019/464	CVU_carb_3750	Barranco de la Cañada	BC13	18.85	1 3	Homoeorhynchia meridionalis	brachiopod		17/06/2018	25/06/2018	38.4	7.06 1.167	0.128	1.44	8.65	0.10	15/08/2018	96.3	3.29	-2.78
MPZ 2019/461	CVU_carb_3801	Barranco de la Cañada	BC12	18.35	1 1	Homoeorhynchia meridionalis	brachiopod		28/06/2018	06/07/2018	37.7	7.59 1.094	0.161	0.94	6.84	0.23	15/08/2018	97.9	3.00	-3.35
MPZ 2019/461	CVU_carb_3802	Barranco de la Cañada	BC12 BC12	10.35 18.35	1 1 1		bulk rock	bulk rock	28/06/2018	06/07/2018	30.0 31.8	30.74 0.480	0.116	0.52 20.89	7.10 1.86	5.72	15/08/2018	97.8 81.3	5.10 2.64	-3.23 -4.33
MPZ 2019/458	CVU_carb_3933	Barranco de la Cañada	BC10	17.30	1 1	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	39.0	2.58 0.772	0.034	0.31	0.88	0.13	17/08/2018	100.8	3.75	-2.29
MPZ 2019/458	CVU_carb_3934	Barranco de la Cañada	BC10	17.30	1 1	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.9	2.37 0.781	0.032	0.25	1.04	0.09	17/08/2018	100.4	3.73	-2.35 2.75
MPZ 2019/458	CVU carb_3935 CVU carb 3936	Barranco de la Cañada Barranco de la Cañada	BC10 BC10	17.30	1 1 1 1	ыурпаеа (В.) sublobata Gryphaea (В.) sublobata	bivalve		09/07/2018 09/07/2018	02/08/2018	39.2 39.1	1.94 0.764 2.29 0.793	0.041	0.36 0.29	0.97	0.12	17/08/2018 17/08/2018	101.0 101.1	4.01 3.95	-2.75 -2.64
MPZ 2019/458	CVU_carb_3937	Barranco de la Cañada	BC10	17.30	1 1	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.9	2.64 0.800	0.146	0.66	1.54	0.11	17/08/2018	100.3	4.06	-2.96
MPZ 2019/459	CVU_carb_3938	Barranco de la Cañada	BC10	17.30	1 2	(minhage (D) - 11 1	bulk rock	bulk rock	09/07/2018	02/08/2018	29.4	35.00 0.479	0.735	24.66	1.22	5.65	17/08/2018	75.6	2.52	-4.20
MPZ 2019/456 MP7 2019/456	UVU_carb_3970 CVII carh 3971	ваrranco de la Cañada Barranco de la Cañada	BC09	16.70 16.70	1 1 1 1	Grypnaea (B.) sublobata Gryphaea (B.) sublobata	bivalve hivalve		19/07/2018 19/07/2018	02/08/2018 02/08/2018	38.7 38 5	4.12 0.776 3.79 0.757	0.170 0 212	0.80 1.04	1.19 1 14	0.19 0.03	1//08/2018 17/08/2018	101.3 100 3	3.85 4 01	-2.53 -2.39
MPZ 2019/456	CVU_carb_3972	Barranco de la Cañada	BC09	16.70	1 1	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.9	4.03 0.768	0.188	0.86	1.42	0.27	17/08/2018	100.7	3.86	-2.65
MPZ 2019/456	CVU_carb_3973	Barranco de la Cañada	BC09	16.70	1 1		bulk rock	bulk rock	19/07/2018	02/08/2018	27.6	36.06 0.587	0.712	24.39	1.03	1.65	17/08/2018	73.9	2.75	-4.40
MPZ 2019/457 MP7 2019/457	CVU_carb_3974	Barranco de la Cañada Barranco de la Cañada	BC09 BC00	16.70 16.70	1 2 1 2	Gryphaea (B.) sublobata Gryphaea (B.) sublobata	bivalve bivalvo		19/07/2018 19/07/2019	02/08/2018	38.8 29 7	4.62 0.726 5.40 0.706	0.076	0.37	2.09 2 21	0.14 0.25	17/08/2018 17/08/2019	100.6 98.6	3.84 3.80	-2.15 -2 14
MPZ 2019/457	CVU_carb_3976	Barranco de la Cañada	BC09	16.70	1 2	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.6	3.98 0.754	0.082	0.54	1.95	0.17	17/08/2018	101.2	3.75	-2.15
MPZ 2019/454	CVU_carb_3436	Barranco de la Cañada	BC08	16.05	3 1		calcite cement	sparitic calcite	10/04/2018	04/06/2018	38.5	7.20 0.305	0.802	8.02	0.15	-0.04	10/08/2018	100.9	2.34	-9.70
MPZ 2019/454	CVU_carb_3491	Barranco de la Cañada Barranco de la Cañada	BC08	16.05	3 1 3 1	Homoeorhynchia meridionalis Homoeorhynchia meridionalia	brachiopod	ventral	29/04/2018	04/06/2018	38.4	4.78 0.988	0.078	0.40	3.58	0.15	10/08/2018	99.3 00 0	3.33 2 1 1	-3.08 -3.08
MPZ 2019/454	CVU_carb 3493	Barranco de la Cañada	BC08	16.05	3 1	Homoeorhynchia meridionalis	brachiopod	ventral	29/04/2018	04/06/2018	30.2 38.5	2.93 1.065	0.124	0.50	5.45 2.91	0.00	10/08/2018	99.4	3.59	-3.20
MPZ 2019/454	CVU_carb_3494	Barranco de la Cañada	BC08	16.05	3 1	Homoeorhynchia meridionalis	brachiopod	dorsal	29/04/2018	04/06/2018	38.7	4.11 0.624	0.325	4.52	2.32	0.07	10/08/2018	100.5	2.78	-4.49
MPZ 2019/454	CVU_carb_3495	Barranco de la Cañada	BC08	16.05	3 1		calcite cement	calcite cement	29/04/2018	04/06/2018	38.4	9.05 0.331	0.841	8.14	0.27	0.06	10/08/2018	99.6	2.22	-9.49
MPZ 2019/454 MPZ 2019/455	UVU_carb_3496 CVII carh 3497	ваrranco de la Cañada Barranco de la Cañada	BC08	16.05 16.05	3 1 3 2	Homoeorhvnchia meridionalis	calcite cement	caicite cement ventral	29/04/2018 29/04/2018	04/06/2018 04/06/2018	38.3 38.3	9.62 0.439 4.27 1.140	0.798 0.037	7.55 0.14	0.50 3.88	-0.04 0.01	10/08/2018 10/08/2018	100.4 98.9	2.21 3.60	-10.34 -2.58
MPZ 2019/455	CVU_carb_3498	Barranco de la Cañada	BC08	16.05	3 2	Homoeorhynchia meridionalis	brachiopod	ventral	29/04/2018	04/06/2018	37.9	4.14 1.124	0.037	0.09	4.08	0.04	10/08/2018	99.8	3.25	-2.83
MPZ 2019/455	CVU_carb_3499	Barranco de la Cañada	BC08	16.05	3 2	Homoeorhynchia meridionalis	brachiopod	dorsal	29/04/2018	04/06/2018	38.5	4.45 1.149	0.040	0.17	3.64	0.09	10/08/2018	99.4	3.08	-2.65
MPZ 2019/455	CVU_carb_3500	Barranco de la Cañada Barranco de la Cañada	BC08 BC08	16.05 16.05	3 2 3 2	Homoeorhynchia meridionalis Homoeorhynchia meridionalis	brachiopod brachiopod	dorsal dorsal	29/04/2018 29/04/2018	04/06/2018 04/06/2018	38.0 38.6	4.76 1.139 5.08 1.150	0.039	0.15 0.28	4.04 2.97	0.10 -0.07	10/08/2018	100.1 98 1	3.15 3.21	-2.61 -2.56
MPZ 2019/452	CVU_carb_3773	Barranco de la Cañada	BC08	16.05	1 1	Choffatirhynchia vasconcellosi	brachiopod	ventral	17/06/2018	25/06/2018	38.2	8.26 1.020	0.385	2.27	4.81	1.39	15/08/2018	96.7	3.55	-2.63
MPZ 2019/452	CVU_carb_3774	Barranco de la Cañada	BC08	16.05	1 1	Choffatirhynchia vasconcellosi	brachiopod	ventral	17/06/2018	25/06/2018	38.3	7.75 1.100	0.157	0.76	5.19	0.29	15/08/2018	97.6	3.61	-2.91
MPZ 2019/453	CVU_carb_3775	Barranco de la Cañada	BC08	16.05	2 1	Homoeorhynchia batalleri	brachiopod	ventral	17/06/2018	25/06/2018	38.5	3.65 1.082	0.045	0.11	3.09	0.16	15/08/2018	98.4	3.84	-2.43

MP7.2019/453	CVII carb 3776	Barranco de la Cañada
MD7 2010 / 452	CVII corb 2777	Darranco de la Cañada
MPZ 2019/453	CVU_carb_3///	Barranco de la Canada
MPZ 2019/453	CVU carb 3778	Barranco de la Cañada
MD7 2010 / 4E2	CVII carb 2770	Parranco do la Cañada
MPZ 2019/455	CVU_carb_5779	Dallanco de la Canada
MPZ 2019/453	CVU_carb_3780	Barranco de la Cañada
MP7 2019/452	CVII carb 3781	Barranco de la Cañada
MPZ 2019/449	CVU_carb_3430	Barranco de la Cañada
MPZ 2019/448	CVU carb 3688	Barranco de la Cañada
MD7 2010 / 440		
MPZ 2019/448	CVU_carb_3689	Barranco de la Canada
MPZ 2019/448	CVU carb 3690	Barranco de la Cañada
MD72010/440	CVUL comb 2(01	Darman da la Cañada
MPZ 2019/448	CVU_carb_3691	Barranco de la Canada
MPZ 2019/449	CVU_carb_3692	Barranco de la Cañada
MD7 2010 / 440	CVII carb 2602	Parranco do la Cañada
MPZ 2019/449	CVU_carb_3693	Barranco de la Canada
MPZ 2019/449	CVU_carb_3694	Barranco de la Cañada
MD7 2010/140	CVII carb 2605	Barranco do la Cañada
		Dall'alleo de la Callada
MPZ 2019/449	CVU_carb_3696	Barranco de la Cañada
MP7 2019/449	CVII carb 3697	Barranco de la Cañada
		Darranco de la Canada
MPZ 2019/450	CVU_carb_3698	Barranco de la Cañada
MP7 2019/450	CVII carb 3699	Barranco de la Cañada
MPZ 2019/450	CVU_carb_3700	Barranco de la Cañada
MPZ 2019/442	CVII carb 3435	Barranco de la Cañada
MD7 2010 / 442		
MPZ 2019/443	CVU_carb_3512	Barranco de la Canada
MPZ 2019/443	CVU carb 3513	Barranco de la Cañada
MD7 2010/112	CVII carb 2514	Barranco do la Cañada
MFZ 2019/443	CVU_carb_5514	Dallalleo de la Callada
MPZ 2019/443	CVU_carb_3515	Barranco de la Cañada
MP7 2019/444	CVII carb 3516	Barranco de la Cañada
MPZ 2019/444	CVU_carb_3517	Barranco de la Cañada
MPZ 2019/444	CVU carb 3518	Barranco de la Cañada
MD7 2010 / 4 4 4	CVII comb 2F10	Barranao do la Cañ - J-
MFL 2019/444	Cv0_car0_3519	barranco de la Canada
MPZ 2019/444	CVU_carb_3520	Barranco de la Cañada
MP7 2010 / 44 F	(VII carb 2E21	Barranco do la Cañada
111 L LU17/443	UVU_CAIU_3521	Darranco de la Callada
MPZ 2019/445	CVU_carb_3522	Barranco de la Cañada
MP7 2010 / 1 / 1	CVII carb 2500	Barranco de la Cañada
MD7 2017/443		
MPZ 2019/445	CVU_carb_3524	Barranco de la Cañada
MP7.2019/445	CVII carh 2525	Barranco de la Cañada
MD7 2017/773		
MPZ 2019/445	CVU_carb_3526	Barranco de la Cañada
MP7 2019 / 1.16	CVII carh 2527	Barranco de la Cañada
		Dal l'alleo de la Callada
MPZ 2019/446	CVU_carb_3528	Barranco de la Cañada
MP7 2019/446	CVII carb 3529	Barranco de la Cañada
MPZ 2019/447	CVU_carb_3530	Barranco de la Canada
MPZ 2019/447	CVU carb 3531	Barranco de la Cañada
MD7 2010 / 447	CVII comb 2E22	Darman de la Cañada
MPZ 2019/447	CVU_carb_5552	Dallanco de la Canada
MPZ 2019/442	CVU_carb_3870	Barranco de la Cañada
MP7 2019/442	CVII carb 3871	Barranco de la Cañada
MPZ 2019/442	CVU_carb_3872	Barranco de la Cañada
MP7 2019/440	CVII carb 3429	Barranco de la Cañada
MPZ 2019/440	CVU_carb_3484	Barranco de la Canada
MPZ 2019/440	CVU carb 3485	Barranco de la Cañada
MD7 2010 / 440	CVII comb 2496	Darman de la Cañada
MPZ 2019/440	CVU_carD_5466	Dallanco de la Canada
MPZ 2019/441	CVU_carb_3487	Barranco de la Cañada
MP7 2019/441	CVII carb 3488	Barranco de la Cañada
		Dal l'alleo de la Callada
MPZ 2019/441	CVU_carb_3489	Barranco de la Cañada
MP7 2019/441	CVII carb 3490	Barranco de la Cañada
MI 2 2017/ 441		
MPZ 2019/435	CVU_carb_3575	Barranco de la Cañada
MPZ 2019/435	CVII carb 3576	Barranco de la Cañada
MDZ 2010/105		
MPZ 2019/435	CVU_carb_3577	Barranco de la Canada
MPZ 2019/435	CVU carb 3578	Barranco de la Cañada
MD7 2010 / 42E	CVII carb 2570	Parranco do la Cañada
MPZ 2019/435	CVU_carD_5579	Dallanco de la Canada
MPZ 2019/435	CVU_carb_3580	Barranco de la Cañada
MP7 2019/435	CVII carb 3581	Barranco de la Cañada
MPZ 2019/437	CVU_carb_3622	Barranco de la Cañada
MPZ 2019/437	CVII carb 3623	Barranco de la Cañada
MDZ 2010/427		
MPZ 2019/437	CVU_carb_3624	Barranco de la Canada
MPZ 2019/438	CVU carb 3625	Barranco de la Cañada
MD7 2010/420	CVII carb 2626	Parranco do la Cañada
MPZ 2019/430	CVU_carD_3626	Dallanco de la Canada
MPZ 2019/438	CVU_carb_3627	Barranco de la Cañada
MP7 2019 / 438	CVII carb 3628	Barranco de la Cañada
MFZ 2019/430	CVU_carb_3028	Dallalleo ue la Callaua
MPZ 2019/438	CVU_carb_3629	Barranco de la Cañada
MP7.2019/428	CVII carh 2620	Barranco de la Cañada
MD7 2040 / 422		
MPL 2019/438	CVU_carb_3631	Barranco de la Cañada
MPZ 2019/439	CVU carb 3632	Barranco de la Cañada
MD7 2010 / 420	CVII orth DCDD	Damanaa da la Cara l
MPL 2019/439	CvU_carb_3633	Barranco de la Cañada
MPZ 2019/439	CVU_carb 3634	Barranco de la Cañada
MD7 2010 / 424	(VII carb 2702	Barranco do la Cañada
MIF6 2019/434	uvu_carb_3/03	Barranco de la Canada
MPZ 2019/434	CVU_carb 3704	Barranco de la Cañada
MD7 2010 / 424	CVII carb 270E	Parranco do la Cañada
MIL 2017/434	uvu_carb_3/05	Darranco de la Canada
MPZ 2019/432	CVU_carb_3641	Barranco de la Cañada
MD7 2010//22	CVII carb 2642	Barranco do la Cañada
MFZ 2019/432	CVU_CaID_3042	Dallallo de la Callada
MPZ 2019/432	CVU_carb_3643	Barranco de la Cañada
MP7 2019/432	CVII carb 3644	Barranco de la Cañada
MD7 2010 / 402		Downers
MPL 2019/432	LVU_carb_3645	Barranco de la Cañada
MPZ 2019/432	CVU carb 3646	Barranco de la Cañada
MD7 2010 / 422	CVII carb 2647	Barranco do la Coño do
MFL 2019/432	uvu_carb_3647	bai ranco de la Canada
MPZ 2019/431	CVU_carb 3676	Barranco de la Cañada
MD7 2010 / 421	CVII carb 2677	Barranco do la Cañada
111 L LU17/431	GVU_CaID_30//	Dairanco de la Callada
MPZ 2019/431	CVU_carb_3678	Barranco de la Cañada
MP7 2010 / / 21	CVII carh 2670	Barranco de la Cañada
111 L LU17/431	GVU_CarD_30/9	Dairanco de la Callada
MPZ 2019/431	CVU_carb_3680	Barranco de la Cañada
MP7 2019/433	CVII carh 3834	Barranco de la Cañada
MPZ 2019/433	CVU_carb_3835	Barranco de la Cañada
MPZ 2019/433	CVU carh 3836	Barranco de la Cañada
= = = = = = = = = = = = = = = = = = =	$C_{\rm WII} = 1.0007$	
mpz 2019/433	LVU_carb_3837	Barranco de la Cañada
MPZ 2019/424	CVU carb 3440	Barranco de la Cañada
MD7 2010 / 424	CVII carb 0444	Darranas de la Carra l
MPL 2019/424	uvu_carb_3441	barranco de la Cañada
MPZ 2019/424	CVU carb 3442	Barranco de la Cañada
MD7 2010 / 424	CVII comb 0440	Barranao do la Cañ - J-
MFL 2019/424	uvu_carb_3443	Darranco de la Canada
MPZ 2019/424	CVU carb 3444	Barranco de la Cañada
MD7 2010 / 424	CVII comb 0445	Barranao do la Cañ - J-
MF62019/424	Gv0_CarD_3445	Darranco de la Canada

brachiopod brachiopod brachiopod brachiopod brachiopod bulk rock brachiopod brachiopod brachiopod brachiopod bulk rock brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod bivalve brachiopod brachiopod brachiopod bulk rock brachiopod brachiopod brachiopod calcite cement calcite cement brachiopod bivalve bivalve bivalve brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod bulk rock brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod bulk rock brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod calcite cement brachiopod calcite cement brachiopod brachiopod brachiopod brachiopod brachiopod bivalve bivalve bivalve bulk rock brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod bulk rock

ventral	17/06/2018	25/06/2018	38.3	3.53	1.071	0.044	0.08	2.91	0.17	15/08/2018	98.0	3.67	-2.22
ventral	17/06/2018	25/06/2018	38.4	4.14	1.059	0.097	0.28	3.00	0.14	15/08/2018	97.9	3.64	-2.23
dorsal	17/06/2018	25/06/2018	38.1	3.70	1.060	0.038	0.07	3.40	0.07	15/08/2018	98.9	3.76	-2.22
dorsal	17/06/2018	25/06/2018	38.5	4.16	1.094	0.059	0.12	3.32	0.16	15/08/2018	98.8	3.16 2.70	-2.36
hulk rock from fossil fill	17/06/2018	25/06/2018	34.2	26.15	0.543	0.043	20 59	3.10	26 79	15/08/2018	853	2.98	-2.47
	10/04/2018	01/06/2018	38.1	3.42	1.019	0.045	0.34	2.42	0.13	10/08/2018	98.5	4.05	-2.59
	08/06/2018	25/06/2018	38.6	6.20	0.981	0.121	0.69	3.37	0.16	14/08/2018	98.9	4.34	-2.38
	08/06/2018	25/06/2018	38.4	6.35	0.984	0.133	0.71	3.56	0.19	14/08/2018	99.5	4.30	-2.70
	08/06/2018	25/06/2018	38.7	4.27	0.932	0.135	0.42	3.19	0.10	14/08/2018	99.4	4.39	-2.73
bulk rock	08/06/2018	25/06/2018	30.1	31.55	0.460	0.762	22.96	0.97	0.94	14/08/2018	78.3	3.08	-4.06
ventral	08/06/2018	25/06/2018	38.8 29.7	4.17	0.982	0.070	0.29	2.70	0.13	14/08/2018	98.1	4.22	-2.81 2.77
ventral	08/06/2018	25/06/2018	38.4	4.39	0.903	0.090	0.80	2.80	-0.02	14/08/2018	99.2	4.27	-2.77
dorsal	08/06/2018	25/06/2018	38.3	4.60	0.976	0.069	0.25	2.77	0.02	14/08/2018	99.1	3.97	-2.86
dorsal	08/06/2018	25/06/2018	38.6	4.26	0.990	0.058	0.20	3.16	0.15	14/08/2018	99.6	4.25	-2.58
dorsal	08/06/2018	25/06/2018	38.5	4.10	0.974	0.057	0.17	2.83	0.16	14/08/2018	98.6	4.20	-2.55
dorsal	08/06/2018	25/06/2018	38.2	6.04	1.128	0.214	0.71	3.42	0.16	14/08/2018	98.2	3.87	-2.54
dorsal	08/06/2018	25/06/2018	38.5	3.34	1.053	0.198	0.57	2.23	0.28	14/08/2018	98.9	4.38	-2.59
dorsal	08/06/2018	25/06/2018	38.4	5.96	1.134	0.099	0.33	3.46	0.20	14/08/2018	99.1	4.22	-2.66
ventral	10/04/2018	04/06/2018	39.0	3.14 3.82	0.882	0.051	0.37	0.94	0.05	10/08/2018	100.4 99.6	5.34 4.56	-2.53
ventral	02/05/2018	04/06/2018	38.2	6.02	1.060	0.034	0.15	3.62	0.24	12/08/2018	98.8	4.55	-2.98
ventral	02/05/2018	04/06/2018	38.2	4.18	0.988	0.029	0.12	3.07	0.17	12/08/2018	99.0	4.61	-3.16
bulk rock	02/05/2018	04/06/2018	32.2	26.51	0.452	0.691	16.60	1.21	1.05	12/08/2018	85.2	3.24	-4.35
dorsal	02/05/2018	04/06/2018	37.8	3.97	0.989	0.037	0.17	2.84	0.06	12/08/2018	99.2	4.46	-3.07
dorsal	02/05/2018	04/06/2018	38.3	3.90	1.025	0.023	0.10	3.10	0.22	12/08/2018	99.3	4.41	-3.23
dorsal	02/05/2018	04/06/2018	38.2	4.04	0.990	0.034	0.16	3.07	0.16	12/08/2018	100.0	4.34	-3.36
calcite cement	02/05/2018	04/06/2018	38.0	10.33	0.291	0.827	8.36	0.56	0.00	12/08/2018	97.6	2.24	-9.70
ventral	10/05/2018	04/06/2018	30.3 38 5	10.75	0.200	0.040	0.05	0.50 2.80	-0.05	12/06/2016	99.0 99.6	2.20 4.49	-9.09
ventral	10/05/2018	04/06/2018	38.6	4.60	1.024	0.030	0.16	2.95	0.03	12/08/2018	99.4	4.50	-2.82
ventral	10/05/2018	04/06/2018	38.4	4.52	1.018	0.027	0.17	2.88	0.02	12/08/2018	98.4	4.58	-2.96
dorsal	10/05/2018	04/06/2018	38.3	4.94	1.129	0.037	0.14	3.16	0.02	12/08/2018	99.5	4.55	-2.65
dorsal	10/05/2018	04/06/2018	38.1	5.14	1.024	0.054	0.18	3.09	0.14	12/08/2018	98.5	4.46	-2.79
dorsal	10/05/2018	04/06/2018	38.6	3.76	0.979	0.022	0.08	2.92	0.02	12/08/2018	99.9	4.49	-2.47
dorsal	10/05/2018	04/06/2018	38.1	7.89	1.134	0.076	0.42	4.17	0.26	12/08/2018	98.8	4.05	-2.54
dorsal	10/05/2018	04/06/2018	38.2	6.81 6.19	1.136	0.087	0.38	3.76	0.21	12/08/2018	99.3	4.62	-2.51 2.27
uursar	10/05/2018	04/06/2018	30.3	0.18 6.74	1.079	0.097	0.43	3.03	-0.03	12/08/2018	90.0	4.22	-2.37
	10/05/2018	04/06/2018	38.3	4.91	1.092	0.050	0.21	3.28	0.17	12/08/2018	99.1	4.69	-2.69
	10/05/2018	04/06/2018	38.7	4.68	0.949	0.073	0.40	3.19	0.23	12/08/2018	98.7	5.02	-2.26
	29/06/2018	06/07/2018	39.2	2.54	0.749	0.056	0.41	0.88	0.11	16/08/2018	100.6	5.02	-2.14
	29/06/2018	06/07/2018	38.8	3.40	0.920	0.057	0.43	1.78	0.00	16/08/2018	100.5	4.99	-2.80
	29/06/2018	06/07/2018	39.0	3.17	0.892	0.065	0.47	1.67	0.00	16/08/2018	99.5	5.22	-2.68
	10/04/2018	01/06/2018	38.2	4.85	1.117	0.060	0.18	2.49	0.12	10/08/2018	97.7	4.57	-1.70
	29/04/2018	04/06/2018	30.4 38.8	4.55 4.39	1.003	0.000	0.27	2.27	-0.02	10/08/2018	99.1	4.70 4.59	-2.19
	29/04/2018	04/06/2018	38.8	5.05	1.075	0.093	0.37	2.57	0.13	10/08/2018	99.7	4.59	-2.18
	29/04/2018	04/06/2018	38.2	6.46	0.967	0.212	1.39	2.40	0.04	10/08/2018	99.8	4.64	-2.11
	29/04/2018	04/06/2018	37.6	8.23	0.883	0.333	2.74	2.41	0.35	10/08/2018	98.8	4.67	-2.12
	29/04/2018	04/06/2018	38.2	6.54	1.042	0.171	0.98	3.03	0.16	10/08/2018	99.2	4.45	-2.52
	29/04/2018	04/06/2018	31.1	28.80	0.427	0.574	18.73	1.10	0.88	10/08/2018	80.7	3.50	-4.10
ventral	28/05/2018	08/06/2018	37.9	4.76	1.128	0.039	0.08	3.06	0.20	12/08/2018	99.0	3.90	-1.60
ventral	28/05/2018	08/06/2018	38.4 29.1	5.51	1.085	0.050	0.10	3.17	0.13	12/08/2018	99.Z	3.87	-1.//
dorsal	28/05/2018	08/06/2018	38.4	4.03 5.58	1.110	0.050	0.11	2.72	0.21	12/08/2018	99.2	3.92	-1.45
dorsal	28/05/2018	08/06/2018	38.3	5.24	1.134	0.071	0.14	3.06	0.06	12/08/2018	99.2	3.70	-1.84
dorsal	28/05/2018	08/06/2018	38.5	4.35	1.068	0.055	0.18	2.61	0.18	12/08/2018	97.7	3.61	-1.91
bulk rock	28/05/2018	08/06/2018	33.2	24.57	0.432	0.496	12.53	0.92	0.72	12/08/2018	87.9	3.64	-4.14
ventral	04/06/2018	08/06/2018	38.0	8.77	1.241	0.022	0.31	4.00	0.24	13/08/2018	98.2	3.95	-1.91
dorsal	04/06/2018	08/06/2018	38.3	6.97	0.954	0.057	0.35	3.57	0.03	13/08/2018	100.1	3.59	-2.60
dorsal	04/06/2018	08/06/2018	38.1	7.84	1.045	0.047	0.30	4.22	0.05	13/08/2018	99.7	3.60	-2.59
ventral	04/06/2018	08/06/2018	38.1	4.80	1.124	0.029	0.14	2.87	0.23	13/08/2018	100.1	4.20	-1.69
ventral	04/06/2018	08/06/2018	38.3	4.18	1.083	0.026	0.13	2.57	0.23	13/08/2018	98.5	4.13	-1.46
dorsal	04/06/2018	08/06/2018	38.2	4.22	1.034	0.038	0.12	2.65	0.26	13/08/2018	98.9	4.10	-1.34
dorsal	04/06/2018	08/06/2018	38.3	3.90	0.989	0.053	0.25	2.29	0.13	13/08/2018	98.5	4.06	-1.58
dorsal	04/06/2018	08/06/2018	38.4	3.89	0.997	0.053	0.23	2.50	0.21	13/08/2018	99.2	4.14	-1.67
geopetal cement	U4/U0/2018 N4/N6/2018	00/00/2018 08/06/2018	38.U 38.2	10.80 20.80	0.398 1 030	0.814 0.060	9.15 0.16	0.40 2 88	0.24 0.25	13/08/2018 13/08/2019	99.4 99 7	۲.13 ۲۲	-10.44 _1 50
	04/06/2018	08/06/2018	38.3	4.77	1.023	0.044	0.07	2.79	0.11	13/08/2018	98.7	4.27	-1.38
	04/06/2018	08/06/2018	38.2	5.35	1.067	0.049	0.14	2.88	0.20	13/08/2018	99.7	4.19	-1.35
	08/06/2018	25/06/2018	38.5	5.00	1.137	0.043	0.07	2.60	0.02	14/08/2018	98.6	3.74	-1.88
	08/06/2018	25/06/2018	38.3	4.38	1.028	0.056	0.12	2.73	0.13	14/08/2018	99.6	3.94	-1.71
	08/06/2018	25/06/2018	38.1	4.67	1.056	0.057	0.11	2.90	0.17	14/08/2018	100.1	3.76	-1.86
ventral	04/06/2018	08/06/2018	38.3	7.00 5.36	0.953	0.128	0.54	3.86	0.37	13/08/2018	100.2	4.51	-2.65
ventral	04/06/2018	08/06/2018	38.0	5.50	0.002	0.000	0.50	3.10	0.09	13/08/2018	993	4.20	-2.30
dorsal	04/06/2018	08/06/2018	37.9	9.03	1.035	0.065	0.41	5.55	0.33	13/08/2018	98.4	4.37	-2.49
ventral	04/06/2018	08/06/2018	38.8	5.19	0.890	0.072	0.29	3.03	-0.02	13/08/2018	99.5	4.21	-2.66
dorsal	04/06/2018	08/06/2018	38.6	5.24	0.953	0.048	0.20	3.38	0.26	13/08/2018	99.0	3.85	-2.45
cement	04/06/2018	08/06/2018	38.1	11.53	0.256	0.806	10.52	0.21	0.18	13/08/2018	100.0	2.05	-9.94
ventral	07/06/2018	25/06/2018	37.6	7.37	1.015	0.066	0.23	3.42	-0.13	14/08/2018	98.5	3.58	-1.96
ventral	07/06/2018 07/06/2019	25/06/2018 25/06/2019	30.0 27 0	1.22 7.60	1.022 0.000	0.054 0.004	0.19 0.12	3.5/ 2 50	U.1/ 016	14/08/2018 14/08/2010	99.3 02 7	3./3 2.70	-1.96 _1.90
dorsal	07/00/2018 07/06/2018	25/06/2018 25/06/2018	38.0	7.02 7.36	0.999 1 054	0.094 0.060	0.43 0.25	3.50	0.10	14/08/2018 14/08/2018	70./ 99 2	3.70 3.69	-1.00 -2 07
dorsal	07/06/2018	25/06/2018	38.0	6.82	0.934	0.078	0.33	3.51	0.12	14/08/2018	99.8	3.28	-2.10
	29/06/2018	06/07/2018	39.0	3.02	0.689	0.023	0.19	1.19	0.54	16/08/2018	100.0	4.42	-1.56
	29/06/2018	06/07/2018	38.8	3.13	0.669	0.027	0.28	1.27	0.47	16/08/2018	100.5	4.75	-1.58
	29/06/2018	06/07/2018	38.9	3.50	0.784	0.017	0.24	3.69	0.37	16/08/2018	99.6	4.81	-1.51
bulk rock	29/06/2018	06/07/2018	35.9	24.03	0.373	0.340	7.86	0.93	0.50	16/08/2018	91.5	4.32	-2.40
ventral	28/04/2018	04/06/2018	38.5	6.67	0.981	0.050	0.40	3.52	0.05	10/08/2018	98.6 09.4	3.63	-1.70
ventral	20/04/2010 28/N1/2019	04/00/2018 04/06/2019	30.3 38 0	0.24 6 10	0.998 0 986	0.042 0.041	0.32 0.32	3.42 3 30	0.10	10/08/2018 10/08/2019	70.0 92 7	3.05 3.58	-1.52 _1 /1.7
dorsal	28/04/2018	04/06/2018	38.6	6.28	1.026	0.036	0.32	3.47	0.03	10/08/2018	98.7	4.19	-1. 1 2 -1.62
dorsal	28/04/2018	04/06/2018	38.3	6.74	1.034	0.046	0.31	3.25	0.06	10/08/2018	99.3	3.92	-1.78
dorsal	28/04/2018	04/06/2018	38.8	6.05	1.023	0.042	0.26	3.14	0.08	10/08/2018	99.2	4.34	-1.95
bulk rock	28/04/2018	04/06/2018	29.7	33.87	0.442	0.475	12.97	0.99	0.91	10/08/2018	78.2	3.54	-3.56

ventral	28/04/2018	04/06/2018	38.4	5.69	0.973	0.085	0.38	2.73	0.11	10/08/2018	99.1	4.15	-1.91
ventral	28/04/2018	04/06/2018	38.4	4.48	0.890	0.068	0.29	2.52	0.04	10/08/2018	100.0	3.74	-1.98
ventral	28/04/2018	04/06/2018	38.6	4.27	0.828	0.094	0.47	2.01	0.10	10/08/2018	100.5	3.67	-2.10
dorsal	28/04/2018	04/06/2018	30.2	4.95	0.923	0.009	0.28	2.07	0.03	10/08/2018	90.7 99 1	4.10	-1.97
dorsal	28/04/2018	04/06/2018	38.3	4.73	0.839	0.089	0.44	2.14	0.14	10/08/2018	99.7	3.85	-1.98
ventral	28/04/2018	04/06/2018	37.9	7.76	1.031	0.094	0.60	3.16	-0.10	10/08/2018	98.5	3.93	-1.47
ventral	28/04/2018	04/06/2018	38.2	6.86	1.030	0.065	0.33	3.09	0.05	10/08/2018	98.3	4.00	-1.55
ventral	28/04/2018	04/06/2018	38.2	8.44	0.984	0.108	0.84	3.53	0.01	10/08/2018	98.8	3.35	-2.09
dorsal	29/04/2018	04/06/2018	38.0	9.32	1.106	0.085	0.53	3.99	-0.01	10/08/2018	98.4	4.31	-1.60
dorsal	29/04/2018	04/06/2018	37.8	13.40	1.428	0.044	0.19	5.//	0.03	10/08/2018	98.1 00.9	4.22	-1.93 1.90
dorsal	29/04/2018	04/06/2018	38.0	6.84	0.926	0.117	0.38	3.86	-0.02	10/08/2018	99.0	4.09	-2.07
dorsal	29/04/2018	04/06/2018	38.0	7.43	0.980	0.070	0.37	3.89	-0.02	10/08/2018	99.2	4.24	-1.71
dorsal	29/04/2018	04/06/2018	38.2	6.81	0.912	0.080	0.41	3.56	0.09	10/08/2018	99.1	4.13	-1.69
ventral	29/04/2018	04/06/2018	38.2	7.02	0.986	0.072	0.32	3.56	-0.03	10/08/2018	99.4	4.13	-2.10
ventral	29/04/2018	04/06/2018	38.0	8.46	1.257	0.035	0.14	3.80	0.04	10/08/2018	98.5	4.13	-1.38
ventral	29/04/2018	04/06/2018	38.2	6.79 5.01	0.881	0.083	0.39	3.30	0.06	10/08/2018	100.3	4.14	-1.57 1.79
ventral	29/04/2018	04/06/2018	38.2	5.91 6.17	0.944	0.105	0.98	2.90	0.13	10/08/2018	100.5	4.10	-1.70
ventral	29/04/2018	04/06/2018	38.1	6.37	0.989	0.063	0.55	3.12	-0.02	10/08/2018	99.1	4.22	-1.35
dorsal	29/04/2018	04/06/2018	38.5	6.03	0.935	0.087	0.71	3.13	0.22	10/08/2018	98.2	3.87	-1.87
dorsal	29/04/2018	04/06/2018	38.7	6.92	0.986	0.100	0.83	3.15	0.16	10/08/2018	99.6	3.69	-1.82
dorsal	29/04/2018	04/06/2018	38.3	6.55	0.930	0.085	0.65	2.65	0.18	10/08/2018	99.2	3.37	-1.93
ventral	28/05/2018	08/06/2018	38.7	6.96	0.956	0.060	0.29	3.77	0.22	12/08/2018	99.1	3.87	-2.19
ventral	28/05/2018	08/06/2018	385	5.96	0.939	0.000	0.30	3.90	0.19	12/08/2018	99.3 100.6	3.79	-2.01
dorsal	28/05/2018	08/06/2018	38.1	7.91	1.024	0.075	0.54	4.13	0.02	12/08/2018	99.1	4.11	-2.12
dorsal	28/05/2018	08/06/2018	38.4	7.66	0.996	0.069	0.33	4.32	0.21	12/08/2018	99.8	4.07	-2.05
geopetal cement	28/05/2018	08/06/2018	37.8	11.02	0.215	0.774	10.29	0.83	0.02	12/08/2018	100.2	1.97	-9.27
ventral	28/05/2018	08/06/2018	37.9	7.15	1.074	0.046	0.24	4.04	0.13	12/08/2018	99.0	4.24	-1.91
dorsal	28/05/2018	08/06/2018	38.0	6.5 <i>3</i> 6.16	1.018	0.063	0.33	4.15	0.10	12/08/2018	97.9	4.09	-2.30
dorsal	28/05/2018	08/06/2018	38.4	5.94	0.979	0.054	0.25	3.39	0.13	12/08/2018	99.3	3.99	-2.00
sparry calcite cement	28/05/2018	08/06/2018	37.9	10.99	0.245	0.745	9.29	0.73	-0.09	12/08/2018	99.9	2.02	-9.05
ventral	03/06/2018	08/06/2018	38.6	6.58	1.011	0.048	0.20	4.25	0.08	12/08/2018	99.6	4.06	-1.59
ventral	03/06/2018	08/06/2018	38.6	6.33	0.911	0.064	0.28	3.50	0.18	12/08/2018	99.8	3.78	-1.66
ventral	03/06/2018	08/06/2018	38.1	7.86	0.989	0.046	0.22	3.99	0.10	12/08/2018	99.4	3.97	-1.66
dorsal	03/06/2018	08/06/2018	38.5 29.1	7.66 7.41	1.035	0.058	0.34	4.58	0.10	12/08/2018	99.3 00.0	4.14	-1.44 1.65
dorsal	03/06/2018	08/06/2018	38.1	7.41	0.984	0.052	0.32	3.90	0.00	12/08/2018	100.6	3.25	-1.83
ventral	03/06/2018	08/06/2018	38.3	7.73	1.020	0.064	0.29	4.50	0.10	13/08/2018	97.9	4.00	-1.96
ventral	03/06/2018	08/06/2018	38.2	6.75	0.967	0.071	0.28	4.17	0.11	13/08/2018	97.2	3.76	-2.01
ventral	03/06/2018	08/06/2018	38.2	7.54	0.929	0.097	0.63	4.05	0.10	13/08/2018	97.3	3.40	-2.42
dorsal	03/06/2018	08/06/2018	38.1	8.62	1.028	0.071	0.48	4.63	0.04	13/08/2018	98.1	3.86	-2.04
dorsal	03/06/2018	08/06/2018	38.0	7.92 6.50	0.996	0.068	0.43	4.15	0.21	13/08/2018	98.1 98.5	3.67 3.67	-2.23
ventral	03/06/2018	08/06/2018	38.1	0.30 7.66	1.008	0.075	0.22	4.40	0.13	13/08/2018	97.8	5.04	-2.23
ventral	03/06/2018	08/06/2018	38.0	7.67	0.976	0.052	0.19	4.20	0.15	13/08/2018	98.8	4.81	-2.62
ventral	03/06/2018	08/06/2018	38.7	6.66	0.953	0.052	0.24	3.80	0.00	13/08/2018	97.8	4.77	-2.91
sparitic calcite	10/04/2018	04/06/2018	38.2	11.26	0.243	0.737	9.70	0.25	0.05	10/08/2018	100.1	1.96	-9.33
bulk rock	10/04/2018	04/06/2018	33.2	23.77	0.410	0.427	8.61	0.97	0.40	10/08/2018	86.8	3.85	-3.49
ventral	05/06/2018	08/06/2018	38.1	6.52 6.12	1.133	0.052	0.19	3.20	0.16	13/08/2018	98.6 99.1	4.66 4.69	-2.92 -2.81
ventral	05/06/2018	08/06/2018	38.8	4.78	0.839	0.078	0.36	3.02	0.19	13/08/2018	100.5	4.55	-2.68
dorsal	05/06/2018	08/06/2018	38.5	4.87	0.885	0.088	0.40	2.76	0.21	13/08/2018	100.0	4.41	-3.00
dorsal	05/06/2018	08/06/2018	38.8	4.59	0.871	0.089	0.40	2.47	0.04	13/08/2018	100.6	4.38	-2.68
dorsal	05/06/2018	08/06/2018	38.4	4.60	0.807	0.098	0.42	2.92	-0.05	13/08/2018	100.2	4.38	-2.60
	05/06/2018	08/06/2018	38.9	5.35 6.27	0.985	0.053	0.28	3.02	0.11	13/08/2018	99.4 00.7	4.06 2.76	-1.52 1.62
	05/06/2018	08/06/2018	383	6.47	0.945	0.095	0.49	3.33	0.13	13/08/2018	100.2	3.70	-1.02
ventral	05/06/2018	08/06/2018	38.7	6.03	0.970	0.042	0.25	3.57	0.03	13/08/2018	99.9	4.89	-2.83
ventral	05/06/2018	08/06/2018	38.5	6.45	1.022	0.046	0.27	3.43	0.18	13/08/2018	100.4	4.88	-2.69
ventral	05/06/2018	08/06/2018	38.6	6.58	1.034	0.035	0.13	3.62	0.01	13/08/2018	100.2	4.86	-2.79
dorsal	05/06/2018	08/06/2018	38.3	6.65	1.027	0.049	0.22	3.60	0.01	13/08/2018	100.7	4.95	-2.92
	05/06/2018	08/06/2018	38.4 38.7	5.04	0.739	0.119	0.58	2.84	0.11	13/08/2018	99.8 00 5	3.54 3.34	-2.31
	05/06/2018	08/06/2018	38.3	8.17	0.895	0.095	0.43	3.86	0.10	13/08/2018	99.8	3.81	-2.27
	29/06/2018	06/07/2018	38.9	4.42	0.713	0.106	0.82	1.85	0.06	16/08/2018	100.4	4.93	-2.99
	29/06/2018	06/07/2018	38.0	7.32	0.655	0.184	2.25	1.67	0.19	16/08/2018	92.3	4.71	-3.00
tl	29/06/2018	06/07/2018	38.7	4.35	0.695	0.088	0.73	1.79	0.12	16/08/2018	99.5	5.11	-3.00
ventral	03/00/2018 03/06/2018	00/00/2018 08/06/2018	30.9 38.0	2.04 2.66	0.503 0 551	0.035 N N21	0.15 0.12	1.55 1 51	0.11	13/08/2018 13/08/2018	00 3 100'0	5.1/ 5.29	-2.27 -7 33
ventral	03/06/2018	08/06/2018	39.0	2.60	0.541	0.032	0.12	1.48	0.04	13/08/2018	98.0	5.36	-2.43
dorsal	03/06/2018	08/06/2018	38.8	3.18	0.675	0.056	0.22	1.63	-0.05	13/08/2018	99.6	4.99	-2.32
ventral	03/06/2018	08/06/2018	38.9	3.06	0.640	0.073	0.29	1.60	0.10	13/08/2018	99.7	4.86	-2.34
bulk rock	03/06/2018	08/06/2018	29.6	29.53	0.480	0.458	18.11	0.95	0.71	13/08/2018	76.4	3.50	-3.86
dorsal	17/06/2018	25/06/2018	38.8	3.62 3.87	0.524	0.083	0.85	1.44 1.65	0.10	15/08/2018	99.7 99.7	4.33 4.41	-3.23 -3.10
ventral	28/06/2018	06/07/2018	39.2	2.60	0.525	0.025	0.22	1.87	0.13	15/08/2018	100.2	4.34	-3.21
dorsal	28/06/2018	06/07/2018	39.1	2.26	0.526	0.038	0.41	1.57	0.03	15/08/2018	101.3	4.54	-2.88
dorsal	28/06/2018	06/07/2018	39.0	3.06	0.531	0.036	0.34	1.99	0.02	15/08/2018	99.5	4.11	-2.98
dorsal	28/06/2018	06/07/2018	39.3	2.24	0.577	0.027	0.37	1.52	0.09	15/08/2018	99.2	4.47	-2.62
dorsal	28/06/2018	06/07/2018	39.2	1.79 2 4 F	0.541	0.014	0.12	1.34	-0.07	15/08/2018	99.0 100 0	4.59 ₄ ээ	-2.64
uursai hulk rock	20/00/2018 28/06/2018	00/07/2018 06/07/2018	37.3 29.9	3.00 33.35	0.504 N 459	0.038 0.480	0.41 22.07	1.00 1.21	0.00	15/06/2018 15/08/2018	100.8 77 3	4.32 2.96	-3./3 -4.21
ventral	09/06/2018	25/06/2018	39.0	2.07	0.555	0.009	0.04	1.03	0.04	14/08/2018	101.4	4.25	-2.85
ventral	09/06/2018	25/06/2018	39.0	2.51	0.563	0.021	0.15	1.26	-0.04	14/08/2018	100.6	4.26	-3.09
dorsal	09/06/2018	25/06/2018	39.2	1.73	0.527	0.010	0.06	1.11	-0.04	14/08/2018	100.9	4.31	-2.87
dorsal	09/06/2018	25/06/2018	39.1	2.23	0.498	0.029	0.21	1.07	-0.07	14/08/2018	99.5	4.15	-3.16
dorsal	09/06/2018	25/06/2018	38.9	2.61	0.536	0.021	0.16	1.18	-0.13	14/08/2018	99.9 100 0	4.09	-3.41
	09/00/2018 09/06/2018	25/06/2018 25/06/2018	38.8	2.93 2 79	0.54/ 0 577	0.025 0.007	0.19	1.52 1 52	0.04 በ በ 3	14/00/2018 14/08/2018	100.9 100.0	4.31 4.28	-2.00 -2.94
cement	09/06/2018	25/06/2018	37.9	11.47	0.322	0.799	10.47	0.38	-0.01	14/08/2018	99.9	1.80	-9.66
bulk rock	09/06/2018	25/06/2018	33.0	25.43	0.416	0.435	11.77	0.89	0.28	14/08/2018	86.3	3.15	-3.52
ventral	17/06/2018	25/06/2018	38.8	2.74	0.529	0.049	0.67	1.24	0.01	15/08/2018	100.6	4.42	-3.49
ventral	17/06/2018	25/06/2018	38.6	2.84	0.551	0.015	0.08	1.36	-0.10	15/08/2018	101.1	4.57	-3.33
ventral	17/06/2018 17/06/2018	25/06/2018 25/06/2018	30.4 38 6	2.85 2.80	ሀ.548 በ 5 <i>4.4</i>	0.006 0.007	0.03 0.02	1.49 1 <i>4</i> 0	0.03 0.05	15/08/2018 15/08/2018	101.1 99 7	4.75 4.62	-3.24 _2 15
	1, 100/2010	20,00/2010	00.0	2.00		0.007	0.00	1.10	0.00	10/00/2010	22.1	1.00	5.15

MD7 2010 /566	CVII carb 2766	Barranco do la Cañada	(22)	10.90	1	1		hull rock
MPZ 2019/300	CVU_carb_3700	Barranco do la Cañada	C35a	10.00	1	1	Cognosinhunghig houghandi	brachionad
MPZ 2019/564		Barranco de la Canada	C30	10.20	1	1		brachiopod
MPZ 2019/565	CVU_carb_3707	Barranco de la Cañada	C30	10.20	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/565	CVU_carb_3708	Barranco de la Cañada	C30	10.20	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/565	CVU_carb_3709	Barranco de la Cañada	C30	10.20	1	2		bulk rock
MPZ 2019/557	CVU_carb_3533	Barranco de la Cañada	C28	9.40	1	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/557	CVU carb 3534	Barranco de la Cañada	C28	9.40	1	1	Soaresirhynchia bouchardi	brachiopod
MP7 2019/557	CVII carb 3535	Barranco de la Cañada	C28	940	1	1	Soaresirhynchia houchardi	brachiopod
MD7 2010/EE7	CVU carb 2526	Darranco de la Cañada	C20	0.40	1	1	Souresin nynemia boacharai	bulltrool
MPZ 2019/55/	CVU_carD_3536	Barranco de la Canada	C28	9.40	1	1		
MPZ 2019/558	CVU_carb_3537	Barranco de la Cañada	C28	9.40	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/558	CVU_carb_3538	Barranco de la Cañada	C28	9.40	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/558	CVU_carb_3539	Barranco de la Cañada	C28	9.40	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/558	CVU carb 3540	Barranco de la Cañada	C28	9.40	1	2	Soaresirhvnchia bouchardi	brachiopod
MD7 2010/550	CVU carb 2541	Barranco do la Cañada	C28	9.10	1	2	Sour esti hynema boacharar	calcito comont
MPZ 2019/550	CVU_CaID_5541	Barranco de la Canada	C20	9.40	1	Z		
MPZ 2019/559	CVU_carb_3542	Barranco de la Canada	C28	9.40	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/559	CVU_carb_3543	Barranco de la Cañada	C28	9.40	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/559	CVU_carb_3544	Barranco de la Cañada	C28	9.40	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/559	CVU carb 3545	Barranco de la Cañada	C28	9.40	1	3	Soaresirhynchia houchardi	brachiopod
MD7 2019/559	CVII carb 3546	Barranco de la Cañada	C28	9.40	1	3	Soarasirhynchia houchardi	brachiopod
MDZ 2010/550			C20	0.40	1	5		
MPZ 2019/559	CVU_carD_3547	Barranco de la Canada	C28	9.40	1	3	Souresirnynchia boucharai	brachiopod
MPZ 2019/560	CVU_carb_3548	Barranco de la Cañada	C28	9.40	1	4	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/560	CVU_carb_3549	Barranco de la Cañada	C28	9.40	1	4	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/560	CVU carb 3550	Barranco de la Cañada	C28	9.40	1	4	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/561	CVII carb 3551	Barranco de la Cañada	C28	940	1	5	Soaresirhynchia houchardi	brachionod
MD7 2010/E61	CVII carb 2552	Parranco do la Cañada	C20	0.40	1	E E	Sograsirhunghig houghardi	brachiopod
MPZ 2019/501		Barranco de la Canada	C20	9.40	1	5		brachiopou
MPZ 2019/561	CVU_carb_3553	Barranco de la Canada	C28	9.40	1	5	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/562	CVU_carb_3554	Barranco de la Cañada	C28	9.40	1	6	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/562	CVU_carb_3555	Barranco de la Cañada	C28	9.40	1	6	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/562	CVII carb 3556	Barranco de la Cañada	C28	9 40	1	6	Soaresirhvnchia houchardi	brachiopod
MD7 2010/E62	CVU carb 2557	Parranco de la Cañada	C20	0.40	1	7	Sograsirhunghig houghardi	brachiopod
MPZ 2019/505		Barranco de la Canada	C20	9.40	1	/		brachiopou
MPZ 2019/563	CVU_carb_3558	Barranco de la Cañada	C28	9.40	1	7	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/563	CVU_carb_3559	Barranco de la Cañada	C28	9.40	1	7	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/552	CVU carb 3710	Barranco de la Cañada	C26	8.90	1	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/552	CVII carb 3711	Barranco de la Cañada	C26	8 90	1	1	Soaresirhynchia houchardi	brachionod
MD7 2010 / 552	CVU carb 2712	Darranco de la Cañada	620	0.70	1	1	Sourcesinnynenia bouehardi	brachiopou
MPZ 2019/552	CVU_carb_3/12	Barranco de la Canada	C26	8.90	1	1	Soaresirnynchia boucharai	brachlopod
MPZ 2019/553	CVU_carb_3713	Barranco de la Cañada	C26	8.90	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/553	CVU_carb_3714	Barranco de la Cañada	C26	8.90	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/553	CVU carb 3715	Barranco de la Cañada	C26	8.90	1	2	Soaresirhynchia houchardi	brachiopod
MD7 2019/553	CVII carb 3716	Barranco de la Cañada	C26	8 90	1	2	Soarasirhynchia houchardi	brachiopod
MDZ 2010/553	CVU_carb_3710		C20	0.70	1	2		brachiere d
MPZ 2019/553	CVU_carb_3/1/	Barranco de la Canada	C26	8.90	1	Z	Soaresirnynchia boucharai	brachlopod
MPZ 2019/553	CVU_carb_3718	Barranco de la Cañada	C26	8.90	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/553	CVU_carb_3719	Barranco de la Cañada	C26	8.90	1	2		calcite cement
MPZ 2019/553	CVU carb 3720	Barranco de la Cañada	C26	8.90	1	2		bulk rock
MPZ 2019/553	CVII carb 3720	Barranco de la Cañada	C26	8 90	1	2		hulk rock
MD7 2010/EE4	CVU carb 2721	Darranco de la Cañada	C26	0.70	1	2	Cognosinhunghig houghandi	buikitoek
MPZ 2019/554		barranco de la Canada	C20	0.90	1	3		brachiopou
MPZ 2019/554	CVU_carb_3722	Barranco de la Canada	C26	8.90	1	3	Soaresirhynchia bouchardi	brachlopod
MPZ 2019/554	CVU_carb_3723	Barranco de la Cañada	C26	8.90	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/554	CVU_carb_3724	Barranco de la Cañada	C26	8.90	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/554	CVU carb 3725	Barranco de la Cañada	C26	8.90	1	3	Soaresirhynchia houchardi	brachiopod
MP7 2019/554	CVII carb 3726	Barranco de la Cañada	C26	8 90	1	3	Soaresirhynchia houchardi	brachiopod
MPZ 2019/334			626	0.90	1	3		
MPZ 2019/555	CVU_carb_3/2/	Barranco de la Canada	C26	8.90	1	4	Soaresirnynchia boucharai	brachiopod
MPZ 2019/555	CVU_carb_3728	Barranco de la Cañada	C26	8.90	1	4	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/555	CVU_carb_3729	Barranco de la Cañada	C26	8.90	1	4	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/556	CVII carb 3730	Barranco de la Cañada	C26	8 90	1	5	Soaresirhvnchia houchardi	brachiopod
MD7 2010/556	CVU carb 2721	Barranco do la Cañada	C26	8 00	1	5	Soarosirhunchia houchardi	brachiopod
MPZ 2019/550			620	0.90	1	5		
MPZ 2019/556	CVU_carb_3/32	Barranco de la Canada	C26	8.90	1	5	Soaresirnynchia boucharai	brachiopod
MPZ 2019/549	CVU_carb_3767	Barranco de la Cañada	C25b	8.70	1	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/549	CVU_carb_3768	Barranco de la Cañada	C25b	8.70	1	1		bulk rock
MPZ 2019/550	CVU carb 3769	Barranco de la Cañada	C25b	8.70	1	2	Soaresirhvnchia bouchardi	brachiopod
MP7 2019/550	CVII carb 3770	Barranco de la Cañada	C25h	8 70	1	2	Soaresirhynchia houchardi	brachionod
MD7 2010/EE0	CVU carb 2771	Darranco de la Cañada	C250	0.70	1	2	Sourceinhynchia bouchardi	brachiopod
MPZ 2019/550		Barranco de la Canada	C250	8.70	1	Z	Souresirnynchia boucharai	brachiopod
MPZ 2019/551	CVU_carb_3772	Barranco de la Cañada	C25b	8.70	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/545	CVU_carb_3428	Barranco de la Cañada	C25a	8.40	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/546	CVU carb 3471	Barranco de la Cañada	C25a	8.40	2	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/546	CVII carb 3472	Barranco de la Cañada	C25a	8 40	2	1	Soaresirhynchia houchardi	brachionod
MD7 2010 / 510	CVU carb 2472	Darranco de la Cañada	C25a	0.10	2	1	Sourceinhynchia bouchardi	brachiopod
MPZ 2019/540	CVU_carD_3475	Barranco de la Canada	CZ5a	0.40	2	1		brachiopou
MPZ 2019/546	CVU_carb_3474	Barranco de la Cañada	C25a	8.40	2	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/546	CVU_carb_3475	Barranco de la Cañada	C25a	8.40	2	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/546	CVU_carb_3476	Barranco de la Cañada	C25a	8.40	2	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/547	CVU carb 3477	Barranco de la Cañada	C25a	8.40	2	2b	Soaresirhvnchia bouchardi	brachiopod
MPZ 2019/547	CVII carh 3478	Barranco de la Cañada	(252	8 40	2	2h	Sogresirhynchia houchardi	hrachionod
MD7 2010 / 517	CVU carb 2470	Darranco de la Cañada	C25a	0.10	2	20	Sourcesinnynenna bouenarai	brachiopod
MPZ 2019/54/		Dairaico de la Canada	C258	0.40	2	20	Souresii nynchia boucharai	brachiopod
MPZ 2019/548	CVU_carb_3480	Barranco de la Cañada	C25a	8.40	2	3b	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/548	CVU_carb_3481	Barranco de la Cañada	C25a	8.40	2	3b	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/548	CVU_carb_3482	Barranco de la Cañada	C25a	8.40	2	3b	Soaresirhynchia bouchardi	brachiopod
MP7 2019/548	CVII carb 3483	Barranco de la Cañada	C25a	8 4 0	2	3h	<i>y</i>	hulk rock
MD7 2010 / 510	CVU carb 2602	Darranco de la Cañada	C25a	0.10	1	1	Cognosinhunghig houghandi	buikitoek
MPZ 2019/ 545			C25a	0.40	1	1		
MPZ 2019/543	CVU_carb_3604	Barranco de la Cañada	C25a	8.40	1	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/543	CVU_carb_3605	Barranco de la Cañada	C25a	8.40	1	1	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/544	CVU_carb_3606	Barranco de la Cañada	C25a	8.40	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/544	CVU carb 3607	Barranco de la Cañada	C25a	8 40	1	2	Sogresirhvnchia houchardi	brachionod
MP7 2010/5//	(VII carb 2600)	Barranco de la Cañada	C252	8 10	- 1	- 2	Sogresirhunchia houchardi	hrachionod
MD7 2010 /544			020d	0.40	1	2		
MPL 2019/544	LVU_Carb_3609	Barranco de la Canada	C25a	8.40	1	Z	Soaresirnynchia bouchardi	brachiopod
MPZ 2019/544	CVU_carb_3610	Barranco de la Cañada	C25a	8.40	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/544	CVU_carb_3611	Barranco de la Cañada	C25a	8.40	1	2	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/545	CVU carb 3612	Barranco de la Cañada	C25a	8 40	1	3	Sogresirhvnchia houchardi	brachionod
MD7 2010/E4F	CVII carb 2612	Barranco do la Cañada	C25a	Q 10	- 1	2	Sograsirhunchia houchardi	brachioned
MD7 2010 /515			C258	0.40	1	3		
MPZ 2019/545	CVU_carb_3614	Barranco de la Cañada	C25a	8.40	1	3	Soaresirhynchia bouchardi	brachiopod
MPZ 2019/545	CVU_carb_3615	Barranco de la Cañada	C25a	8.40	1	3		bulk rock
MPZ 2019/541	CVU carb 3925	Barranco de la Cañada	C22	7.80	1	2	Grvphaea cf. dumortieri	bivalve
MPZ 2019/541	CVII carh 3926	Barranco de la Cañada	C22	7 80	- 1	- 2	Grynhaea of dumortieri	hivalve
MD7 2010/541	CVII carb 2027	Barranco do la Cañada	C22	7 00	⊥ 1	- 2	Crimbian of dumantiani	hivelye
MFL 2019/541		Dairaico de la Canada	022	/.ðU	1	2	Grypnaea Ci. aumortieri	Divalve
MPZ 2019/541	CVU_carb_3928	Barranco de la Cañada	C22	7.80	1	2		bulk rock
MPZ 2019/542	CVU_carb_3929	Barranco de la Cañada	C22	7.80	1	3	Gryphaea cf. dumortieri	bivalve
MPZ 2019/542	CVU_carb 3930	Barranco de la Cañada	C22	7.80	1	3	Gryphaea cf. dumortieri	bivalve
MPZ 2019/539	CVU carh 3921	Barranco de la Cañada	C20	670	1	1	Gryphaea (R) sublobata	hivalve
MP7 2010/520	(VII carh 2022	Barranco de la Cañada	C20	670	- 1	- 1	Grunhapa (R) sublahata	hivalvo
MD7 2010 /520	CVII comb 2022	Darranco de la Caña l	C20	6.70	1	11	Comphana (D.) sublobulu	bivalve
MIPL 2019/539	LVU_carb_3923	Darranco de la Canada	C20	6./0	1	1 ·	Grypnaea (B.) sublobata	pivalve
MPZ 2019/539	CVU_carb_3924	Barranco de la Cañada	C20	6.70	1	1		bulk rock

bulk rock from fossil fill	17/06/2018 08/06/2018	25/06/2018 25/06/2018	34.5 38.2	24.59 7.88	0.381 1.012	$0.358 \\ 0.055$	10.55 0.26	0.71 4.50	0.50 0.07	15/08/2018 14/08/2018	90.7 98.8	3.01 4.72	-2.74 -2.96
	08/06/2018	25/06/2018	38.3	6.07	0.917	0.060	0.33	3.62	-0.10	14/08/2018	99.3	4.18	-2.51
bulk rock	08/06/2018 08/06/2018	25/06/2018 25/06/2018	37.9 33.9	7.10 23.16	0.898 0.413	0.066 0.417	0.60 12.16	3.70 0.93	-0.08 0.42	14/08/2018 14/08/2018	89.8 88.5	4.25 3.78	-2.29 -3.79
dorsal	24/05/2018	04/06/2018	39.4	3.60	0.524	0.026	0.20	1.58	0.02	12/08/2018	100.4	2.88	-2.98
dorsal dorsal	24/05/2018 24/05/2018	04/06/2018 04/06/2018	39.1 39.2	3.71 3.28	0.534 0.524	0.027 0.016	0.25 0.17	1.68 1.65	0.03 0.25	12/08/2018	100.6 101 1	2.92 2.90	-2.78 -2.85
bulk rock	24/05/2018	04/06/2018	31.6	27.33	0.408	0.476	18.21	2.28	0.55	12/08/2018	80.4	2.01	-4.11
ventral	24/05/2018	04/06/2018	39.4 20.2	2.95	0.614	0.037	0.29	1.45 1.21	-0.03	12/08/2018	100.3	2.63	-2.73
ventral	24/05/2018	04/06/2018	39.3	2.57	0.525	0.020	0.23	1.21	0.12	12/08/2018	100.0	2.87	-2.88
dorsal	24/05/2018	04/06/2018	39.1	2.85	0.547	0.045	0.31	1.35	0.22	12/08/2018	101.1	2.66	-2.89
ventral	24/05/2018	04/06/2018	38.5 39.2	2.60	0.344 0.533	0.009	0.08	0.78 1.42	0.14 0.09	12/08/2018	98.6 100.3	2.76	-8.63 -2.65
ventral	24/05/2018	04/06/2018	39.4	2.47	0.544	0.010	0.08	1.24	0.09	12/08/2018	101.8	2.89	-2.53
dorsal	24/05/2018 24/05/2018	04/06/2018 04/06/2018	39.3 39.5	2.41 2.86	0.544 0.520	0.005 0.017	0.06 0.14	1.25 1.25	0.07 -0.08	12/08/2018	101.6 100.7	2.82 2.84	-2.49 -2.70
dorsal	24/05/2018	04/06/2018	39.1	2.87	0.536	0.010	0.06	1.39	0.02	12/08/2018	101.9	2.81	-2.51
dorsal ventral	24/05/2018 24/05/2018	04/06/2018 04/06/2018	39.3 39.0	2.85	0.533 0.548	0.013 0.016	0.10 0.12	1.04 1.27	0.06 0.02	12/08/2018	101.3 97.4	2.73	-2.79 -3.57
ventral	24/05/2018	04/06/2018	39.0	2.83	0.534	0.008	0.04	1.45	0.03	12/08/2018	100.6	2.67	-3.52
ventral ventral	24/05/2018 28/05/2018	04/06/2018 04/06/2018	39.5 38.9	2.71 2.34	0.566 0.542	0.003 0.056	0.01 0.45	1.17 1 19	0.10 -0.02	12/08/2018	100.3 100 9	2.68 2.36	-3.38 -3 40
ventral	28/05/2018	08/06/2018	39.6	2.37	0.511	0.027	0.21	1.19	0.18	12/08/2018	101.3	2.51	-3.16
ventral	28/05/2018	08/06/2018	39.5 39.4	2.37 2.12	0.513	0.019	0.12	1.19 1.18	0.14	12/08/2018	100.5 101 3	2.50 2.46	-3.21 -2.84
ventral	28/05/2018	08/06/2018	39.6	2.12	0.528	0.009	0.06	1.25	0.10	12/08/2018	101.6	2.54	-2.90
dorsal	28/05/2018	08/06/2018	38.7 20.7	3.09	0.526	0.071	0.79	1.22	0.21	12/08/2018	101.4	2.33	-3.61
dorsal	28/05/2018	08/06/2018	39.7	2.29	0.527	0.037	0.27	1.23	0.11	12/08/2018	99.8	2.55	-3.23
dorsal	28/05/2018	08/06/2018	39.1	1.99	0.545	0.015	0.08	1.24	0.09	12/08/2018	101.0	2.81	-2.96
ventral	08/06/2018	25/06/2018	38.4 38.5	2.75	0.517	0.029	0.25	1.25	0.03	14/08/2018	99.9 98.1	2.40	-3.52 -3.32
ventral	08/06/2018	25/06/2018	38.8	2.33	0.536	0.011	0.08	1.22	0.06	14/08/2018	100.5	2.30	-3.45
dorsal	08/06/2018 09/06/2018	25/06/2018 25/06/2018	39.1 38.6	2.4 <i>3</i> 2.51	0.557 0.504	0.011 0.034	0.08 0.39	1.34 1.18	0.14 0.02	14/08/2018 14/08/2018	100.2 97.1	2.34 2.29	-3.42 -3.46
dorsal	09/06/2018	25/06/2018	38.8	2.49	0.527	0.013	0.10	1.41	0.09	14/08/2018	101.2	2.40	-3.24
dorsal ventral	09/06/2018	25/06/2018 25/06/2018	38.8 38.8	2.70 3.18	0.538 0.556	0.013 0.013	0.09 0.14	1.65 1 49	-0.15 0.09	14/08/2018 14/08/2018	101.6 99.8	2.33 2.38	-3.54 -3.39
ventral	09/06/2018	25/06/2018	38.7	2.92	0.539	0.008	0.05	1.63	-0.07	14/08/2018	100.9	2.31	-3.34
geopetal cement	09/06/2018	25/06/2018	37.8 31.2	12.32 21.37	0.346 0.313	0.786 0.423	9.57 11.62	0.57 0.79	-0.02 0.38	14/08/2018	99.1 94 3	1.65 1.94	-9.73 -3.20
bulk rock, fossil interior	09/06/2018	25/00/2010	51.2	21.57	0.515	0.125	11.02	0.79	0.00	17/08/2018	94.6	1.96	-3.03
ventral	09/06/2018	25/06/2018	38.8 39.0	3.40 3.26	0.550	0.013	0.09	1.61 1.36	0.05	14/08/2018	100.5 100.5	2.75 2.80	-2.60 -2.56
ventral	09/06/2018	25/06/2018	39.1	2.83	0.554	0.013	0.08	1.33	-0.02	14/08/2018	99.6	2.83	-2.64
dorsal	09/06/2018	25/06/2018	39.0 20.2	3.53	0.555	0.020	0.12	1.54	0.03	14/08/2018	101.2	2.72	-2.59
dorsal	09/06/2018	25/06/2018	39.2	3.50	0.558	0.013	0.07	1.55	-0.04	14/08/2018	100.0	2.80	-2.32
ventral	09/06/2018	25/06/2018	39.0	1.92	0.516	0.008	0.03	1.00	0.00	14/08/2018	100.7	3.05	-3.10
ventral	09/06/2018	25/06/2018	39.2 39.0	2.06	0.526	0.007	0.03	1.26	0.01	14/08/2018	101.5	2.88	-3.05 -2.96
ventral	09/06/2018	25/06/2018	39.1	2.09	0.543	0.007	0.03	1.21	0.01	14/08/2018	100.2	2.33	-3.22
ventral	09/06/2018	25/06/2018	39.5 38.8	2.14 1.94	0.528 0.553	0.007	0.04 0.07	1.06 1.14	0.02 -0.02	14/08/2018	101.6 99.9	2.33 2.24	-3.24 -3.18
1 11 1	17/06/2018	25/06/2018	38.7	2.65	0.509	0.064	0.47	1.09	0.13	15/08/2018	97.5	2.45	-3.48
bulk rock ventral	17/06/2018	25/06/2018 25/06/2018	31.3 38.7	32.14 2.36	0.387 0.537	0.494 0.035	16.11 0.30	1.53 1.37	0.67	15/08/2018	82.8 100.5	1.90 1.67	-3.97 -3.57
ventral	17/06/2018	25/06/2018	38.8	2.38	0.532	0.032	0.25	0.99	-0.04	15/08/2018	98.3	1.79	-3.41
ventral	17/06/2018 17/06/2018	25/06/2018 25/06/2018	38.9 38.9	2.19 2.73	0.520 0.515	0.026 0.065	0.15 0.34	1.03 1.28	0.09 0.14	15/08/2018	100.0 100.1	1.72 2.21	-3.52 -3.48
	10/04/2018	01/06/2018	39.2	2.30	0.453	0.026	0.12	1.05	0.02	10/08/2018	97.4	2.30	-3.17
ventral ventral	29/04/2018 29/04/2018	04/06/2018 04/06/2018	38.9 39.3	2.44 2.42	0.523 0.491	0.026 0.007	0.14 0.04	1.39 1.34	0.10 0.05	10/08/2018 10/08/2018	100.1 100.7	2.12 2.30	-3.06 -2.92
ventral	29/04/2018	04/06/2018	39.3	2.34	0.495	0.024	0.18	1.34	-0.01	10/08/2018	99.9	2.09	-3.03
dorsal dorsal	29/04/2018 29/04/2018	04/06/2018 04/06/2018	39.5 39.1	2.39 2.41	0.506 0.510	0.024 0.021	0.13 0.13	1.33 1.33	-0.01 -0.02	10/08/2018 10/08/2018	100.7 100.3	2.09 2.10	-2.98 -2.99
dorsal	29/04/2018	04/06/2018	39.2	2.74	0.516	0.023	0.15	1.35	0.03	10/08/2018	100.4	2.11	-3.15
	29/04/2018 29/04/2018	04/06/2018 04/06/2018	39.2 39.1	3.42 3.20	0.496 0.457	0.061 0.058	0.37 0.39	1.43 1.15	0.08 0.01	17/08/2018 10/08/2018	99.2 100.8	2.14 2.30	-3.07 -3.22
	29/04/2018	04/06/2018	38.6	3.97	0.482	0.028	0.39	1.74	-0.09	10/08/2018	100.9	2.17	-3.13
ventral(?) ventral(?)	29/04/2018 29/04/2018	04/06/2018 04/06/2018	39.3 35.0	2.62 2.78	$0.541 \\ 0.530$	0.036 0.042	0.21 0.24	1.32 1.54	0.02 0.00	10/08/2018 10/08/2018	101.7 100.7	1.97 1.99	-3.23 -3.33
ventral(?)	29/04/2018	04/06/2018	39.1	2.79	0.513	0.046	0.29	1.49	0.10	10/08/2018	100.1	2.01	-3.39
bulk rock	29/04/2018	04/06/2018	30.8 38.7	30.21 1.87	0.347 0.552	0.519 0.049	18.74 034	1.11 0.95	0.48	10/08/2018	80.5 99 5	1.53 1.85	-4.34 -3 46
	03/06/2018	08/06/2018	39.0	1.93	0.538	0.032	0.20	1.42	0.09	13/08/2018	99.9	1.93	-3.51
ventral	03/06/2018	08/06/2018 08/06/2018	39.4 38.8	3.39 2.48	0.624 0.483	0.087	0.98 0.19	1.31 1.28	0.12 0.13	13/08/2018	100.0 100 5	2.12 2.44	-3.43 -3.17
ventral	03/06/2018	08/06/2018	38.9	2.44	0.405	0.013	0.06	1.39	-0.09	13/08/2018	100.3	2.41	-3.12
ventral	03/06/2018	08/06/2018	39.1 20.1	2.29	0.532	0.015	0.07	1.38	0.08	13/08/2018	100.1	2.50	-3.27
dorsal	03/06/2018	08/06/2018	39.1 39.0	2.43	0.486	0.032	0.31	1.18	0.02	13/08/2018	99.9 99.7	2.30	-3.22
dorsal	03/06/2018	08/06/2018	39.3	2.17	0.494	0.011	0.06	1.37	-0.07	13/08/2018	100.0	2.55	-3.29
	03/06/2018	08/06/2018	39.2 39.5	2.11 2.26	0.502	0.057	0.40 0.21	1.13 1.25	0.19 0.18	13/08/2018	100.1 100.0	2.19 2.11	-3.42 -3.26
	03/06/2018	08/06/2018	39.2	1.91	0.492	0.029	0.20	1.26	0.19	13/08/2018	100.1	2.26	-3.38
bulk rock	03/06/2018 06/07/2018	08/06/2018 02/08/2018	33.6 39.2	24.93 3.39	0.335 0.734	0.487 0.048	11.48 0.68	1.12 1.33	0.95 0.19	13/08/2018 17/08/2018	87.7 100.6	1.69 0.31	-4.04 -3.26
	06/07/2018	02/08/2018	39.2	3.13	0.769	0.037	0.56	1.10	0.30	17/08/2018	100.7	0.37	-3.28
hulk rock	06/07/2018 06/07/2018	02/08/2018	39.1 21 5	3.40 101 91	0.762 0.483	0.059 1.046	0.78 51.88	1.21 2.25	0.23 1.00	17/08/2018 17/08/2018	100.1 58 5	0.37 0 34	-3.48 -4 25
~ 4111 1 0 011	06/07/2018	02/08/2018	39.1	3.10	0.765	0.040	0.49	1.88	0.24	17/08/2018	100.6	0.18	-3.19
	06/07/2018	02/08/2018	39.0 38 3	3.16 5 1 1	0.762 0.741	0.052	0.59 0.33	1.93 2 89	0.18 0.20	17/08/2018 17/08/2018	100.6 100.2	0.11 1 72	-3.57 -2 90
	06/07/2018	02/08/2018	39.0	3.64	0.792	0.047	0.51	3.49	0.10	17/08/2018	100.2	1.79	-3.16
hulk rock	06/07/2018	02/08/2018	39.2 16 5	3.94 158 21	0.757	0.086	1.01 83 42	2.94 3.32	-0.03 0.98	17/08/2018	100.0 45.8	1.73 0.01	-3.07
~ 4111 1 0 011	00/07/2010	02,00,2010	10.0	100.01	0.700	1.07.0	00.10	5.52	0.70	1,00,2010	10.0	0.71	1.02

MPZ 2019/535	CVU_carb_3433	Barranco de la Cañada	C19	6.20	3	1	Gryphaea (B.) sublobata	bivalve		10/04/2018	04/06/2018	38.8	3.71	0.710	0.046	0.51	4.95	-0.02	10/08/2018	99.4
MPZ 2019/538	CVU_carb_3616	Barranco de la Cañada	C19	6.20	4	1	Quadratirhynchia attenuata	brachiopod	ventral	04/06/2018	08/06/2018	38.2	4.60	0.951	0.025	0.21	5.08	0.20	13/08/2018	98.1
MPZ 2019/538	CVU_carb_3617	Barranco de la Cañada	C19	6.20	4	1	Quadratirhynchia attenuata	brachiopod	ventral	04/06/2018	08/06/2018	38.5	4.55	1.001	0.016	0.16	4.79	0.10	13/08/2018	97.8
MPZ 2019/538	CVU_carb_3618	Barranco de la Cañada	C19	6.20	4	1	Quadratirhynchia attenuata	brachiopod	ventral	04/06/2018	08/06/2018	38.5	5.20	1.033	0.016	0.19	6.12	0.15	13/08/2018	99.1
MPZ 2019/538	CVU_carb_3619	Barranco de la Cañada	C19	6.20	4	1	Quadratirhynchia attenuata	brachiopod	dorsal	04/06/2018	08/06/2018	38.3	6.06	0.983	0.043	0.56	5.54	0.13	13/08/2018	98.6
MPZ 2019/538	CVU_carb_3620	Barranco de la Cañada	C19	6.20	4	1	Quadratirhynchia attenuata	brachiopod	dorsal	04/06/2018	08/06/2018	36.0	5.46	0.960	0.038	0.40	5.53	0.18	13/08/2018	98.0
MPZ 2019/538	CVU_carb_3621	Barranco de la Cañada	C19	6.20	4	1	Quaaratirnyncnia attenuata Tatrarhynchia sybconsinna	brachiopod	dorsal	04/06/2018	08/06/2018	38.4	5.22	0.989	0.031	0.32	5.21 E 20	0.17	13/08/2018	98.3
MPZ 2019/555 MP7 2019/533	CVU_carb_3805	Barranco de la Cañada	C19 C19	6.20	2	1	Tetrarhynchia subconcinna Tetrarhynchia subconcinna	brachiopod	ventral	28/06/2018	06/07/2018	38.6	0.44 6.16	0.990	0.055	0.54	5.30	-0.02	15/08/2018	97.1 96.7
MPZ 2019/533	CVU carb 3806	Barranco de la Cañada	C19	6.20	2	1	Tetrarhynchia subconcinna Tetrarhynchia subconcinna	brachiopod	ventral	28/06/2018	06/07/2018	38.4	6.83	1.066	0.007	0.51	6.26	-0.02	15/08/2018	99.1
MPZ 2019/533	CVU carb 3807	Barranco de la Cañada	C19	6.20	2	1	i eti arriynenia subconennia	bulk rock	bulk rock	28/06/2018	06/07/2018	18.4	181.04	0.593	0.999	80.16	3.93	2.47	15/08/2018	52.8
MPZ 2019/535	CVU carb 3876	Barranco de la Cañada	C19	6.20	3	1	Grvphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	38.9	3.47	0.715	0.044	0.61	5.62	-0.01	16/08/2018	99.3
MPZ 2019/535	CVU_carb_3877	Barranco de la Cañada	C19	6.20	3	1	Gryphaea (B.) sublobata	bivalve		02/07/2018	06/07/2018	39.1	3.13	0.670	0.043	0.50	3.49	0.02	16/08/2018	100.3
MPZ 2019/535	CVU_carb_3878	Barranco de la Cañada	C19	6.20	3	1	Gryphaea (B.) sublobata	bivalve		02/07/2018	06/07/2018	38.8	3.68	0.752	0.031	0.40	3.27	-0.07	16/08/2018	101.0
MPZ 2019/536	CVU_carb_3879	Barranco de la Cañada	C19	6.20	3	2	Gryphaea (B.) sublobata	bivalve		02/07/2018	06/07/2018	38.9	2.86	0.707	0.022	0.27	5.93	0.11	16/08/2018	98.4
MPZ 2019/536	CVU_carb_3880	Barranco de la Cañada	C19	6.20	3	2	Gryphaea (B.) sublobata	bivalve		02/07/2018	06/07/2018	39.0	2.96	0.719	0.024	0.28	6.04	0.05	16/08/2018	99.5
MPZ 2019/536	CVU_carb_3881	Barranco de la Cañada	C19	6.20	3	2	Gryphaea (B.) sublobata	bivalve		02/07/2018	06/07/2018	38.8	3.82	0.746	0.017	0.21	6.20	-0.01	16/08/2018	100.3
MPZ 2019/527	CVU_carb_3431	Barranco de la Cañada	C18c	5.90	1	3	Quadratirhynchia aff. attenuata	brachiopod		10/04/2018	01/06/2018	38.4	3.85	1.015	0.016	0.18	4.77	0.00	10/08/2018	98.7
MPZ 2019/525	CVU_carb_3664	Barranco de la Cañada	C18c	5.90	1	1	Quadratirhynchia aff. attenuata	brachiopod	ventral	05/06/2018	08/06/2018	38.5	6.61	1.165	0.009	0.08	5.23	0.02	13/08/2018	98.6
MPZ 2019/525	CVU_carb_3665	Barranco de la Cañada	C18c	5.90	1	1	Quadratirhynchia aff. attenuata	brachiopod	ventral	05/06/2018	08/06/2018	38.3	6.26	1.082	0.014	0.16	5.59	0.07	13/08/2018	98.9
MPZ 2019/525	CVU_carb_3666	Barranco de la Cañada	C18c	5.90	1	1	Quadratirhynchia aff. attenuata	brachiopod	ventral	05/06/2018	08/06/2018	38.3	6.08	1.084	0.011	0.10	5.63	0.16	13/08/2018	98.2
MPZ 2019/525	CVU_carb_3667	Barranco de la Cañada		5.90	1	1	Quadratirnynchia aff. attenuata	brachiopod	dorsal	05/06/2018	08/06/2018	38.5	6.62	1.078	0.014	0.17	5.61	0.04	13/08/2018	99.4
MPZ 2019/525	CVU_carb_3668	Barranco de la Cañada		5.90	1	1	Quadratirhynchia aff. attenuata	brachiopod	dorsal	05/06/2018	08/06/2018	38.Z 201	6.98 6.01	1.110	0.012	0.15	5.05	0.05	14/08/2018	96.6
MPZ 2019/525 MP7 2019/526	$CVU_{carb} = 3670$	Barranco de la Cañada	C18c	5.90	1	2	Quadratirhynchia aff attenuata	brachiopod	ventral	05/00/2018	08/06/2018	30.4 38.1	2 99	1.095	0.013	0.13	4.91	0.00	14/08/2018	97.9
MP7 2019/526	CVU_{carb}_{3671}	Barranco de la Cañada	C18c	5.90	1	2	Quadratirhynchia aff attenuata	brachiopod	ventral	05/06/2018	08/06/2018	385	2.55	0.952	0.017	0.24	3.88	0.12	14/08/2010	99.4
MPZ 2019/526	CVU carb 3672	Barranco de la Cañada	C18c	5.90	1	2	Quadratirhynchia aff attenuata	brachiopod	ventral	05/06/2018	25/06/2018	38.0	3.56	0.950	0.010	0.20	3.51	-0.03	14/08/2018	98.4
MPZ 2019/527	CVU carb 3673	Barranco de la Cañada	C18c	5.90	1	3	Quadratirhynchia aff. attenuata	brachiopod	ventral	05/06/2018	25/06/2018	37.9	4.39	1.038	0.016	0.16	4.72	0.02	14/08/2018	99.1
MPZ 2019/527	CVU carb 3674	Barranco de la Cañada	C18c	5.90	1	3	Quadratirhynchia aff. attenuata	brachiopod	dorsal	05/06/2018	25/06/2018	38.1	4.85	1.033	0.017	0.16	4.97	0.00	14/08/2018	98.0
MPZ 2019/527	CVU_carb_3675	Barranco de la Cañada	C18c	5.90	1	3	Quadratirhynchia aff. attenuata	brachiopod	dorsal	05/06/2018	25/06/2018	38.1	4.64	1.038	0.012	0.11	5.10	-0.01	14/08/2018	99.1
MPZ 2019/528	CVU_carb_3960	Barranco de la Cañada	C18c	5.90	2	1	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.5	3.57	0.701	0.050	0.75	4.23	0.14	17/08/2018	100.6
MPZ 2019/528	CVU_carb_3961	Barranco de la Cañada	C18c	5.90	2	1	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.8	2.51	0.750	0.040	0.63	3.41	0.12	17/08/2018	100.0
MPZ 2019/528	CVU_carb_3962	Barranco de la Cañada	C18c	5.90	2	1	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.6	2.70	0.780	0.035	0.54	2.65	-0.05	17/08/2018	100.4
MPZ 2019/529	CVU_carb_3963	Barranco de la Cañada	C18c	5.90	2	2	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.7	2.67	0.793	0.015	0.34	0.91	0.04	17/08/2018	101.4
MPZ 2019/529	CVU_carb_3964	Barranco de la Cañada	C18c	5.90	2	2	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.6	2.89	0.759	0.014	0.24	1.63	0.07	17/08/2018	100.7
MPZ 2019/529	CVU_carb_3965	Barranco de la Cañada	C18c	5.90	2	2	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.8	3.16	0.756	0.016	0.31	1.85	0.02	17/08/2018	101.0
MPZ 2019/530	CVU_carb_3966	Barranco de la Cañada	C18c	5.90	2	3	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.7	2.19	0.784	0.008	0.16	0.94	-0.04	17/08/2018	101.1
MPZ 2019/530	CVU_carb_3967	Barranco de la Cañada	C18c	5.90	2	3	Gryphaea (B.) sublobata	bivalve		19/07/2018	02/08/2018	38.9	2.25	0.793	0.009	0.16	0.99	0.08	17/08/2018	101.2
MPZ 2019/530	CVU_carb_3968	Barranco de la Cañada	C18c	5.90	2	3	Gryphaea (B.) sublobata	bivalve	1 11 1	19/07/2018	02/08/2018	38.9	2.05	0.811	0.009	0.19	0.98	0.07	17/08/2018	100.7
MPZ 2019/530	CVU_carb_3969	Barranco de la Cañada	C18C	5.90	2	3 1	Quadratizhurahia attanuata	DUIK FOCK	bulk rock	19/07/2018	02/08/2018	25.4 20 F	/4.96	0.472	0.633	32.97	1.94	0.60	17/08/2018	69.2 100.4
MPZ 2019/524	CVU_carb_35/1	Barranco de la Cañada	C18D	5.60 5.60	3	1	Quadratirnynchia attenuata	brachiopod	ventral	28/05/2018	08/06/2018	38.5	2.52	1.027	0.013	0.10	3.51	0.05	12/08/2018	100.4
MPZ 2019/524 MP7 2019/524	CVU_carb_3572	Barranco de la Cañada	C10D C18b	5.60	3 3	1	Quadratirhynchia attenuata	brachiopod	ventral	20/05/2010	08/06/2018	30.4 38 5	2.30	1.027	0.014	0.11	3.51	0.05	12/00/2010	100.4 98.2
MP7 2019/524	CVU_{carb}_{3573}	Barranco de la Cañada	C18b	5.60	3	1	Quadratii nynchia attenaata	bulk rock	bulk rock	28/05/2018	08/06/2018	267	2.40	0.457	0.017	31.81	2 78	0.09	12/08/2018	71 1
MPZ 2019/521	CVU carb 3939	Barranco de la Cañada	C18b	5.60	2	1	Grvphaea (B) sublohata	hivalve	buikrock	09/07/2018	02/08/2018	38.9	2.04	0.758	0.037	0.59	3.12	-0.02	17/08/2018	997
MPZ 2019/520	CVU carb 3940	Barranco de la Cañada	C18b	5.60	2	1	Grvphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.4	2.40	0.811	0.048	0.92	3.65	0.07	17/08/2018	99.9
MPZ 2019/520	CVU_carb_3941	Barranco de la Cañada	C18b	5.60	2	1	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.8	2.08	0.815	0.030	0.50	1.89	-0.01	17/08/2018	91.8
MPZ 2019/521	CVU_carb_3942	Barranco de la Cañada	C18b	5.60	2	2	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	39.1	2.41	0.604	0.071	0.70	3.70	0.03	17/08/2018	100.8
MPZ 2019/521	CVU_carb_3943	Barranco de la Cañada	C18b	5.60	2	2	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.7	3.01	0.791	0.034	0.61	2.37	-0.03	17/08/2018	101.9
MPZ 2019/521	CVU_carb_3944	Barranco de la Cañada	C18b	5.60	2	2	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	39.1	2.09	0.653	0.037	0.45	1.81	0.07	17/08/2018	99.3
MPZ 2019/521	CVU_carb_3945	Barranco de la Cañada	C18b	5.60	2	2	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.8	2.37	0.644	0.044	0.52	2.60	0.09	17/08/2018	101.0
MPZ 2019/522	CVU_carb_3946	Barranco de la Cañada	C18b	5.60	2	3	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.8	3.29	0.745	0.016	0.33	2.29	-0.10	17/08/2018	100.9
MPZ 2019/522	CVU_carb_3947	Barranco de la Cañada	C18b	5.60	2	3	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.4	5.52	0.867	0.031	0.82	1.95	0.10	17/08/2018	101.6
MPZ 2019/523	CVU_carb_3948	Barranco de la Cañada	C18b	5.60	2	4	Gryphaea (B.) sublobata	bivalve		09/07/2018	02/08/2018	38.8	3.14	0.811	0.010	0.16	2.61	-0.05	17/08/2018	101.6
MPZ 2019/519	CVU_carb_3950	Barranco de la Cañada	C18b	5.60	1	1	Gryphaea (B.) sublobata	bivalve		18/07/2018	02/08/2018	38.5	3.77	0.935	0.020	0.54	1.34	0.06	17/08/2018	100.2
MPZ 2019/519	CVU_carb_3951	Barranco de la Cañada	C18D	5.60	1	1	Gryphäed (B.) sublobata	bivalve		18/07/2018	02/08/2018	38.5	3.17	0.886	0.024	0.60	1.50	0.09	17/08/2018	99.1 100.2
MPZ 2019/519 MD7 2010/510	CVU_carb_3952	Barranco do la Cañada	C10D C19b	5.60	1	1	Gryphaea (B.) sublobata	bivalve		10/07/2010	02/00/2010	30.7 28 5	2.79	0.962	0.016	0.44	2.45	0.05	17/00/2010	100.2
MPZ 2019/519 MPZ 2019/516	$CVU_{carb} = 3852$	Barranco de la Cañada	C185	5.00	1	1	Gryphaea (B.) sublobata	bivalve		29/06/2018	02/00/2018	30.3	2.07	1.038	0.013	0.30	2.20	-0.04	16/08/2010	100.0 00.0
MPZ 2019/516	CVU carb 3853	Barranco de la Cañada	C18a	5.20	1	1	Gryphaea (B.) sublobata	hivalve		29/06/2018	06/07/2018	38.3	4.09	0.833	0.029	0.84	1.90	0.04	16/08/2018	99.7
MPZ 2019/516	CVU carb 3854	Barranco de la Cañada	C18a	5.20	1	1	orypniced (b.) sublobated	bulk rock	bulk rock	29/06/2018	06/07/2018	27.1	64.06	0.400	0.534	28.36	2.16	0.42	16/08/2018	74.8
MPZ 2019/517	CVU carb 3855	Barranco de la Cañada	C18a	5.20	1	2	Gryphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	37.0	6.52	0.727	0.065	1.92	4.61	0.12	16/08/2018	96.1
MPZ 2019/517	CVU_carb_3856	Barranco de la Cañada	C18a	5.20	1	2	Gryphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	37.5	7.13	0.765	0.067	2.08	3.11	0.03	16/08/2018	99.0
MPZ 2019/517	CVU_carb_3857	Barranco de la Cañada	C18a	5.20	1	2	Gryphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	37.4	10.40	0.685	0.117	4.21	3.33	0.30	16/08/2018	94.0
MPZ 2019/518	CVU_carb_3858	Barranco de la Cañada	C18a	5.20	1	3	Gryphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	38.1	2.38	0.749	0.031	0.56	3.12	0.07	16/08/2018	99.3
MPZ 2019/518	CVU_carb_3859	Barranco de la Cañada	C18a	5.20	1	3	Gryphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	38.5	2.42	0.801	0.020	0.38	2.84	0.09	16/08/2018	98.6
MPZ 2019/518	CVU_carb_3860	Barranco de la Cañada	C18a	5.20	1	3	Gryphaea (B.) sublobata	bivalve		29/06/2018	06/07/2018	38.6	2.54	0.757	0.023	0.37	4.44	0.04	16/08/2018	97.9
MPZ 2019/515	CVU_carb_3439	Barranco de la Cañada	C15b	4.60	2	1		bulk rock	bulk rock	10/04/2018	04/06/2018	28.1	40.08	0.350	0.459	15.59	1.70	0.23	10/08/2018	74.7
MPZ 2019/514	$UVU_carb_38/3$	Barranco de la Cañada	Ե15D C1೯Խ	4.0U	1	1	Gryphaea (B.) sublobata	Divalve		29/06/2018	06/07/2018	38.9 20 7	3.17 1 25	0./43	0.086	1.43	4.35 1 02	0.05	10/08/2018	100.1
MD2 2012/214	CVU carb 287 ^r	Barranco de la Cañada	0150 C15b	4.0U 1 60	1 1	1 1	arypriaea (D.) Sublobata Gryphaga (R.) syblobata	bivalve		27/00/2018 20/06/2010	00/0//2018 06/07/2010	30./ 200	4.33 2 20	0.791 A 70A	0.020	0.32 N 85	4.US 170	0.04 -0.05	10/00/2010 16/08/2019	77./ QQ /
MPZ 2019/514	CVII carh 2051	Barranco de la Cañada	C15h	т .00 4 60	1 2	1 1	Gryphicea (D.) sublobata Gryphapa (R.) sublobata	hivalve		29/00/2010 18/07/2019	02/08/2019	30.9 34 5	3.37 22.21	0.750	0.042	11 22	1.79 2 02	-0.03	10/00/2010 17/08/2018	91 N
MPZ 2019/515	CVU carb 3955	Barranco de la Cañada	C15b	4.60	2	1	Grvphaea (B.) sublobata	bivalve		18/07/2018	02/08/2018	35.0	17.67	0.453	0.263	8.23	4.00	0.32	17/08/2018	93.3
MPZ 2019/515	CVU_carb 3956	Barranco de la Cañada	C15b	4.60	2	1	Gryphaea (B.) sublobata	bivalve		18/07/2018	02/08/2018	36.9	13.18	0.628	0.217	4.15	6.90	0.17	17/08/2018	95.0
MPZ 2019/513	CVU_carb 3635	Barranco de la Cañada	C15a	4.00	4	- 1	Quadratirhynchia attenuata	brachiopod	ventral	04/06/2018	08/06/2018	38.3	5.51	1.004	0.045	0.63	4.23	0.18	13/08/2018	98.0
MPZ 2019/513	CVU_carb_3636	Barranco de la Cañada	C15a	4.00	4	1	Quadratirhynchia attenuata	brachiopod	ventral	04/06/2018	08/06/2018	38.3	5.06	1.012	0.050	0.50	4.05	0.11	13/08/2018	98.1
MPZ 2019/513	CVU_carb_3637	Barranco de la Cañada	C15a	4.00	4	1	Quadratirhynchia attenuata	brachiopod	ventral	04/06/2018	08/06/2018	38.3	4.12	0.995	0.028	0.32	4.00	0.15	13/08/2018	99.0
MPZ 2019/513	CVU_carb_3638	Barranco de la Cañada	C15a	4.00	4	1	Quadratirhynchia attenuata	brachiopod	dorsal	04/06/2018	08/06/2018	38.2	5.39	1.065	0.027	0.26	4.50	0.16	13/08/2018	99.0
MPZ 2019/513	CVU_carb_3639	Barranco de la Cañada	C15a	4.00	4	1	Quadratirhynchia attenuata	brachiopod	dorsal	04/06/2018	08/06/2018	38.5	4.79	1.011	0.030	0.31	4.36	0.14	13/08/2018	98.5
MPZ 2019/513	CVU_carb_3640	Barranco de la Cañada	C15a	4.00	4	1	Quadratirhynchia attenuata	brachiopod	dorsal	04/06/2018	08/06/2018	38.4	4.59	0.998	0.027	0.29	4.24	0.21	13/08/2018	98.9
MPZ 2019/512	CVU_carb_3701	Barranco de la Cañada	C15a	4.00	3	1	Tetrarhynchia subconcinna	brachiopod	dorsal, sediment cont.	08/06/2018	25/06/2018	38.4	4.70	0.970	0.015	0.27	4.42	0.00	14/08/2018	97.8
MPZ 2019/512	CVU_carb_3702	Barranco de la Cañada	C15a	4.00	<u>კ</u>	1	I etrarhynchia subconcinna	brachiopod	aorsal, sediment cont.	08/06/2018	25/06/2018	38.1	4.82	0.995	0.022	0.20	4.32	0.08	14/08/2018	98.7
MD7 2010 /510	UVU_carb_3901	Dai ranco de la Cañada Barrance de la Cañada	C15a	4.00 4.00	۲ ک	1 1	Gryphaea (B.) SUDIODATA	Divalve		02/07/2018	06/07/2018	39.U 20.0	3.5U 2 4 4	0./01	U.U38 0.020	0.42 0.42	3.3/ 2.04	-U.13	10/08/2018	100.2
MD2 2012/210	CVUL carb 2002	Barranco de la Caliada	C15a	4.00 1 00	∠ 2	1 1	arypriaea (D.) Sublobata	bivalve		02/07/2018 N2/N7/2010	00/0//2018 06/07/2010	30.0 20 0	3.44 2 NN	0.090 0.711	0.030 0.012	0.42 0.10	3.94 2 07	0.02	10/00/2010 16/08/2019	77.7 99.2
MP7.2019/506	CVII carh 2904	Barranco de la Cañada	(15a	4 00	<u>-</u> 1	1	Grvnhaeg (R) sublobata	hivalve		02/07/2010	06/07/2018	30.9	3.16	0.625	0.012	0.10	4 26	0.05	16/08/2018	100 5
MPZ 2019/506	CVU carb 3905	Barranco de la Cañada	C15a	4.00	1	1	Grvphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	39.2	3.64	0.749	0.030	0.48	6.10	-0.03	16/08/2018	99.2
MPZ 2019/506	CVU_carb 3906	Barranco de la Cañada	C15a	4.00	1	1	Gryphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	38.7	4.04	0.737	0.019	0.27	7.34	0.10	16/08/2018	100.4
MPZ 2019/507	CVU_carb_3907	Barranco de la Cañada	C15a	4.00	1	2	Gryphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	38.7	2.67	0.704	0.040	0.66	3.18	0.06	16/08/2018	100.9
MPZ 2019/507	CVU_carb_3908	Barranco de la Cañada	C15a	4.00	1	2	Gryphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	38.9	2.06	0.654	0.063	0.98	2.08	0.01	17/08/2018	93.2
MPZ 2019/507	CVU_carb_3909	Barranco de la Cañada	C15a	4.00	1	2	Gryphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	38.9	1.90	0.723	0.014	0.18	1.77	0.07	17/08/2018	99.5
MPZ 2019/508	CVU_carb_3910	Barranco de la Cañada	C15a	4.00	1	3	Gryphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	39.2	3.01	0.659	0.050	0.63	4.60	-0.04	17/08/2018	100.0
MPZ 2019/508	CVU_carb_3911	Barranco de la Cañada	C15a	4.00	1	3	Gryphaea (B.) sublobata	bivalve		03/07/2018	06/07/2018	39.2	2.59	0.648	0.043	0.51	4.39	-0.09	17/08/2018	99.8
MPZ 2019/508	CVU_carb_3912	Barranco de la Cañada	C15a	4.00	1	3	Gryphaea (B.) sublobata	bivalve		03/07/2018	02/08/2018	38.6	2.57	0.633	0.057	0.84	4.99	0.07	17/08/2018	100.2
MPZ 2019/509	CVU_carb_3913	Barranco de la Cañada	C15a	4.00	1	4	Gryphaea (B.) sublobata	bivalve		03/07/2018	02/08/2018	38.5	2.34	0.671	0.054	0.80	6.28	0.09	17/08/2018	100.2
MD2 2013/202	CVU_carb_3914	Dai ratico de la Cañada Barranco do la Cañada	C15a	4.00 4.00	1 1	4 1	Gryphaea (B.) SUDIODATA	bivalve		U3/U//2U18 N2/N7/2010	02/08/2018 02/08/2019	30.0 20 1	2.51	0.665 0.657	0.001	U.ÖU 1 /17	4.0/ 1.50	U.14 0.04	17/08/2018 17/08/2018	100.2
MPZ 2019/309	CVII carh 2016	Barranco de la Cañada	(15a	4.00 4.00	1	+ 4	σιγριιαεα (Β.) Subiobata	bulk rock	hulk rock	03/07/2018 N3/N7/2N19	02/00/2010	30.1 28.2	5.74 52.66	0.037	0.079	1.47 26.68	4.37 252	0.00 0.71	17/08/2010 17/08/2018	75 Q
MPZ 2019/504	CVU carb 3882	Barranco de la Cañada	C12h	3.40	<u>1</u>	т 1	Grvnhaea (B) sublobata	hivalve	buin I UUN	02/07/2018	06/07/2018	391	2.85	0.776	0.029	0.40	5.17	0.12	16/08/2018	100.0
	2. 3_0015_0002	and at a fundulu		0.10	-	-	(Di Joubiobuiu	2174170			, -, -,	5711	2.00						_ 0, 00, 2010	

2.98	-2.18
2.34	-2.49
2.06	-2.51 -2.61
2.08	-2.76 -2.49
2.04 1.79	-2.61
1.72	-2.53
1.30	-3.05
2.86	-2.61
3.02	-2.42
3.46	-2.06
2.98	-2.57
2.95	-2.25
3.10	-2.65
2.44	-1.66
2.46	-2.41
2.63	-2.41
2.74	-2.42
2.54	-2.31
2.68	-1.92
2.59	-2.23
3.30	-1.73
3.46	-1.79
3.18	-1.89
2.82	-1.62
2.62	-2.42
2.96	-2.04 -1.76
3.31	-2.12
3.84 2.75	-1.51
3.75	-1.55
3.90	-1.59
3.90	-1.42
3.98	-1.24
3.97	-1.59
1.30	-3.71
3.34	-1.69
3.39	-1.66
3.60	-1.55
1.58	-3.53
3.30	-2.05
3.41	-2.24
3.64	-1.98
3.34	-2.07
3.89	-2.13
3.50	-2.05
3.60	-2.22
3.85	-1.88
4.04	-1.98
3.67	-1.84
3.83	-1.89
3.82	-1.76
3.97	-1.85
3.84	-1.97
3.43	-2.01
3.44	-2.18
1.40	-3.61
2.21	-1.91
2.47	-1.83
2.06	-1.77
3.58	-1.75
3.58	-1.86
3.83	-1.64
1.41	-3.76
3.04	-2.32
3.37	-1.87
2.16	-2.99
2.65	-2.04
2.02	-2.13
3.09	-1.92
2.79	-1.98
3.00	-1.80
2.94	-1.63 -2.35
1.88	-2.65
3.38	-2.16
3.24	-2.17
3.56	-2.41
2.62	-2.34
2.85	-2.08
2.73	-2.20
2.99	-1.92
3.36	-1.95
3.44	-1.73
3.18	-2.27
2.97	-2.44
3.16	-2.64
3.18	-2.54
3.14	-2.49
2.51	-3.30
1.46	-3.60
2.82	-2.16

MD7 2010 / F04	CVII 2002	Demons de la Cañada	C10h	2.40	1	1	$C_{\rm result}$ has a (\mathbf{P}) sublability	l.:
MPZ 2019/504	CVU_carb_3883	Barranco de la Canada	CIZD	3.40	1	1	Grypnaea (B.) sublobata	bivalve
MPZ 2019/504	CVU_carb_3884	Barranco de la Cañada	C12b	3.40	1	1	Gryphaea (B.) sublobata	bivalve
MPZ 2019/505	CVU carb 3885	Barranco de la Cañada	C12b	3.40	1	2	Grvphaea (B.) sublobata	bivalve
MD7 2010 /EOE	CVII carb 2006	Parranco do la Cañada	C12b	2.40	1	2	Cryphaca (P) sublobata	bivalvo
MPZ 2019/303		Dallallo de la Callada		5.40	1	2	Gryphaea (B.) Subiobala	Divalve
MPZ 2019/505	CVU_carb_3887	Barranco de la Cañada	C12b	3.40	1	2	Gryphaea (B.) sublobata	bivalve
MPZ 2019/505	CVU_carb_3888	Barranco de la Cañada	C12b	3.40	1	2		bulk rock
MP7 2019/498	CVII carh 3432	Barranco de la Cañada	C12a	2.80	2	1	Gryphaea (R) sublobata	hivalve
MD7 2010 /F02	CVU carb 2502	Darranco de la Cañada	C12a	2.00	2	1	Ovadratisky skia attorvata	brachiened
MPZ 2019/502	CVU_carb_3502	Barranco de la Canada	CIZa	2.80	3	1	Quaaratirnynchia attenuata	brachiopod
MPZ 2019/502	CVU_carb_3503	Barranco de la Cañada	C12a	2.80	3	1	Quadratirhynchia attenuata	brachiopod
MPZ 2019/502	CVU carb 3504	Barranco de la Cañada	C12a	2.80	3	1	Ouadratirhynchia attenuata	brachiopod
MD7 2010 /E02	CVU carb 2505	Darranco de la Cañada	C12a	2.00	2	1	quua un ny nonna accontacta	calcita comont
MPZ 2019/302		Dallanco de la Callada	CIZa	2.00	5	1		
MPZ 2019/503	CVU_carb_3506	Barranco de la Cañada	C12a	2.80	3	2	Quadratirhynchia attenuata	brachiopod
MPZ 2019/503	CVU carb 3507	Barranco de la Cañada	C12a	2.80	3	2	Ouadratirhvnchia attenuata	brachiopod
MD7 2010 /F02	CVU carb 2500	Darranco de la Cañada	C12a	2.00	2	- 2	Quadratishurshia attornata	brachiopou
MPZ 2019/503	CVU_carb_3508	Barranco de la Canada	CIZa	2.80	3	Z	Quaaratirnynchia attenuata	brachiopod
MPZ 2019/503	CVU_carb_3509	Barranco de la Cañada	C12a	2.80	3	2	Quadratirhynchia attenuata	brachiopod
MP7 2019/503	CVII carb 3510	Barranco de la Cañada	C12a	2.80	3	2	Quadratirhynchia attenuata	hrachionod
MFZ 2019/303		Dallanco de la Callada	C12a	2.00	5	2		Drachiopou
MPZ 2019/503	CVU_carb_3511	Barranco de la Cañada	C12a	2.80	3	2	Quadratirhynchia attenuata	brachiopod
MPZ 2019/498	CVU carb 3861	Barranco de la Cañada	C12a	2.80	2	1a	Grvphaea (B.) sublobata	bivalve
MD7 2010 / 400	CVII carb 2862	Barranco do la Cañada	C122	2.80	2	1h	Cryphaga (R) sublobata	hivalvo
MFL 2019/499	CVU_CalD_3802	Dallanco de la Callada	CIZa	2.00	2	10	Gryphaea (B.) Sublobata	Divalve
MPZ 2019/499	CVU_carb_3863	Barranco de la Cañada	C12a	2.80	2	1b	Gryphaea (B.) sublobata	bivalve
MPZ 2019/500	CVU carb 3864	Barranco de la Cañada	C12a	2.80	2	2	Grvphaea (B.) sublobata	bivalve
MP7 2019/500	CVII carb 3865	Barranco de la Cañada	C12a	2.80	2	2	Cryphaga (R) sublobata	hivalvo
MDE 2019/500			0120	2.00	2	2		
MPZ 2019/500	CVU_carb_3866	Barranco de la Canada	CIZa	2.80	Z	Z	Grypnaea (B.) sublobata	bivalve
MPZ 2019/501	CVU_carb_3867	Barranco de la Cañada	C12a	2.80	2	3	Gryphaea (B.) sublobata	bivalve
, MD7 2010/501	CVII carb 3868	Barranco de la Cañada	C12a	2.80	2	3	Cryphaga (R) sublobata	hivalvo
MDE 2010/501			C12a	2.00	2	5		
MPZ 2019/501	CVU_carb_3869	Barranco de la Canada	C12a	2.80	2	3	Gryphaea (B.) sublobata	bivalve
MPZ 2019/493	CVU carb 3917	Barranco de la Cañada	C07b	1.60	1	1		bulk rock
MD7 2010 / 404	CVII carb 3918	Barranco de la Cañada	C07h	1.60	1	2	Cruphaga (B) sublobata	hivolvo
MI 2 2017/474			C07D	1.00	1	2		Divalve
MPZ 2019/494	CVU_carb_3919	Barranco de la Cañada	C07b	1.60	1	2	Gryphaea (B.) sublobata	bivalve
MPZ 2019/494	CVU carb 3920	Barranco de la Cañada	C07b	1.60	1	2	Gryphaea (B.) sublobata	bivalve
MD7 2010 / 401	CVII carb 2841	Barranco do la Cañada	C072	0.80	1	1	Cryphaga (R) sublobata	hivalvo
MFZ 2019/491	CVU_CarD_3041	Dallanco de la Callada	C07a	0.00	1	1	Gryphaea (B.) Sublobata	Divalve
MPZ 2019/491	CVU_carb_3842	Barranco de la Cañada	C07a	0.80	1	1	Gryphaea (B.) sublobata	bivalve
MPZ 2019/491	CVU carb 3843	Barranco de la Cañada	C07a	0.80	1	1	Grvphaea (B.) sublobata	bivalve
MD7 2010 / 402	CVU carb 2014	Darranco de la Cañada	C07a	0.00	1	1	Cryphaea (D) sublebata	bivalve
MPZ 2019/492	CVU_carb_3844	Barranco de la Canada	C07a	0.80	1	Z	Grypnaea (B.) subiobala	Divalve
MPZ 2019/492	CVU_carb_3845	Barranco de la Cañada	C07a	0.80	1	2	Gryphaea (B.) sublobata	bivalve
MP7 2019/492	CVII carb 3846	Barranco de la Cañada	C07a	0.80	1	2	Grynhaea (R) sublohata	hivalve
MDE 2010/102			0074	0.00	1	2	digpilaca (D. J subiobata	
MPZ 2019/492	CVU_carb_3847	Barranco de la Canada	C07a	0.80	1	2		belemnite
MPZ 2019/492	CVU carb 3848	Barranco de la Cañada	C07a	0.80	1	2		belemnite
MD7 2010 / 402	CVII carb 3849	Barranco de la Cañada	C07a	0.80	1	2		holomnito
MFL 2019/492	CVU_CalD_3049	Dallanco de la Callada	C07a	0.00	1	2		Deleminte
MPZ 2019/492	CVU_carb_3850	Barranco de la Cañada	C07a	0.80	1	2		belemnite
MPZ 2019/492	CVU carb 3851	Barranco de la Cañada	C07a	0.80	1	2		bulk rock
MD7 2010 / 40E	CVII comb 2424	Darranco de la Cañada	COF	0.40	2	1	Comphana (D) sublehata	hivelye
MPZ 2019/405	CV0_Carb_5454	Dall'alleo de la Callada	05	0.40	Z	1	Grypnaea (B.) subiobala	Divalve
MPZ 2019/487	CVU_carb_3792	Barranco de la Cañada	C05	0.40	3	1	Gibbirhynchia cf. cantabrica	brachiopod
MPZ 2019/487	CVU carb 3793	Barranco de la Cañada	C05	0.40	3	1	Gibbirhvnchia cf. cantabrica	brachiopod
MD7 2010 / 407	CVII carb 2704	Parranco do la Cañada	COF	0.40	2	- 1	Cibbirbunchia of cantabrica	brachiopod
MPZ 2019/40/	CV0_Carb_5794	Dall'alleo de la Callada	05	0.40	3	1	Gibbirnynchia Ci. cantabrica	brachiopou
MPZ 2019/487	CVU_carb_3795	Barranco de la Cañada	C05	0.40	3	1	Gibbirhynchia cf. cantabrica	brachiopod
MPZ 2019/488	CVU carb 3796	Barranco de la Cañada	C05	0.40	3	2	Gibbirhynchia cf. cantabrica	brachiopod
MD7 2010 / 400	CVU carb 2707	Darranco de la Cañada	COF	0.40	2	-	Cibbirhynchia of cantabrica	brachiopod
MPZ 2019/488	CV0_carb_3/9/	Barranco de la Canada	C05	0.40	3	Z	GIDDIFNYNCHIA CI. CANLADFICA	brachiopou
MPZ 2019/488	CVU_carb_3798	Barranco de la Cañada	C05	0.40	3	2	Gibbirhynchia cf. cantabrica	brachiopod
MPZ 2019/489	CVU carb 3799	Barranco de la Cañada	C05	0.40	3	3	Gibbirhynchia cf. cantabrica	brachiopod
MD7 2010/400			005	0.10	2	4	dibbil hynemia en cancabrica	bruello you
MPZ 2019/490	CVU_carb_3800	Barranco de la Canada	C05	0.40	3	4		DUIK FOCK
MPZ 2019/485	CVU_carb_3895	Barranco de la Cañada	C05	0.40	2	1	Gryphaea (B.) sublobata	bivalve
MP7 2019/485	CVII carb 3896	Barranco de la Cañada	C05	0.40	2	1	Grynhaea (R) sublohata	hivalve
MD7 2010 / 405	CVU carb 2007	Darranco de la Cañada		0.10	2	1	Cryphaea (D) sublebata	bivalve
MPZ 2019/485	CVU_carb_3897	Barranco de la Canada	C05	0.40	Z	1	Gryphaea (B.) sublobata	bivalve
MPZ 2019/486	CVU_carb_3898	Barranco de la Cañada	C05	0.40	2	2	Gryphaea (B.) sublobata	bivalve
MP7 2019/486	CVII carb 3899	Barranco de la Cañada	C05	040	2	2	Grynhaea (R) sublohata	hivalve
MD7 2010/40C			005	0.10	2	2	Crowbasa (D.) sublobutu	bivaive
MPZ 2019/486	CV0_carb_3900	Barranco de la Canada	C05	0.40	Z	Z	Grypnaea (B.) subiobala	Divalve
MPZ 2019/484	CVU_carb_3957	Barranco de la Cañada	C05	0.40	1	1	Gryphaea (B.) sublobata	bivalve
MP7 2019/484	CVII carh 3958	Barranco de la Cañada	C05	0.40	1	1	Grynhaea (R) sublohata	hivalve
MD7 2010 / 404			C05	0.10	1	1	Crawkasa (D.) sublobutu	bivaive
MPZ 2019/484	CVU_carb_3959	Barranco de la Canada	C05	0.40	1	1	Gryphaea (B.) sublobata	bivalve
MB B 10910	CVII carb 4870	Fonte Coberta / Rabacal	R24h	28 35	1	1	Telothyris iauherti	brachiopod
MD D 10010	CVU carb 4071	Fonto Coborta / Rabagal	D24h	20.00	1	1	Telethyris jauberti	brachiopod
MB.B.10910	CVU_carb_48/1	Fonte Coberta / Rabaçai	KZ40	28.35	1	1	Teloinyris Jauberti	brachiopou
MB.B.10910	CVU_carb_4872	Fonte Coberta / Rabaçal	R24b	28.35	1	1	Telothyris jauberti	brachiopod
MB B 10912	CVII carb 4903	Fonte Coberta / Rabacal	R24h	28 35	2	1	Lohothyris hispanica	brachiopod
MD D 10012	CVU carb 4004	Fonte Coberta / Rubuçul	D24b	20.00	2	1	Lobothyris hispanica	brachiopod
MB.B.10912	CVU_carb_4904	Fonte Coberta / Rabaçai	KZ40	28.35	Z	1	Lobothyris hispanica	brachlopod
MB.B.10912	CVU_carb_4905	Fonte Coberta / Rabaçal	R24b	28.35	2	1	Lobothyris hispanica	brachiopod
MB B 10910	CVII carh 4944	Fonte Coherta / Rahacal	R24h	28 35	1	1		hulk rock
MD D 10000		Forte Coberta / Rabaçai	N2 10	20.00	1	1		burk fock
MB.B.10909	CVU_carb_4815	Fonte Coberta / Rabaçai	RZ3C	26.60	3	1	Homoeornynchia meriaionalis	brachlopod
MB.B.10909	CVU_carb_4816	Fonte Coberta / Rabaçal	R23c	26.60	3	1	Homoeorhynchia meridionalis	brachiopod
MB.B.10909	CVU carh 4817	Fonte Coberta / Rahacal	R23c	26.60	3	1	Homoeorhvnchia meridionalis	brachionod
MR R 10000	CVII corb 4010	Fonto Cohorta / Dahaal	D720	26.00	2	- 1	Homoorhunchia maridianalia	hrachionad
MB.B.10909	CVU_carb_4818	Fonte Coberta / Rabaçai	RZ3C	26.60	3	1	Homoeornynchia meriaionalis	brachiopou
MB.B.10905	CVU_carb_4947	Fonte Coberta / Rabaçal	R23c	26.60	1	1		bulk rock
MB B 20346	CVII carh 4931	Fonte Coherta / Rahacal	R23a	25.05	2	1		hulk rock
MD D 10002	CVU carb 4025	Fonto Coborta / Rabagal	D21a	20.00	2	1		bullt rock
MB.B.10902	CVU_carb_4935	Fonte Coberta / Rabaçai	RZIA	22.25	Z	1		DUIK FOCK
MB.B.10898	CVU_carb_4876	Fonte Coberta / Rabaçal	FC19c	21.40	1	1	Soaresirhynchia bouchardi	brachiopod
MB B 10898	CVII carb 4932	Fonte Coberta / Rabacal	FC19c	21 40	1	1		hulk rock
MD D 10007		Fonte Coberta / Rabaçai	FC17J	16.00	1	1		burk i ber
MB'R'10881	CVU_carb_48/3	Fonte Coberta / Rabaçal	FC1/d	16.80	1	1	Soaresirnynchia boucharai	brachiopod
MB.B.10897	CVU_carb_4874	Fonte Coberta / Rabaçal	FC17d	16.80	1	1	Soaresirhynchia bouchardi	brachiopod
MR R 10897	CVII carb 4875	Fonte Coherta / Rabacal	FC17d	16.80	1	1	Soaresirhynchia houchardi	hrachionod
MD D 10007			FC171	16.00	1	1	Souresh hynema boucharai	
MB'R'10881	CVU_carb_4942	Fonte Coberta / Rabaçal	FC17d	16.80	1	1		bulk rock
MB.B.10894	CVU_carb_4856	Fonte Coberta / Rabaçal	FC17a	15.40	2	1	Soaresirhynchia bouchardi	brachiopod
MB B 10894	CVII carh 4857	Fonte Coherta / Rabacal	FC17a	15 40	2	1	Sogresirhynchia houchardi	hrachionod
		Fonte Cole (D.)	101/a D047	15.70	2	1		
MR'R'108A4	LVU_carb_4858	ronte Coberta / Rabaçal	FC17a	15.40	2	1	Soaresırhynchia bouchardi	prachiopod
MB.B.10895	CVU_carb 4859	Fonte Coberta / Rabacal	FC17a	15.40	2	2	Soaresirhynchia bouchardi	brachiopod
		Eanta Cabarta / Dabagal	FC172	15 40	2	2	Soaresirhunchia houchardi	hrachioned
כגסחדיםיחיה	CVII carb 1060		rur/d	13.40	2	2		brachiopou
NO D 1000	CVU_carb_4860	Fonte Coberta / Rabaçai	DO - E	15.40	2	2	Soaresirhynchia bouchardi	brachiopod
MB.B.10895	CVU_carb_4860 CVU_carb_4861	Fonte Coberta / Rabaçal	FC17a					1
MB.B.10895 MB.B.10895	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a	15 40	2	2	Sogresirhynchia houchardi	brachionod
MB.B.10895 MB.B.10895 MB.B.10895	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a	15.40	2	2	Soaresirhynchia bouchardi	brachiopod
MB.B.10895 MB.B.10895 MB.B.10895	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a	15.40 15.40	2 2	2 2	Soaresirhynchia bouchardi Soaresirhynchia bouchardi	brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a	15.40 15.40 15.40	2 2 2	2 2 2	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi	brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40	2 2 2 2	2 2 2 3	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia houchardi	brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10896	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40	2 2 2 2	2 2 2 3	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi	brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40	2 2 2 2 1	2 2 2 3 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40 15.40	2 2 2 1 1	2 2 3 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40 15.40 15.40	2 2 2 1 1 1	2 2 3 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890 CVU_carb_4890	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40 15.40 15.40	2 2 2 1 1 1	2 2 3 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890 CVU_carb_4891	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	$15.40 \\ 15.4$	2 2 2 1 1 1 1 1	2 2 3 1 1 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890 CVU_carb_4891 CVU_carb_4892	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	$15.40 \\ 15.4$	2 2 2 1 1 1 1 1 1	2 2 3 1 1 1 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10896 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890 CVU_carb_4891 CVU_carb_4892 CVU_carb_4892	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40	2 2 2 1 1 1 1 1 1 1	2 2 3 1 1 1 1 1 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890 CVU_carb_4891 CVU_carb_4892 CVU_carb_4893 CVU_carb_4893	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40	2 2 2 1 1 1 1 1 1 1 2	2 2 3 1 1 1 1 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod
MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10895 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10893 MB.B.10894	CVU_carb_4860 CVU_carb_4861 CVU_carb_4862 CVU_carb_4863 CVU_carb_4864 CVU_carb_4865 CVU_carb_4888 CVU_carb_4889 CVU_carb_4890 CVU_carb_4891 CVU_carb_4892 CVU_carb_4893 CVU_carb_4893	Fonte Coberta / Rabaçal Fonte Coberta / Rabaçal	FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a FC17a	15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40	2 2 2 1 1 1 1 1 1 2	2 2 3 1 1 1 1 1 1 1	Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia bouchardi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi Soaresirhynchia cf. flamandi	brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod brachiopod

	02/07/2018
	02/07/2018
	02/07/2018
	02/07/2018
	02/07/2018
	02/07/2018
	02/07/2010
bulk rock	02/07/2018
	10/04/2018
· 1	10/01/2010
ventral	02/05/2018
ventral	02/05/2018
	02/05/2010
ventral	02/05/2018
calcite cement	02/05/2018
wontrol	02/05/2019
venual	02/05/2018
ventral	02/05/2018
vontral	02/05/2018
ventral	02/03/2010
dorsal	02/05/2018
dorsal	02/05/2018
	02/05/2010
dorsal	02/05/2018
	29/06/2018
	20/00/2010
	29/06/2018
	29/06/2018
	20/06/2018
	29/00/2010
	29/06/2018
	29/06/2018
	20/06/2010
	29/06/2018
	29/06/2018
	29,06,2018
	29/00/2010
bulk rock	06/07/2018
	06/07/2018
	06/07/2010
	06/07/2018
	06/07/2018
	20/06/2019
	27/00/2010
	29/06/2018
	29/06/2010
	27/00/2010
	29/06/2018
	29/06/2018
	20/06/2010
	29/06/2018
	29/06/2018
	29/00/2010
	29/06/2018
	29/06/2018
ani cal lin a	20/00/2010
apical line	29/06/2018
bulk rock	29/06/2018
	10/04/2019
_	10/04/2018
ventral	28/06/2018
ventral	28/06/2018
ventral	20/00/2010
ventral	28/06/2018
dorsal	28/06/2018
	20/00/2010
ventral	28/06/2018
ventral	28/06/2018
dorsal	20/06/2010
uuisai	20/00/2010
ventral	28/06/2018
hulk rock	28/06/2018
buiktoek	20/00/2010
	02/07/2018
	02/07/2018
	02/07/2010
	02/07/2018
	02/07/2018
	02/07/2018
	02/07/2018
	02/07/2018
	18/07/2018
	10/07/2010
	18/07/2018
	18/07/2018
dorsal	07/04/2019
dorcal	07/04/2010
uorsar	07/04/2017
dorsal	07/04/2019
dorsal	09/04/2019
dorsal	00/04/2010
uorsar	09/04/2019
dorsal	09/04/2019
	14/04/2010
, ,	14/04/2017
uorsai	25/03/2019
dorsal	25/03/2019
ventral	25/02/2010
	20/00/2017
ventral	25/03/2019
	14/04/2019
	14/04/2010
	14/04/2019
	14/04/2019
ventral	07/04/2010
venual	07/04/2019
	14/04/2019
	07/04/2010
	07/04/2019
	07/04/2019
	07/04/2019
	14/04/0012
	14/04/2019
ventral	06/04/2019
ventral	06/04/2010
ventral	06/04/2019
ventral	06/04/2019
ventral	06/04/2010
venual	00/04/2019
ventral	06/04/2019
ventral	06/04/2010
venuar	00/04/2019
dorsal	06/04/2019
dorsal	06/04/2010
	00/04/2019
dorsal	A F F F
	06/04/2019
ventral	06/04/2019 06/04/2019
ventral	06/04/2019 06/04/2019
ventral ventral	06/04/2019 06/04/2019 08/04/2019
ventral ventral ventral	06/04/2019 06/04/2019 08/04/2019 08/04/2019
ventral ventral ventral	06/04/2019 06/04/2019 08/04/2019 08/04/2019
ventral ventral ventral ventral	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019
ventral ventral ventral dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019
ventral ventral ventral dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019
ventral ventral ventral dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019
ventral ventral ventral dorsal dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019
ventral ventral ventral dorsal dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019
ventral ventral ventral dorsal dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 14/04/2019
ventral ventral ventral dorsal dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 14/04/2019 08/04/2019
ventral ventral ventral dorsal dorsal dorsal dorsal	06/04/2019 06/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 08/04/2019 14/04/2019 08/04/2019

	MB.B.10891	CVU_carb_4895 Fonte Coberta / Rabaçal FC16e	14.80 1 1	1 Soaresirhynchia bouchardi	brachiopod	dorsal	08/04/2019	24/04/2019	97.0	2.68	0.485	0.013	0.068	1.58	0.21	21/04/2019	100.1	3.48 -2.4	46
	MB.B.10891	CVU_carb_4896 Fonte Coberta / Rabaçal FC16e	14.80 1 1	1 Soaresirhynchia bouchardi	brachiopod	dorsal	08/04/2019	24/04/2019	97.1	2.61	0.485	0.014	0.079	1.67	0.05	21/04/2019	100.1	3.44 -2.5	56
	MB.B.10891	CVU_carb_4897 Fonte Coberta / Rabaçal FC16e	14.80 1 1	1 Soaresirhynchia bouchardi	brachiopod	ventral	08/04/2019	24/04/2019	97.2	2.79	0.482	0.017	0.158	1.50	0.15	21/04/2019	101.0	3.33 -2.5	51
	MB.B.10891	CVU_carb_4898 Fonte Coberta / Rabaçal FC16e	14.80 1 1	1 Soaresirhynchia bouchardi	brachiopod	ventral	08/04/2019	24/04/2019	96.5	3.07	0.503	0.022	0.327	1.83	0.12	21/04/2019	100.4	3.35 -2.4	ł7
	MB.B.10891	CVU_carb_4899 Fonte Coberta / Rabaçal FC16e	14.80 1 1	1 Soaresirhynchia bouchardi	brachiopod	ventral	08/04/2019	24/04/2019	97.1	3.29	0.507	0.020	0.183	2.01	0.10	21/04/2019	100.3	3.38 -2.7	/1
	MB.B.10892	CVU_carb_4939 Fonte Coberta / Rabaçal FC16e	14.80 1 2	2	bulk rock		14/04/2019	24/04/2019	46.2	41.14	0.524	0.861	32.191	2.76	2.84	21/04/2019	47.0	0.96 -3.9	<i>€</i> 7
	MB.B.10889	CVU_carb_4819 Fonte Coberta / Rabaçal FC16d	14.20 1 1	1 Soaresirhynchia bouchardi	brachiopod	ventral	25/03/2019	17/04/2019	97.8	3.47	0.529	0.009	0.074	1.90	0.22	30/03/2019	100.5	2.49 -2.4	49 50
	MB.B.10889	CVU_carb_4820 Fonte Coberta / Rabaçal FC16d	14.20 1 1	1 Soaresirhynchia boucharai	brachiopod	ventral	25/03/2019	17/04/2019	96.9	3.01	0.529	0.014	0.190	1.27	0.22	30/03/2019	99.8	2.42 -2.5	98 50
Nor-eq Noreq Nor-eq Nor-eq Nor-eq <td>MB.B.10889 MD D 10900</td> <td>CVU_carb_4821 Fonte Coberta / Rabaçal FC16d</td> <td>14.20 I I</td> <td>1 Soaresirhynchia bouchardi</td> <td>brachiopod</td> <td>derral</td> <td>25/03/2019</td> <td>17/04/2019</td> <td>97.0</td> <td>4.68</td> <td>0.593</td> <td>0.011</td> <td>0.092</td> <td>2.22</td> <td>0.21</td> <td>30/03/2019</td> <td>100.6</td> <td>2.24 -2.5 2.25 2.5</td> <td>99 50</td>	MB.B.10889 MD D 10900	CVU_carb_4821 Fonte Coberta / Rabaçal FC16d	14.20 I I	1 Soaresirhynchia bouchardi	brachiopod	derral	25/03/2019	17/04/2019	97.0	4.68	0.593	0.011	0.092	2.22	0.21	30/03/2019	100.6	2.24 -2.5 2.25 2.5	99 50
	MD.D.10090 MR R 10800	CVU_calb_4622 Foille Coberta / Rabaçal FC16d	14.20 1 2 14.20 1 2	2 Souresin hynchia bouchardi	brachiopod	dorsal	25/05/2019	17/04/2019	97.4	3.30 2.86	0.499	0.030	0.300	1.02	0.07	30/03/2019	100.9	2.35 -2.5 2.40 25)0 55
	MB R 10890	CVU_carb_4824 Fonte Coberta / Rabaçai FC16d	14 20 1 2	2 Soaresirhynchia bouchardi	brachiopod	ventral	25/03/2019	17/04/2019	97.0	2.00	0.492	0.014	0.140	1.27	0.22	30/03/2019	100.5	2.49 -2.5	58
Normal	MB R 10890	CVU_carb_4825 Fonte Coberta / Rabaçai FC16d	14 20 1 2	2 Soaresirhynchia bouchardi	brachiopod	ventral	25/03/2019	17/04/2019	97.0	2.00	0.492	0.017	0.104	1.14	0.20	30/03/2019	100.1	2.40 -2.5	61
Norm	MB B 10889	CVII carb 4948 Fonte Coberta / Rabaçal FC16d	14 20 1 1	1	bulk rock	ventrai	14/04/2019	24/04/2019	70.7	28.73	0.465	0.493	19 028	1.10	1.03	21/04/2019	73.7	172 -41	18
Allow of the second o	MB.B.20343	CVU carb 4928 Fonte Coberta / Rabaçal FC16c	13.75 1 1	1	bulk rock		14/04/2019	24/04/2019	57.0	28.98	0.913	0.425	13.630	2.09	1.77	21/04/2019	59.6	0.48 -4.1	15
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	MB.B.10885	CVU carb 4878 Fonte Coberta / Rabacal FC14c	7.30 1 1	1 Nannirhynchia pygmaea	brachiopod	ventral	07/04/2019	24/04/2019	92.5	1.92	0.499	0.031	0.237	1.43	0.22	18/04/2019	100.1	3.63 -1.6	60
	MB.B.20341	CVU_carb_4906 Fonte Coberta / Rabaçal FC14c	7.30 2 2	2 Harpax spinosa	bivalve		12/04/2019	24/04/2019	95.7	11.43	0.894	0.153	0.792	3.57	0.26	21/04/2019	100.7	2.66 -1.9) 4
Balance <	MB.B.10885	CVU_carb_4930 Fonte Coberta / Rabaçal FC14c	7.30 1 1	1	bulk rock		14/04/2019	24/04/2019	68.1	27.30	0.727	0.508	19.642	1.79	1.01	21/04/2019	71.4	1.86 -3.8	35
Halles Control Control <th< td=""><td>MB.B.10882</td><td>CVU_carb_4885 Fonte Coberta / Rabaçal FC14b</td><td>6.90 1 1</td><td>1 Nannirhynchia pygmaea</td><td>brachiopod</td><td>ventral</td><td>08/04/2019</td><td>24/04/2019</td><td>97.6</td><td>2.09</td><td>0.568</td><td>0.018</td><td>0.053</td><td>1.77</td><td>0.18</td><td>18/04/2019</td><td>100.1</td><td>3.85 -1.5</td><td>55</td></th<>	MB.B.10882	CVU_carb_4885 Fonte Coberta / Rabaçal FC14b	6.90 1 1	1 Nannirhynchia pygmaea	brachiopod	ventral	08/04/2019	24/04/2019	97.6	2.09	0.568	0.018	0.053	1.77	0.18	18/04/2019	100.1	3.85 -1.5	55
	MB.B.10882	CVU_carb_4886 Fonte Coberta / Rabaçal FC14b	6.90 1 1	1 Nannirhynchia pygmaea	brachiopod	dorsal	08/04/2019	24/04/2019	97.5	1.68	0.529	0.020	0.122	1.32	0.09	18/04/2019	100.6	3.91 -1.6	57
	MB.B.10883	CVU_carb_4887 Fonte Coberta / Rabaçal FC14b	6.90 1 2	2 Nannirhynchia pygmaea	brachiopod		08/04/2019	24/04/2019	97.3	1.62	0.543	0.016	0.061	1.10	0.21	18/04/2019	100.3	3.79 -1.6	51
	MB.B.10883	CVU_carb_4940 Fonte Coberta / Rabaçal FC14b	6.90 1 2	2	bulk rock		14/04/2019	24/04/2019	76.5	23.86	0.515	0.441	13.650	1.71	1.60	21/04/2019	78.9	2.03 -3.9) 6
	MB.B.10879	CVU_carb_4837 Fonte Coberta / Rabaçal FC13e	6.10 1 1	1 Nannirhynchia pygmaea	brachiopod		05/04/2019	17/04/2019	97.8	1.65	0.557	0.013	0.087	1.08	0.08	18/04/2019	97.2	4.21 -1.7	/1
	MB.B.10879	CVU_carb_4838 Fonte Coberta / Rabaçal FC13e	6.10 1 1	1 Nannirhynchia pygmaea	brachiopod	other	05/04/2019	17/04/2019	96.2	1.86	0.543	0.008	0.027	1.03	0.21	18/04/2019	100.3	4.30 -1.6	51
	MB.B.10879	CVU_carb_4839 Fonte Coberta / Rabaçal FC13e	6.10 1 1	1 Nannirhynchia pygmaea	brachiopod	other	05/04/2019	17/04/2019	96.8	1.97	0.538	0.009	0.049	1.31	0.13	18/04/2019	98.6	4.22 -1.6	4د
	MB.B.10879	CVU_carb_4840 Fonte Coberta / Rabaçal FC13e	6.10 1 1	1 Nannirhynchia pygmaea	brachiopod	other	05/04/2019	17/04/2019	96.5	2.29	0.562	0.015	0.166	1.55	0.10	18/04/2019	100.2	4.35 -1.4	16
	MB.B.10880	CVU_carb_4841 Fonte Coberta / Rabaçal FC13e	6.10 1 2	2 Nannirhynchia pygmaea	brachiopod	ventral	05/04/2019	17/04/2019	97.0	1.14	0.574	0.015	0.059	0.89	0.10	18/04/2019	100.4	4.30 -1.4	17
Norm Norm Norm Norm N	MB.B.10880	CVU_carb_4842 Fonte Coberta / Rabaçal FC13e	6.10 1 2	2 Nannirhynchia pygmaea	brachiopod	ventral	05/04/2019	17/04/2019	97.2	1.36	0.512	0.007	0.023	0.80	0.11	18/04/2019	100.2	4.39 -1.4	+1 ()
Better Control District District <thdistrict< th=""> <thdistrict< th=""> <thd< td=""><td>MB.B.10880</td><td>CVU_carb_4843 Fonte Coberta / Rabaçal FC13e</td><td>6.10 I 2 (10 1 7</td><td>2 Nannirhynchia pygmaea</td><td>brachiopod</td><td>ventral</td><td>05/04/2019</td><td>17/04/2019</td><td>97.1</td><td>1.23</td><td>0.542</td><td>0.014</td><td>0.046</td><td>0.86</td><td>0.14</td><td>18/04/2019</td><td>99.5</td><td>4.30 -1.0</td><td>)3 11</td></thd<></thdistrict<></thdistrict<>	MB.B.10880	CVU_carb_4843 Fonte Coberta / Rabaçal FC13e	6.10 I 2 (10 1 7	2 Nannirhynchia pygmaea	brachiopod	ventral	05/04/2019	17/04/2019	97.1	1.23	0.542	0.014	0.046	0.86	0.14	18/04/2019	99.5	4.30 -1.0)3 11
Bit	MB.B.10880 MD D 10001	CVU_carb_4844 Fonte Coberta / Rabaçai FC13e	0.10 I 2 6.10 1 2	2 Nannirhynchia pygmaea	brachiopod	uorsal	05/04/2019	17/04/2019	97.8	1.08	0.538	0.024	0.237	0.97	0.19	18/04/2019	101.3	3.90 -2.1	.1
Control Contro Control Control <th< td=""><td>MD.D.10001 MR R 10881</td><td>CVU_carb_4846 Fonte Coberta / Pabacal FC13e</td><td>6.10 1 3</td><td>Nannirhynchia pyghlaeu</td><td>brachiopod</td><td>ventral</td><td>05/04/2019</td><td>17/04/2019</td><td>97.2</td><td>1.02</td><td>0.499</td><td>0.008</td><td>0.030</td><td>0.92</td><td>0.08</td><td>10/04/2019</td><td>99.0</td><td>3.90 -1.0 4.20 -1.0</td><td>12</td></th<>	MD.D.10001 MR R 10881	CVU_carb_4846 Fonte Coberta / Pabacal FC13e	6.10 1 3	Nannirhynchia pyghlaeu	brachiopod	ventral	05/04/2019	17/04/2019	97.2	1.02	0.499	0.008	0.030	0.92	0.08	10/04/2019	99.0	3.90 -1.0 4.20 -1.0	12
b b	MB.B.10001 MB B 10876	CVU_carb_4040 Fonte Coberta / Rabaçai FC13e	5 50 1 1	1 Nannirhynchia pygmaea	brachiopod	ventrai	12/04/2019	24/04/2019	96.7	1.01	0.511	0.017	0.035	1.46	0.00	21/04/2019	99.7	4.20 $-1.44.31$ -1.4	73 49
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	MB.B.10070 MB B 10876	CVU_carb_4910 Fonte Coberta / Rabaçal FC13d	5.50 1 1	1 Nannirhynchia pygmaea	brachiopod		12/04/2019	24/04/2019	973	1.91	0.534	0.010	0.033	1.40	0.11	21/04/2019	100.6	4.21 -1.4	 4.4
Bit Ale I Discription Loop Discripi Discripi Discri	MB.B.10070 MB B 10877	CVU carb 4911 Fonte Coberta / Rabaçal FC13d	5.50 1 2	Nannirhynchia pygmaea Nannirhynchia nyamaea	brachiopod		12/04/2019	24/04/2019	967	2.27	0.541	0.000	0.025	1.55	0.12	21/04/2019	100.0	413 -15	55
distant distant field distant	MB.B.10077 MB B 10878	CVU carb 4912 Fonte Coberta / Rabaçal FC13d	5.50 1 3	Nannirhynchia pygmaea	brachiopod		12/04/2019	24/04/2019	96.8	1.61	0.582	0.014	0.100	1.39	0.13	21/04/2019	100.0	375 -15	58 58
ali nori bi noris will	MB B 20338	CVII carb 4924 Fonte Coberta / Rabaçal FC13d	5 50 2 1	1 Harnax spinosa	hivalve		12/04/2019	24/04/2019	95.8	7.90	0.963	0.046	0.550	1.20	0.13	21/04/2019	101.5	349 -15	50
distant instant condition condif condif condif </td <td>MB.B.20338</td> <td>CVU carb 4938 Fonte Coberta / Rabaçal FC13d</td> <td>5.50 2 1</td> <td>1</td> <td>bulk rock</td> <td></td> <td>14/04/2019</td> <td>24/04/2019</td> <td>55.1</td> <td>31.82</td> <td>0.815</td> <td>0.486</td> <td>23.769</td> <td>2.43</td> <td>1.73</td> <td>21/04/2019</td> <td>57.1</td> <td>1.88 -3.8</td> <td>86</td>	MB.B.20338	CVU carb 4938 Fonte Coberta / Rabaçal FC13d	5.50 2 1	1	bulk rock		14/04/2019	24/04/2019	55.1	31.82	0.815	0.486	23.769	2.43	1.73	21/04/2019	57.1	1.88 -3.8	86
BESED Markel C-28 Introde F and S I Markel C-29 Marke	MB.B.20336	CVU carb 4907 Fonte Coberta / Rabaçal FC13c	4.90 2 1	1 Harpax spinosa	bivalve		12/04/2019	24/04/2019	95.6	9.88	1.262	0.067	0.331	1.53	0.15	21/04/2019	100.8	3.10 -1.7	74
Bit Bit Minister Bit Bit Minister Bit M	MB.B.20336	CVU carb 4908 Fonte Coberta / Rabacal FC13c	4.90 2 1	1 Harpax spinosa	bivalve		12/04/2019	24/04/2019	95.3	10.24	1.033	0.060	0.348	1.52	0.26	21/04/2019	100.5	3.53 -1.5	54
MIL MIL <td>MB.B.10874</td> <td>CVU_carb_4913 Fonte Coberta / Rabaçal FC13c</td> <td>4.90 1 1</td> <td>1 Nannirhynchia pygmaea</td> <td>brachiopod</td> <td>ventral</td> <td>12/04/2019</td> <td>24/04/2019</td> <td>96.8</td> <td>1.28</td> <td>0.555</td> <td>0.009</td> <td>0.012</td> <td>1.07</td> <td>0.08</td> <td>21/04/2019</td> <td>121.4</td> <td>3.79 -1.5</td> <td>54</td>	MB.B.10874	CVU_carb_4913 Fonte Coberta / Rabaçal FC13c	4.90 1 1	1 Nannirhynchia pygmaea	brachiopod	ventral	12/04/2019	24/04/2019	96.8	1.28	0.555	0.009	0.012	1.07	0.08	21/04/2019	121.4	3.79 -1.5	54
MB-100 Clark -10 Implement (Marked Marked M	MB.B.20337	CVU_carb_4946 Fonte Coberta / Rabaçal FC13c	4.90 2 2	2	bulk rock		14/04/2019	24/04/2019	60.5	30.33	0.910	0.566	21.210	2.55	2.23	21/04/2019	62.0	1.90 -3.8	32
Hall MD Cluring MD Dirac Shart Market Cluring MD Dirac Shart Market Dirac Shart Market <t< td=""><td>MB.B.10873</td><td>CVU_carb_4941 Fonte Coberta / Rabaçal FC13b</td><td>4.25 1 1</td><td>1</td><td>bulk rock</td><td></td><td>14/04/2019</td><td>24/04/2019</td><td>68.0</td><td>28.29</td><td>0.609</td><td>0.428</td><td>19.906</td><td>2.54</td><td>1.26</td><td>21/04/2019</td><td>71.1</td><td>1.95 -3.8</td><td>30</td></t<>	MB.B.10873	CVU_carb_4941 Fonte Coberta / Rabaçal FC13b	4.25 1 1	1	bulk rock		14/04/2019	24/04/2019	68.0	28.29	0.609	0.428	19.906	2.54	1.26	21/04/2019	71.1	1.95 -3.8	30
Hall Deep Column Call Dies Loope Call <thdies call<="" loope="" th=""> Dies Loope</thdies>	MB.B.10869	CVU_carb_4879 Fonte Coberta / Rabaçal FC13a	3.30 1 1	1 Cirpa fallax	brachiopod	ventral	07/04/2019	24/04/2019	97.7	1.90	0.496	0.081	0.051	1.20	0.04	18/04/2019	100.4	4.03 -1.4	43
Philo Philo <th< td=""><td>MB.B.10869</td><td>CVU_carb_4880 Fonte Coberta / Rabaçal FC13a</td><td>3.30 1 1</td><td>1 Cirpa fallax</td><td>brachiopod</td><td>ventral</td><td>07/04/2019</td><td>24/04/2019</td><td>96.7</td><td>1.52</td><td>0.471</td><td>0.015</td><td>0.094</td><td>1.24</td><td>0.14</td><td>18/04/2019</td><td>100.3</td><td>4.03 -1.3</td><td>31</td></th<>	MB.B.10869	CVU_carb_4880 Fonte Coberta / Rabaçal FC13a	3.30 1 1	1 Cirpa fallax	brachiopod	ventral	07/04/2019	24/04/2019	96.7	1.52	0.471	0.015	0.094	1.24	0.14	18/04/2019	100.3	4.03 -1.3	31
MEXAMP CPL 3.5 L CPL 3.5 L CPL 1.5 CPL 1.5 CPL 1.5	MB.B.10869	CVU_carb_4881 Fonte Coberta / Rabaçal FC13a	3.30 1 1	1 Cirpa fallax	brachiopod	ventral	07/04/2019	24/04/2019	97.3	1.76	0.486	0.013	0.047	1.23	0.11	18/04/2019	100.5	4.05 -1.3	37
Hill Cold Old, Zel, Lie Full Cold, Zel, Lie Full Cold, Zel, Lie Full Cold, Zel, Lie State Cold Zign (2011) E.G. Lie Zign (2011)	MB.B.10869	CVU_carb_4882 Fonte Coberta / Rabaçal FC13a	3.30 1 1	1 Cirpa fallax	brachiopod	dorsal	07/04/2019	24/04/2019	97.2	1.50	0.499	0.011	0.037	1.04	0.11	18/04/2019	101.7	4.12 -1.3	34
Mittaling Oli is de lass Sec Address / Price Coli is de lass Oli is	MB.B.10869	CVU_carb_4883 Fonte Coberta / Rabaçal FC13a	3.30 1 1	1 Cirpa fallax	brachiopod	dorsal	07/04/2019	24/04/2019	97.7	1.56	0.479	0.012	0.061	1.46	0.18	18/04/2019	81.2	4.14 -1.2	22
Mail Sim Optical Control Result Calls	MB.B.10869	CVU_carb_4884 Fonte Coberta / Rabaçal FC13a	3.30 1 1	1 Cirpa fallax	brachiopod	dorsal	07/04/2019	24/04/2019	97.4	1.76	0.479	0.013	0.088	1.32	0.13	18/04/2019	101.0	4.07 -1.4	41
Dist Dist <th< td=""><td>MB.B.10870</td><td>CVU_carb_4927 Fonte Coberta / Rabaçal FC13a</td><td>3.30 2 1</td><td>1 Cirpa fallax</td><td>brachiopod</td><td>ventral</td><td>13/04/2019</td><td>24/04/2019</td><td>97.0</td><td>0.93</td><td>0.553</td><td>0.068</td><td>0.145</td><td>1.94</td><td>0.01</td><td>21/04/2019</td><td>100.4</td><td>3.71 -1.4</td><td>41</td></th<>	MB.B.10870	CVU_carb_4927 Fonte Coberta / Rabaçal FC13a	3.30 2 1	1 Cirpa fallax	brachiopod	ventral	13/04/2019	24/04/2019	97.0	0.93	0.553	0.068	0.145	1.94	0.01	21/04/2019	100.4	3.71 -1.4	41
Mike Links Optical Loop Constrainty Loop Loop <thloop< th=""> Loop <thloop< th=""></thloop<></thloop<>	MB.B.10864	CVU_carb_4866 Fonte Coberta / Rabaçal FC12	2.35 2 1	1 Cirpa fallax	brachiopod	ventral	07/04/2019	24/04/2019	97.3	2.14	0.492	0.020	0.053	1.85	0.13	18/04/2019	100.4	3.56 -1.2	27
MILLINGS OUTLINE ADD Mark Genery / Mark S Constrained method Operation method	MB.B.10864	CVU_carb_4867 Fonte Coberta / Rabaçal FC12	2.35 2 1	1 Cirpa fallax	brachiopod	dorsal	07/04/2019	24/04/2019	96.0	2.39	0.505	0.035	0.188	1.51	0.14	18/04/2019	99.8	3.56 -1.4	45 1.0
Mail Line: Operational Plane and Plane	MB.B.10865	CVU_carb_4868 Fonte Coberta / Rabaçal FC12	2.35 2 2	2 Cirpa fallax	brachiopod	ventral	07/04/2019	24/04/2019	96.9	1.30	0.543	0.016	0.078	1.27	0.09	18/04/2019	99.8	4.08 -1.4	40 22
She Dots Originary Party Data Data <thd< td=""><td>MB.B.10865</td><td>CVU_carb_4869 Fonte Coberta / Rabaçal FC12</td><td>2.35 2 2</td><td>2 Cırpa fallax</td><td>brachiopod</td><td>dorsal</td><td>07/04/2019</td><td>24/04/2019</td><td>96.5</td><td>1.13</td><td>0.515</td><td>0.016</td><td>0.078</td><td>0.78</td><td>0.07</td><td>18/04/2019</td><td>99.8</td><td>4.20 -1.3</td><td>32</td></thd<>	MB.B.10865	CVU_carb_4869 Fonte Coberta / Rabaçal FC12	2.35 2 2	2 Cırpa fallax	brachiopod	dorsal	07/04/2019	24/04/2019	96.5	1.13	0.515	0.016	0.078	0.78	0.07	18/04/2019	99.8	4.20 -1.3	32
Bit Res Control (Larry Lar) Source (Larry Lar) Source (Larry Lar) Control (Larry Lar) <th< td=""><td>MB.B.10862 MD D 10962</td><td>CVU_carb_4914 Fonte Coberta / Rabaçal FC12</td><td></td><td>1 Soaresirhynchia bouchardi</td><td>brachiopod</td><td>ventral</td><td>12/04/2019</td><td>24/04/2019</td><td>96.9</td><td>3.49 5.10</td><td>0.561</td><td>0.017</td><td>0.121</td><td>1.57</td><td>0.20</td><td>21/04/2019</td><td>100.6</td><td>5.58 -1.0</td><td>)9 26</td></th<>	MB.B.10862 MD D 10962	CVU_carb_4914 Fonte Coberta / Rabaçal FC12		1 Soaresirhynchia bouchardi	brachiopod	ventral	12/04/2019	24/04/2019	96.9	3.49 5.10	0.561	0.017	0.121	1.57	0.20	21/04/2019	100.6	5.58 -1.0)9 26
HDL 1000 OVE_carL, 907 Parts Log 42 (2) Parts Log 42 (2) Parts Parts Parts Parts	MD.D.10005 MR R 10862	CVU_carb_4915 Fonte Coberta / Rabaçal FC12	2.35 1 2	2 Souresin hynchia bouchardi	brachiopod	ventral	12/04/2019	24/04/2019	97.0	5.10 1 27	0.054	0.032	0.375	2.39	0.24	21/04/2019	100.7	4.32 -2.3 126 22	22 10
MH LG 201 OUT Lank-Wolf Performed Perfor	MB R 10864	CVU_carb_4910 Fonte Coberta / Rabaçal FC12	2.35 1 2 235 2 1	1	bulk rock	ventrai	12/04/2019	24/04/2019	70.0 79.7	4.37 24 51	0.570	0.014	12 830	2.20	0.12	21/04/2019	82.8	4.30 -2.3 1.78 -3.6	73 69
X012.021 CVIL.01.4010 Set Action CVIL.01.402 Set Action	MB R 20331	CVU carb 4900 Fonte Coberta / Rabaçal FC12	1.85 1 1	1 Harnax sninosa	hivalve		08/04/2019	24/04/2019	95.9	941	0.843	0.169	0.894	2.01	0.35	21/04/2019	999	203 -19	93
MILLIGN: CVIL, and, 400 CVIL, and, 40	MB.B.20331	CVU carb 4901 Fonte Coberta / Rabaçal FC11	1.85 1 1	1 Harpax spinosa	bivalve		08/04/2019	24/04/2019	96.4	7.30	0.935	0.101	0.363	1.44	0.29	21/04/2019	100.1	1.91 -1.4	48
M12.1320 OTIL Distance Astern Future	MB.B.20331	CVU carb 4902 Fonte Coberta / Rabacal FC11	1.85 1 1	1 Harpax spinosa	bivalve		08/04/2019	24/04/2019	96.3	8.70	0.819	0.184	0.789	1.55	0.71	21/04/2019	100.4	1.96 -1.5	55
Best Norse Oxige 1, 249 Post Lober 1, Mascip <	MB.B.20332	CVU_carb_4933 Fonte Coberta / Rabaçal FC11	1.85 1 2	2	bulk rock		14/04/2019	24/04/2019	55.8	36.54	0.585	0.524	26.772	2.38	1.93	21/04/2019	58.1	0.51 -3.9) 5
MBL 3089 CVL, and 342 Field Colorer / Bases Fi	MB.B.10859	CVU_carb_4826 Fonte Coberta / Rabaçal FC10	1.45 4 1	1 Cirpa fallax	brachiopod	ventral	25/03/2019	17/04/2019	96.8	2.54	0.474	0.050	0.568	1.36	0.31	30/03/2019	99.0	2.62 -2.3	30
MH.B1807 VIII _ intrivition Free Coherry / Mahayi FFE 1 Composition emachaged emachag	MB.B.10859	CVU_carb_4827 Fonte Coberta / Rabaçal FC10	1.45 4 1	1 Cirpa fallax	brachiopod	ventral	25/03/2019	17/04/2019	97.4	1.97	0.488	0.013	0.037	1.16	0.27	30/03/2019	100.4	3.27 -1.1	13
Bits 1089 CVU_gards 429 Feater Oster J Abback FCI0 1.45 4 1 Computation Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	MB.B.10859	CVU_carb_4828 Fonte Coberta / Rabaçal FC10	1.45 4 1	1 Cirpa fallax	brachiopod	ventral	25/03/2019	17/04/2019	97.3	2.06	0.512	0.020	0.086	1.30	0.25	30/03/2019	99.8	3.03 -1.2	20
MBL005 OVULAT#481 Financial forme falters / Balaget I.57 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.12 3107(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 3007(201) 0.13 1.31 0.13 1.31 0.13 1.31 0.13 1.31 0.13 1.31 0.13 1.31 0.13 1.31 0.13 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14 1.31 0.14	MB.B.10859	CVU_carb_4829 Fonte Coberta / Rabaçal FC10	1.45 4 1	1 Cirpa fallax	brachiopod	dorsal	25/03/2019	17/04/2019	97.4	2.42	0.548	0.016	0.053	1.57	0.26	30/03/2019	99.9	3.26 -1.0	J6
MBL 10000 CVU_Cart,4833 Prote Cheart / Makesi Fr.1 1.4.5 4.4 1 Comp Max Franchogo direral 25/07/2019 17/14/218 97.3 2.21 0.510 0.019 0.019 1.010 1.3.8 0.10 1.8/04/2018 91.1 3.13 1.3.1 1.1.1 MBL 10000 CVU_Cart,4835 France Cheart / Makesi France Cheart / Maksi France Cheart / Makesi <td>MB.B.10859</td> <td>CVU_carb_4830 Fonte Coberta / Rabaçal FC10</td> <td>1.45 4 1</td> <td>1 Cirpa fallax</td> <td>brachiopod</td> <td>dorsal</td> <td>25/03/2019</td> <td>17/04/2019</td> <td>97.1</td> <td>2.31</td> <td>0.551</td> <td>0.021</td> <td>0.058</td> <td>1.57</td> <td>0.12</td> <td>30/03/2019</td> <td>100.2</td> <td>3.18 -1.1</td> <td>18</td>	MB.B.10859	CVU_carb_4830 Fonte Coberta / Rabaçal FC10	1.45 4 1	1 Cirpa fallax	brachiopod	dorsal	25/03/2019	17/04/2019	97.1	2.31	0.551	0.021	0.058	1.57	0.12	30/03/2019	100.2	3.18 -1.1	18
mess transm cvrl, crp, riss solit convert / stangel ritude solit log link link <th< td=""><td>MB.B.10859</td><td>CVU_carb_4831 Fonte Coberta / Rabaçal FC10</td><td>1.45 4 1</td><td>1 Cirpa fallax</td><td>brachiopod</td><td>dorsal</td><td>25/03/2019</td><td>17/04/2019</td><td>97.3</td><td>2.21</td><td>0.510</td><td>0.019</td><td>0.091</td><td>1.38</td><td>0.10</td><td>18/04/2019</td><td>91.1</td><td>3.12 -1.1</td><td>15</td></th<>	MB.B.10859	CVU_carb_4831 Fonte Coberta / Rabaçal FC10	1.45 4 1	1 Cirpa fallax	brachiopod	dorsal	25/03/2019	17/04/2019	97.3	2.21	0.510	0.019	0.091	1.38	0.10	18/04/2019	91.1	3.12 -1.1	15
Base lines Curr, Law, 1983 Found Councer, Journal, Journa, Journal, Journal, Journa, Journal, Journal, Journ	MB.B.10860	LVU_carb_4832 Fonte Coberta / Rabaçal FC10		2 Cirpa fallax	brachiopod	ventral	05/04/2019	17/04/2019	97.3	2.30	0.529	0.014	0.110	1.36	0.14	18/04/2019	96.2	2.61 -1.7	б 1 /
minute outsigned o	MD D 100C0	UVU_CAFD_4833 FONTE LODERTA / Kabaçal FUTU	1.45 4 2	Lirpa fallax	brachiopod	venural	05/04/2019	17/04/2019	9/.Z	3.3Z	U.539 0 E02	0.010	U.U56 0.025	1./1	0.08 0.22	10/04/2019	99.8 100 1	2./σ -1.1 2.00 1.2	_4 ງງ
Instruction	MD.D.10000 MD D 10060	UVU_UAIU_4034 FUILE UUDERIA / KADAÇAL FUIU CVII carb 4835 Fonto Coborta / Pobacal FC10	1.43 4 2 1.45 4 7	L Cirpa Jallax	brachiopod	uuisai dorsal	U3/U4/2U19 05/04/2010	17/04/2019 17/04/2010	97.5 070	2.44 2 20	0.303 0 500	0.007 0.007	0.035 0.052	1.30 1 14	U.22 0 1 1	10/04/2019 18/04/2010	00 A	2.70 -1.2 282 14	.2 40
NB & 20329 CVU, Lark, 492 Fond a babetar, f Bahagal FC10 1.45 3 1 Horpin springer Instant 10//1/2019 24//4/2019 952 10.17 1.136 0.102 0.162 2.17 0.13 21//0/2019 10.03 1.30 2.10 1.31 21//0/2019 1.51 2.10 0.535 0.011 0.055 1.53 0.011 0.055 1.53 0.012 0.055 2.10//1/2019 7.54 0.33 1.80 1.80 1.50 1.55 <td>MD.D.10000 MR R 10860</td> <td>CVU_carb_4055 Funce Coberta / Rabaçal FC10</td> <td>1.45 4 2</td> <td>2 Cirpa fallay</td> <td>brachiopod</td> <td>dorsal</td> <td>05/04/2019</td> <td>17/04/2019</td> <td>97.0</td> <td>2.29</td> <td>0.509</td> <td>0.008</td> <td>0.033</td> <td>1.40</td> <td>0.11</td> <td>10/04/2019</td> <td>99.4</td> <td>2.02 -1.4</td> <td>17 97</td>	MD.D.10000 MR R 10860	CVU_carb_4055 Funce Coberta / Rabaçal FC10	1.45 4 2	2 Cirpa fallay	brachiopod	dorsal	05/04/2019	17/04/2019	97.0	2.29	0.509	0.008	0.033	1.40	0.11	10/04/2019	99.4	2.02 -1.4	17 97
MB.210856 CVU.carb.1402 Format Coherral, Yalancal FOR 1.45 2 1 Nametripunche prymoes brachinged reveral 11/04/2019 24/04/2019 0.63 0.031 0.050 1.36 0.05 21/04/2019 10.54 2.30 0.045 MBL2.0127 CVU.carb.4501 Format Coherral, Yalancal FOR 1.05 2 1 Nametripunche prymous brachinged 4074 10/04/2019 55.1 2.00 0.053 0.011 0.050 1.23 1.39 10/04/2019 1.05 2 3 1.00 3 0.045 1.16 2 3 1.00 3 0.045 1.16 2 3 Nametripuncher prymoe brachinged dorral 0.07/04/2019 97.4 2.46 0.018 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.012 0.016 0.013 0.016	MR R 20329	CVU carb 4925 Fonte Coherta / Rabacal FC10	1.45 7 2	1 Harnay spinosa	hivalve	uorsui	12/04/2019	24/04/2019	95 2	10 17	1.036	0.030	0.272	2 57	0.00	21/04/2019	100 3	<u></u> -1.0 1.80 -2.1	12
MBL 202329 CVU carb.4944 Finite Coherral, / Balaralia, FCU 1.45 3 1. Instructure Instructure 1.47(4/2119) 24/(4/2119) 251 2.01 0.028 0.043 1.0.409 2.13 1.39 21/(4/2119) 57.4 0.33 1.37(4/2119) 57.4 0.33 1.37(4/2119) 57.4 0.33 1.37(4/2119) 57.4 0.33 1.37(4/2119) 1.57 2.3 1.57 1.55 1.55 0.55 0.018 0.027 1.17 0.13 1.07(4/2119) 97.4 0.34 0.37 1.21 1.07(4/2119) 97.4 0.34 0.37 1.17 0.13 1.07(4/2119) 97.4 0.34 0.37 0.13 0.07(4/2119) 97.4 0.34 0.37 0.12 1.07(4/2119) 97.4 0.34 0.36 0.017 0.33 1.07(4/2119) 2.14 0.38 0.017 0.33 1.07(4/2119) 97.4 0.34 1.39 2.17(4/2119) 97.4 3.4 3.93 1.39 2.17(4/2119) 97.4 0.34 1.39 2.17(4/2119) 1.39 1.33 1.37(4/2119) 1.34 3.33	MB.B.10856	CVU carb 4926 Fonte Coberta / Rabacal FC10	1.45 2 1	1 Nannirhvnchia nvamaea	brachionod	ventral	13/04/2019	24/04/2019	96.8	2.30	0.535	0.011	0.050	1.36	0.05	21/04/2019	100.6	2.83 -1 4	44
MBL 00851 OVL carb. 450 Fourt Coherta / Rabayal FC09 1.05 2 1 Normitrymotic prymose brachingo di scal 05/14/2119 17/14/2119 97.6 2.88 0.491 0.015 1.22 0.13 18/04/2019 10.05 2.28 0.491 0.015 1.22 0.13 18/04/2019 10.05 2.28 0.491 0.015 0.23 1.03 1.04/07/2019 97.6 2.68 0.526 0.005 0.015 0.23 1.02 1.03 2.29 1.43 MB.10837 CVL carb, 4437 Fonte Coherta / Rabayal FC09 1.05 2 3 Normitrymotic prymase brachingo di metal 0.5/(4/2019) 97.6 8.8 2.040 0.013 0.016 0.013 0.016 0.13 1.06/(4/2019) 2.0 3.7.1 1.03 1.06/(4/2019) 2.0 3.7.1 1.01 <td>MB.B.20329</td> <td>CVU_carb_4934 Fonte Coberta / Rabacal FC10</td> <td>1.45 3 1</td> <td>1</td> <td>bulk rock</td> <td></td> <td>14/04/2019</td> <td>24/04/2019</td> <td>55.1</td> <td>26.10</td> <td>0.628</td> <td>0.463</td> <td>16.469</td> <td>2.31</td> <td>1.39</td> <td>21/04/2019</td> <td>57.4</td> <td>0.33 -3.8</td> <td>30</td>	MB.B.20329	CVU_carb_4934 Fonte Coberta / Rabacal FC10	1.45 3 1	1	bulk rock		14/04/2019	24/04/2019	55.1	26.10	0.628	0.463	16.469	2.31	1.39	21/04/2019	57.4	0.33 -3.8	30
MBR 10852 CVU carb, 4851 Pente (oberra / Rabaca) PC09 1.5 2 Neamitynencinggamaa brachioped dors 05/04/2019 7/04/2019 7.6 2.56 0.028 0.027 1.77 0.23 18/04/2019 9.83 2.50 -1.41 MBR 10852 CVU carb, 4943 Ponte Oberra / Rabaca) PC09 1.65 2 3 Namitryneicinggamaa brachioped 0.04/2019 2.64 0.43 0.043 1.047 2.86 1.18 21/04/2019 9.14 3.4 3.26 -1.41 MBR 10852 CVU carb, 4943 Ponte Oberra / Rabacal PC08 0.00 3 1 Ponte/pontein gamaa Ponte/pontein gamaa <td< td=""><td>MB.B.10851</td><td>CVU_carb_4850 Fonte Coberta / Rabacal FC09</td><td>1.05 2 1</td><td>1 Nannirhynchia pvamaea</td><td>brachiopod</td><td>dorsal</td><td>05/04/2019</td><td>17/04/2019</td><td>97.6</td><td>2.98</td><td>0.489</td><td>0.019</td><td>0.065</td><td>1.52</td><td>0.13</td><td>18/04/2019</td><td>100.5</td><td>2.39 -1.6</td><td>ó5</td></td<>	MB.B.10851	CVU_carb_4850 Fonte Coberta / Rabacal FC09	1.05 2 1	1 Nannirhynchia pvamaea	brachiopod	dorsal	05/04/2019	17/04/2019	97.6	2.98	0.489	0.019	0.065	1.52	0.13	18/04/2019	100.5	2.39 -1.6	ó5
MB.10053 CVU.ach.4652 Fonle Coberta / Halagai FC09 1.05 2.3 Namurbynchia pygmace brachioped 05/p4/2019 17/p4/2019 97.6 1.07 0.619 0.013 0.006 0.91 0.12 18/p4/2019 0.13 2.129 MB.10047 CVU.ach.4077 Fonle Coberta / Halagai FC08 0.80 3 1 Namurbynchia pygmace brachioped 07/p4/2019 24/p4/2019 55.7 0.047 0.527 1.54 0.23 18/p4/2019 91.0 1.87 -3.63 MB.20252 CVU.ach.4977 Fonle Coberta / Halagai FC07 0.40 1 1 Improx spinosa brahe 12/p4/2019 95.7 8.76 0.076 0.026 1.43 0.020 21/p4/2019 0.05 1.53 -3.63 MB.20252 CVU.ach.4917 Fonle Coberta / Halagai FC07 0.40 1 1 Improx spinosa brahe 12/p4/2019 9.59 9.64 1.046 0.010 0.23 1.23 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010	MB.B.10852	CVU_carb_4851 Fonte Coberta / Rabacal FC09	1.05 2 2	2 Nannirhynchia pygmaea	brachiopod	dorsal	05/04/2019	17/04/2019	97.4	2.56	0.526	0.008	0.027	1.17	0.23	18/04/2019	99.8	2.50 -1.4	41
MB.8.1081 CVU carh.4943 Fonte Coberta / Rbaba,al FO09 1.05 2 1 bulk rock 14/04/2019 24/04/2019 64.8 20.04 0.619 0.619 1.08.7 2.6 1.18 21/04/2019 7.14 1.34 -3.92 MB.8.2022 CVU carh.4927 Fonte Coberta / Rbaba,al FO08 0.80 3 1 Mannihynchia pigmeee bulk rock 14/04/2019 24/04/2019 56.2 37.12 0.893 0.534 2.3942 2.33 1.24 21/04/2019 59.0 1.65 -3.63 MB.20236 CVU carh.4917 Fonte Coberta / Rbaba,al FO07 0.40 1 1 Harpax spinosa bivalve 12/04/2019 24/04/2019 95.7 8.76 1.018 0.073 0.362 2.24 0.18 21/04/2019 1.57 -0.39 MB.20236 CVU carh.4917 Fonte Coberta / Rbaba,al FO07 0.40 1 1 Harpax spinosa bivalve 12/04/2019 95.9 9.64 1.046 0.081 0.29 2.0 1.21 21/04/2019 1.0 1.0 1.0 1.0 <t< td=""><td>MB.B.10853</td><td>CVU_carb_4852 Fonte Coberta / Rabaçal FC09</td><td>1.05 2 3</td><td>3 Nannirhynchia pygmaea</td><td>brachiopod</td><td></td><td>05/04/2019</td><td>17/04/2019</td><td>97.6</td><td>1.87</td><td>0.541</td><td>0.013</td><td>0.086</td><td>0.91</td><td>0.12</td><td>18/04/2019</td><td>100.3</td><td>2.32 -1.2</td><td>29</td></t<>	MB.B.10853	CVU_carb_4852 Fonte Coberta / Rabaçal FC09	1.05 2 3	3 Nannirhynchia pygmaea	brachiopod		05/04/2019	17/04/2019	97.6	1.87	0.541	0.013	0.086	0.91	0.12	18/04/2019	100.3	2.32 -1.2	29
MBB.20347 CVU_ardy.4877 Fonte Coberta / Rabacal FC08 0.80 3 Namnchyncha pgymaca brachispont Prachispont	MB.B.10851	CVU_carb_4943 Fonte Coberta / Rabaçal FC09	1.05 2 1	1	bulk rock		14/04/2019	24/04/2019	68.8	29.04	0.619	0.403	18.074	2.86	1.18	21/04/2019	71.4	1.34 -3.9	} 2
MB.8.20328 CVU_carb_4929 Fonte Coherta / Rabaçal FC08 0.80 5 1 huttprace / huttprace	MB.B.10847	CVU_carb_4877 Fonte Coberta / Rabaçal FC08	0.80 3 1	1 Nannirhynchia pygmaea	brachiopod		07/04/2019	24/04/2019	95.7	3.29	0.555	0.047	0.527	1.54	0.23	18/04/2019	98.1	1.87 -1.4	1 3
MB.B.20326 CVU. cath. 4917 Fonte Coherta / Rabacal FC07 0.40 1 1 Harpax spinosa bivalve 12/04/2019 24/04/2019 96.1 8.15 0.98 0.078 0.236 2.143 0.20 21/04/2019 10.06 1.57 -0.39 MB.B.20326 CVU. cath. 4919 Fonte Coherta / Rabacal FC07 0.40 1 1 Harpax spinosa bivalve 12/04/2019 24/04/2019 95.9 9.64 1.046 0.081 0.291 2.32 0.21 21/04/2019 1.0 1.0 MB.B.20326 CVU. cath. 4917 Fonte Coherta / Rabacal FC07 0.40 1 1 Harpax spinosa bivalve 12/04/2019 24/04/2019 24/04/2019 24/04/2019 24/04/2019 0.50 0.57 0.11 18/04/2019 0.40 1.0 0.40 0.40 1.1 Harpax spinosa bivalve 12/04/2019 24/04/2019 21/04/2019 2.07 0.11 18/04/2019 0.10 1.99 0.41 1.0 0.40 0.40 1.0 1.0 0.40 0.40 1.21 0.40 0.40 <t< td=""><td>MB.B.20328</td><td>CVU_carb_4929 Fonte Coberta / Rabaçal FC08</td><td>0.80 5 1</td><td>1</td><td>bulk rock</td><td></td><td>14/04/2019</td><td>24/04/2019</td><td>56.2</td><td>37.12</td><td>0.893</td><td>0.534</td><td>23.942</td><td>2.83</td><td>1.24</td><td>21/04/2019</td><td>59.0</td><td>1.05 -3.6</td><td>53</td></t<>	MB.B.20328	CVU_carb_4929 Fonte Coberta / Rabaçal FC08	0.80 5 1	1	bulk rock		14/04/2019	24/04/2019	56.2	37.12	0.893	0.534	23.942	2.83	1.24	21/04/2019	59.0	1.05 -3.6	53
MB.B.20326 CVU_carb_4918 Fonte Coherta / Rabaça1 FC07 0.40 1 Harpax spinosa bivalve 12/04/2019 95.7 8.7.6 1.018 0.097 2.2.4 0.18 2/10/2101 10.5 1.2.5 -1.3.1 MB.B.20326 CVU_carb_4919 Fonte Coherta / Rabaça1 FC07 0.40 1 1 Harpax spinosa bivalve 12/04/2019 95.9 5.44 0.548 0.498 15.997 2.07 1.21 2/104/2019 6.41 0.06 3.89 MB.B.20325 CVU_carb_4848 Fonte Coherta / Rabaça1 FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 95.8 1.96 0.648 0.598 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.409 0.509 0.01 1 10/04/2019 0.40 1 10/04/2019 10/04/2019 17/04/2019 9.63 1.964 0.049 0.395 1.59 0.24 18/04/2019 10/04/2019 0.71 1.50 0.24 18/04/2019 10/04/2019 10/04/2	MB.B.20326	CVU_carb_4917 Fonte Coberta / Rabaçal FC07	0.40 1 1	1 Harpax spinosa	bivalve		12/04/2019	24/04/2019	96.1	8.15	0.958	0.078	0.263	1.43	0.20	21/04/2019	100.6	1.57 -0.9	13
MB.8.20326 CVU_carb.4919 Fonte Coberta / Rabaçal FC07 0.40 1 Harpax spinosa bivalve 12/04/2019 24/04/2019 95.9 9.64 1.046 0.081 0.219 2.23 0.21 21/04/2019 10.13 1.53 1.53 MB.8.20326 CVU_carb.4947 Fonte Coberta / Rabaçal FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 95.8 11.96 0.968 0.049 0.395 1.67 0.11 18/04/2019 10.01 1.99 -0.64 MB.8.20325 CVU_carb.4848 Fonte Coberta / Rabaçal FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 96.4 1.048 0.048 0.381 1.48 0.24 18/04/2019 10.05 9.7 1.53 0.24 18/04/2019 10.05 9.7 1.53 0.24 18/04/2019 9.7 1.7 1.67 1.13 1.65 1.67 1.13 1.66 1.14 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	MB.B.20326	CVU_carb_4918 Fonte Coberta / Rabaçal FC07	0.40 1 1	1 Harpax spinosa	bivalve		12/04/2019	24/04/2019	95.7	8.76	1.018	0.097	0.362	2.24	0.18	21/04/2019	100.5	1.25 -1.2	23
Mbb.L.2.02.cv CVU_carb_4937 Fonte Coberta / Rabaçal FC07 0.40 1 1 bulk rock 14/04/2019 24/04/2019 61.9 2.5.34 0.548 0.498 15.07 2.07 1.21 21/04/2019 64.1 0.06 -3.89 MB.B.20325 CVU_carb_4847 Fonte Coberta / Rabaçal FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 95.8 1.96 0.968 0.498 0.438 2.14 0.20 18/04/2019 1.01 1.99 -0.71 MB.B.20325 CVU_carb_4848 Fonte Coberta / Rabaçal FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 96.1 9.50 1.024 0.048 0.371 1.53 0.24 18/04/2019 1.01 1.00 1.07 0.76 MB.B.10843 CVU_carb_4854 Fonte Coberta / Rabaçal FC06 0.00 1 1 Lobothyris arcta brachiopod ventral 05/04/2019 17/04/2019 9.64 7.56 1.18 0.049 0.57 15.93 0.23 18/04/2019	MB.B.20326	CVU_carb_4919 Fonte Coberta / Rabaçal FC07	0.40 1 1	1 Harpax spinosa	bivalve		12/04/2019	24/04/2019	95.9	9.64	1.046	0.081	0.291	2.32	0.21	21/04/2019	101.3	1.50 -1.3	31
MB.B. 20325 CVU_carb_484 Fonte Coberta / Rabaçal FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 95.8 1.96 0.068 0.049 0.395 1.67 0.11 18/04/2019 10.1 1.99 -0.64 MB.B.20325 CVU_carb_4849 Fonte Coberta / Rabaçal FC06 0.00 3 1 Harpax spinosa bivalve 05/04/2019 17/04/2019 96.1 0.50 0.024 0.048 0.373 1.67 0.11 18/04/2019 10.0 1.7 0.64 MB.B.20325 CVU_carb_4849 Fonte Coberta / Rabaçal FC06 0.00 1 1 Labothyris arcta brachiopod ventral 05/04/2019 17/04/2019 96.6 7.56 1.274 0.039 0.575 15.93 0.23 18/04/2019 97.3 1.17 -0.51 MB.B.10843 CVU_carb_4855 Fonte Coberta / Rabaçal FC06 0.00 1 Lobothyris arcta brachiopod ventral 05/04/2019 17/04/2019 97.4 2.45 0.456 0.011 0.046 1.02 0.104 <	MB.B.20326	CVU_carb_4937 Fonte Coberta / Rabaçal FC07	0.40 1 1	1	bulk rock		14/04/2019	24/04/2019	61.9	25.34	0.548	0.498	15.097	2.07	1.21	21/04/2019	64.1	0.06 -3.8	39
mb.b.20325 cVu_carb_4848 rone Coberta / Rabaçal rCuo 0.00 3 1 Harpax spinosa bivaive 05/04/2019 1/04/2019 9.62 9.04 1.048 0.058 0.438 2.14 0.20 18/04/2019 10.0 1.97 -0.76 MB.B.20843 CVU_carb_4843 Fonte Coberta / Rabaçal FC06 0.00 1 1 Lobothyris arcta bivaive 05/04/2019 17/04/2019 9.61 9.56 1.024 0.048 0.371 1.53 0.24 18/04/2019 9.05 1.77 0.51 MB.B.10843 CVU_carb_4854 Fonte Coberta / Rabaçal FC06 0.00 1 1 Lobothyris arcta brachiopod ventral 05/04/2019 17/04/2019 9.64 7.36 1.18 0.045 0.77 14.02 0.40 18/04/2019 9.06 1.31 0.67 MB.B.10843 CVU_carb_4855 Fonte Coberta / Rabaçal FC06 0.00 2 1 Chabothyris arcta brachiopod ventral 05/04/2019	MB.B.20325	LVU_carb_484/ Fonte Coberta / Rabaçal FC06	0.00 3 1	Harpax spinosa	bivalve		05/04/2019	17/04/2019	95.8	11.96	0.968	0.049	0.395	1.67	0.11	18/04/2019	100.1	1.99 -0.6	4ر 71
MB.B. 10843 CVU_carb.4845 Fonde Coberta / Rabaçal FC06 0.00 1 Harpax spinosa brachiopod ventral 05/04/2019 1//04/2019 96.1 9.50 1.024 0.048 0.371 1.53 0.24 18/04/2019 100.5 1.77 -0.76 MB.B.10843 CVU_carb.4853 Fonte Coberta / Rabaçal FC06 0.00 1 1 Lobothyris arcta brachiopod ventral 05/04/2019 17/04/2019 93.6 7.56 1.18 0.045 0.777 1.02 0.40 18/04/2019 97.0 1.23 -0.67 MB.B.10843 CVU_carb.4855 Fonte Coberta / Rabaçal FC06 0.00 1 Lobothyris arcta brachiopod ventral 05/04/2019 17/04/2019 94.1 8.24 1.232 0.047 1.40 0.18 18/04/2019 97.0 1.23 -0.67 MB.B.10846 CVU_carb.4852 Fonte Coberta / Rabaçal FC06 0.00 2 1 Cirpa fallax brachiopod ventral 12/04/2019 24/0	MB.B.20325	LVU_carb_4848 Fonte Coberta / Rabaçal FC06	0.00 3 1	1 Harpax spinosa	bivalve		05/04/2019	17/04/2019	96.2	9.04	1.048	0.058	0.438	2.14	0.20	18/04/2019	100.9	1.99 -0.7	170
mb.s. tools conc. colored / kadaçai colored / kadaçai <thcolored kadaçai<="" th=""> colored / kadaçai</thcolored>	MB.B.20325	LVU_CARD_4849 Fonte Loberta / Kabaçal FC06		1 Harpax spinosa	Divalve	vontrol	05/04/2019	17/04/2019	96.1 02.6	9.50 7 5 C	1.024 1.274	0.048	0.371	1.53	0.24	18/04/2019	100.5	1.// -0.7	0 E 1
MB.5.100073 Ord_Latio_foot Ord_Latio_foot Ord_Latio_foot Ordelatio_foot Ordelati	MB.B.10843	UVU_CALU_4053 FONTE LODERTA / KADAÇAL FLUG		LODOUNYIS Arcta	brachiopod	ventral	US/U4/2019 05/04/2010	17/04/2019	93.0 01 6	7.30 7.26	1.2/4 1 101	0.039 0.045	U.5/5 0 <i>777</i>	13.93 1102	0.23	10/04/2019 10/04/2010	97.3 06 1	1.1/ -U.5 1.12 0.4)1 67
MB.B.10045 OUCcarb.4035 Folle Coberta / Rabaral Fole 0.00 1 1 Lobolity is allow or allow or allow 0.01/10/12/019 94.1 6.24 1.252 0.047 0.726 14.40 0.18 18/04/2019 97.0 1.23 -0.44 MB.B.10846 CVU_carb.4920 Fonte Coberta / Rabaral FC06 0.00 2 1 Cirpa fallax brachioped ventral 12/04/2019 97.2 2.45 0.465 0.021 0.036 1.81 0.26 21/04/2019 1.05 1.23 -1.05 MB.B.10846 CVU_carb.4921 Fonte Coberta / Rabaral FC06 0.00 2 1 Cirpa fallax brachioped dorsal 12/04/2019 97.4 2.42 0.484 0.128 2.719 1.45 0.02 21/04/2019 1.05 1.24 1.24 1.24 1.24 0.484 0.128 1.24 0.48 1.25 0.04 21/04/2019 1.05 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	MB.B.10843	UVU_CALU_4054 FONTE LODERTA / KADAÇAL FLU6		LODOUNYIS Arcta	brachiopod	ventral	US/U4/2019 05/04/2010	17/04/2019	94.0 01 1	/.30 8.24	1.101 1 777	0.045 0.047	U./// 0.724	14.UZ	0.40 0.10	10/04/2019 10/04/2010	90.1 07 0	1.13 -U.6 1.22 04)/ ///
MB.B.10846CVU_carb_4921Fonte Coberta / RabaçalFC060.0021 $Cirpa fallax$ brachioped $Vental$ $12/04/2019$ 7.2 2.43 0.463 0.021 0.030 1.01 0.26 $21/04/2019$ 100.5 1.72 -1.05 MB.B.10846CVU_carb_4921Fonte Coberta / RabaçalFC06 0.00 21 $Cirpa fallax$ brachioped $dorsal$ $12/04/2019$ 97.1 2.42 0.484 0.128 25.719 1.45 0.02 $21/04/2019$ 100.6 1.63 -1.24 MB.B.10846CVU_carb_4922Fonte Coberta / RabaçalFC06 0.00 21 $Cirpa fallax$ brachioped $dorsal$ $12/04/2019$ 97.6 2.7 0.487 0.013 0.047 1.44 0.06 $21/04/2019$ 10.6 1.63 -1.24 MB.B.10846CVU_carb_4923Fonte Coberta / RabaçalFC06 0.00 21 $Cirpa fallax$ brachioped $dorsal$ $12/04/2019$ 97.6 2.7 0.487 0.013 0.047 1.44 0.06 $21/04/2019$ 10.0 1.67 -1.12 MB.B.10846CVU_carb_4945Fonte Coberta / RabaçalFC06 0.00 21 $Dirat fallax$ $brachioped$ $dorsal$ $12/04/2019$ 7.5 7.33 0.368 0.36 31.252 37.9 0.82 $21/04/2019$ 10.0 1.67 -1.12 MB.B.10846CVU_carb_4945Fonte Coberta / RabaçalFC06 0.00 2 <td>MD.D.10043 MR R 10914</td> <td>CVU carb 4920 Fonte Coberta / Rabacal FCO6</td> <td></td> <td>LODOUNYI IS AFCUA</td> <td>brachiopod</td> <td>ventral</td> <td>03/04/2019 12/04/2010</td> <td>17/04/2019 24/04/2010</td> <td>74.1 97 7</td> <td>0.24 2 <i>4</i>5</td> <td>1.232 0.465</td> <td>0.047 በ በ21</td> <td>0.720 0.026</td> <td>14.40 1 Q1</td> <td>0.10 0.10</td> <td>10/04/2019 21/04/2010</td> <td>אין אין 100 ב</td> <td>1.23 -U.4 1.72 1.0</td> <td>/ተ በ5</td>	MD.D.10043 MR R 10914	CVU carb 4920 Fonte Coberta / Rabacal FCO6		LODOUNYI IS AFCUA	brachiopod	ventral	03/04/2019 12/04/2010	17/04/2019 24/04/2010	74.1 97 7	0.24 2 <i>4</i> 5	1.232 0.465	0.047 በ በ21	0.720 0.026	14.40 1 Q1	0.10 0.10	10/04/2019 21/04/2010	אין אין 100 ב	1.23 -U.4 1.72 1.0	/ተ በ5
MB.B.10846 CVU_carb_4923 Fonte Coberta / Rabaçal FC06 0.00 2 1 Cirpa fallax brachioped dorsal 12/04/2019 97.6 2.27 0.487 0.013 0.047 1.44 0.06 21/04/2019 100.0 1.03 11.24 MB.B.10846 CVU_carb_4923 Fonte Coberta / Rabaçal FC06 0.00 2 1 Cirpa fallax brachioped dorsal 12/04/2019 97.4 2.29 0.494 0.017 0.068 1.55 0.04 21/04/2019 101.0 1.67 -1.12 MB.B.10846 CVU_carb_4945 Fonte Coberta / Rabaçal FC06 0.00 2 1 Cirpa fallax brachioped dorsal 12/04/2019 97.4 2.29 0.494 0.017 0.068 1.55 0.04 21/04/2019 101.0 1.67 -1.12 MB.B.10846 CVU_carb_4945 Fonte Coberta / Rabaçal FC06 0.00 2 1 bulk rock 14/04/2019 78.5 17.33 0.368 0.336 31.252 37.79 0.82 21/04/2019 31.55 0.167 -3.15	MB R 10846	CVU carb 4921 Fonte Coberta / Rabacal FC06	0.00 2 1	1 Cirna fallax	hrachionod	dorsal	12/04/2019	24/04/2019	97.2	2.42	0.484	0.128	25 719	1 45	0.20	21/04/2019	100.5	1.63 -1.0	24
MB.B.10846 CVU_carb_4923 Fonte Coberta / Rabaçal FC06 0.00 2 1 Cirpa fallax brachioped dorsal MB.B.10846 CVU_carb_4945 Fonte Coberta / Rabaçal FC06 0.00 2 1 Cirpa fallax brachioped dorsal 12/04/2019 97.4 2.29 0.494 0.017 0.068 1.55 0.04 21/04/2019 10.10 1.67 -1.12 MB.B.10846 CVU_carb_4945 Fonte Coberta / Rabaçal FC06 0.00 2 1 bulk rock 14/04/2019 78.5 17.33 0.368 0.336 31.252 37.79 0.82 21/04/2019 81.4 0.57 -3.15	MB.B.10846	CVU_carb_4922 Fonte Coberta / Rabacal FC06	0.00 2 1	1 Cirpa fallax	brachiopod	dorsal	12/04/2019	24/04/2019	97.6	2.27	0.487	0.013	0.047	1.44	0.06	21/04/2019	101.1	1.70 -0.9	. 96
MB.B.10846 CVU_carb_4945 Fonte Coberta / Rabaçal FC06 0.00 2 1 bulk rock 14/04/2019 78.5 17.33 0.368 0.336 31.252 37.79 0.82 21/04/2019 81.4 0.57 -3.15	MB.B.10846	CVU_carb_4923 Fonte Coberta / Rabaçal FC06	0.00 2 1	1 Cirpa fallax	brachiopod	dorsal	12/04/2019	24/04/2019	97.4	2.29	0.494	0.017	0.068	1.55	0.04	21/04/2019	101.0	1.67 -1.1	12
	MB.B.10846	CVU_carb_4945 Fonte Coberta / Rabaçal FC06	0.00 2 1	1	bulk rock		14/04/2019	24/04/2019	78.5	17.33	0.368	0.336	31.252	37.79	0.82	21/04/2019	81.4	0.57 -3.1	15

Table S5: Median isotopic variability in specimens of brachiopods from the two studied sections computed from specimens for which at least four measurements of well preserved shell calcite are available.

genus	locality	specimens	median 2sd	median 2sd
		number	δ ¹³ C	δ ¹⁸ 0
Choffatirhynchia	Barranco de la Cañada	11	0.40	0.31
Gibbirhynchia	Barranco de la Cañada	2	0.41	0.49
Homoeorhynchia	Barranco de la Cañada	6	0.31	0.26
Quadratirhynchia	Barranco de la Cañada	3	0.23	0.39
Soaresirhynchia	Barranco de la Cañada	6	0.12	0.20
Cirpa	Fonte Coberta / Rabaçal	3	0.20	0.14
Homoeorhynchia	Fonte Coberta / Rabaçal	1	0.14	0.18
Nannirhynchia †	Fonte Coberta / Rabaçal	2	0.11	0.22
Soaresirhynchia	Fonte Coberta / Rabaçal	4	0.11	0.18

†: one doubtful datum (CVU_carb_4844) excluded

genus	locality	samples	average	CaCO ₃	average N	/Ig/Ca	average Sr/Ca			
		number	% vs CAR	2 se	mmol/mol	2 se	mmol/mol	2 se		
Choffatirhynchia	Barranco de la Cañada	74	99.1	0.2	6.63	0.31	0.994	0.024		
Gibbirhynchia	Barranco de la Cañada	14	97.6	0.8	5.32	0.48	1.140	0.026		
Homoeorhynchia	Barranco de la Cañada	91	98.7	0.2	4.82	0.30	1.084	0.020		
Quadratirhynchia	Barranco de la Cañada	37 (36)	98.7	0.3	4.85	0.37	1.002	0.024		
Soaresirhynchia	Barranco de la Cañada	100 (99)	100.3	0.2	2.63	0.10	0.533	0.006		
Cirpa	Fonte Coberta / Rabaçal	22 (20)	99.9	0.5	2.08	0.21	0.506	0.011		
Homoeorhynchia	Fonte Coberta / Rabaçal	4	99.1	0.6	5.49	0.66	0.948	0.021		
Nannirhynchia	Fonte Coberta / Rabaçal	23 (22)	100.0	0.4	1.85	0.18	0.537	0.010		
Soaresirhynchia	Fonte Coberta / Rabaçal	36	100.1	0.3	2.94	0.24	0.514	0.012		

Table S6: Average CaCO₃ concentrations, Mg/Ca and Sr/Ca ratios computed from well-preserved samples for individual rhynchonellid genera from the two studied sections.

Samples numbers in brackets refer to numbers of samples from which average CaCO₃ concentration was computed. Excluded samples deviated

from averages by > 5 % and deviations are ascribed to erroneous weights.

Table S7: Aggregated isotope data and calculated palaeotemperatures using the equations of Anderson and Arthur (1983) assuming seawater δ^{18} O of -1 ‰ vs V-SMOW and Brand et al., (2013) additonally using the average magnesium content of 0.42 mol% in the macrofossil calcite. Ages are calculcated from the Geologic Timescale 2012, assuming constant sedimentation rates within each ammonite zone.

sample	height	n	δ ¹³ C	2sd	2se	δ ¹⁸ 0	2sd	2se	T (B'13)	T (A'83)	Age (GT'12)
name	m		‰ VPDB			‰ VPDB			°C	°C	Ma
BC22	26.70	3	3.14	0.10	0.06	-2.47	0.38	0.22	22.8	22.4	179.94
BC21	25.55	5	2.89	0.37	0.17	-2.54	0.86	0.38	23.0	22.7	180.05
BC20	24.55	9	2.72	0.52	0.17	-2.28	0.63	0.21	22.1	21.5	180.14
BC19	23.45	2	1.94	0.32	0.23	-2.47	0.01	0.01	22.7	22.4	180.24
BC18	22.65	3	2.30	0.34	0.20	-2.71	0.29	0.17	23.6	23.4	180.32
BC17	21.45	6	2.46	0.14	0.06	-2.07	0.17	0.07	21.4	20.6	180.43
BC14	19.35	11	3.27	0.57	0.17	-2.65	0.48	0.14	23.4	23.2	180.63
BC10	17.30	4	3.23	0.28	0.14	-2.50	0.44	0.22	22.9	22.5	180.82
BC09	16.70	2	3.17	0.13	0.09	-2.15	0.01	0.01	21.6	20.9	180.87
BC08	16.05	13	3.47	0.52	0.15	-2.57	0.62	0.17	23.1	22.8	180.93
BC07	15.25	8	4.17	0.21	0.07	-2.67	0.26	0.09	23.4	23.3	181.01
BC06	14.85	22	4.53	0.38	0.08	-2.75	0.67	0.14	23.7	23.7	181.04
BC05	14.25	4	4.61	0.12	0.06	-2.04	0.46	0.23	21.3	20.5	181.10
BC04	13.75	21	3.93	0.44	0.10	-1.75	0.67	0.15	20.3	19.2	181.15
BC03	13.20	13	3.95	0.67	0.19	-2.11	0.70	0.19	21.5	20.8	181.20
BC02	12.60	50	3.99	0.68	0.10	-1.91	0.67	0.10	20.8	19.9	181.25
BC01b	12.35	14	4.49	0.78	0.21	-2.60	0.96	0.26	23.2	23.0	181.28
BC01a	12.10	5	5.13	0.42	0.19	-2.34	0.11	0.05	22.3	21.8	181.30
C37a	11.30	8	4.39	0.30	0.11	-3.05	0.72	0.25	24.7	25.0	181.37
C33b	11.10	7	4.24	0.17	0.06	-3.00	0.48	0.18	24.6	24.8	181.39
C33a	10.80	4	4.60	0.28	0.14	-3.30	0.29	0.14	25.6	26.2	181.42
C30	10.20	3	4.38	0.59	0.34	-2.58	0.68	0.39	23.1	22.9	181.48
C28	9.40	25	2.69	0.35	0.07	-2.97	0.67	0.13	24.5	24.7	181.55
C26	8.90	21	2.56	0.55	0.12	-3.08	0.76	0.17	24.9	25.2	181.60
C25a	8.40	30	2.16	0.46	0.08	-3.26	0.36	0.07	25.5	26.0	181.64
C22	7.80	5	-0.36	0.23	0.10	-3.36	0.32	0.14	25.8	26.5	181.70
C20	6.70	2	1.13	0.10	0.07	-3.03	0.37	0.26	24.7	24.9	181.84
C19	6.20	16	2.26	0.63	0.16	-2.55	0.37	0.09	23.0	22.7	181.91
C18c	5.90	22	2.94	0.66	0.14	-1.88	0.73	0.15	20.7	19.7	181.94
C18b	5.60	17	3.13	0.53	0.13	-1.93	0.39	0.09	20.9	20.0	181.98
C18a	5.20	5	3.09	0.33	0.15	-2.01	0.43	0.19	21.1	20.3	182.03
C15b	4.60	2	2.97	0.24	0.17	-1.94	0.14	0.10	20.9	20.0	182.11
C15a	4.00	22	2.60	0.65	0.14	-2.21	0.59	0.13	21.8	21.2	182.19
C12b	3.40	6	1.98	1.39	0.57	-2.24	0.58	0.24	21.9	21.3	182.26
C12a	2.80	16	1.59	0.49	0.12	-2.13	0.59	0.15	21.6	20.8	182.34
C07b	1.60	2	0.32	0.34	0.24	-2.00	0.68	0.48	21.1	20.3	182.49
C07a	0.80	6	0.47	0.80	0.33	-2.11	0.77	0.31	21.5	20.8	182.60
C05	0.40	15	0.46	0.61	0.16	-1.95	0.55	0.14	20.9	20.0	182.65

fable S8: Quantities of Carbon re	quired to explain T-OAE	carbon isotope excursions.
-----------------------------------	-------------------------	----------------------------

		Amount	of	carbon	required to
		generate		negative	e isotopic
		excursion	, Gt	С	
Relative mass of oce carbon MT (pre-perterborganic and inorganic) to present $M_{T0} = M_{inorgan}$	an-atmosphere exchangeable pation mass of total, combined exchangeable carbon, relative $_{ic} + M_{organic} \cong 38,062$ GtC)	1 * M _{T0}		2 * M _{T0}	4 * M _{T0}
M _{CH4} (clathrate)	$\delta^{13}C_{CH4 hyd} = -60 \%_0$	1765		3531	7062
M _{CO2} (thermogenic)	$\delta^{13}C_{CO2 \text{ therm}} = -27 \%_0$	3943		7868	15737
M _{cu4} (thermogenic)	$\delta^{13}C_{CH4 \text{ therm}} = -25 \%_0$	4251		8501	17003
	10				

M. (thermogenic)	$\delta C_{CH4 \text{ therm}} = -25 \%_{00}$	4231	0301	17005			
M _{CH4} (theimogenic)	$\delta^{13}C_{CH4 therm} = -35 \%_{00}$	3031	6063	12126			
M (magne)	$\delta^{13}C_{CO2 \text{ magma}} = -5 \%_0$	21729	43457	86916			
M _{C02} (magina)	$\delta^{13}C_{CO2 magma} = -7 \%_{00}$	15937	30795	61590			
Total mass of organic c	7476	14953	29907				
PCIE GtC							
Relative organic carbon	0.415	0.83	1.66				
$flux = \Delta t_{data,PCIE}$							
$x * mocb_0 dt$							
<i>J</i> ₀							

Table S9: Proxy Inversion model parameters

Abbreviation	Meaning	Baseline value/source see COPSE (Bergman et al, 2004, Lenton et al, 2018) Geocarb (Berner, 1994, Royer et al, 2014), Geocarbsulf (Berner, 2006), Redfield revisited (Lenton & Watson, 2000)
С	Carbonate carbon rock reservoir	$5.0 * 10^{21}$ mol
G	Organic carbon rock reservoir	$1.5 * 10^{21}$ mol
carbw	Carbonate weathering flux from land surface	$carbw_0 = 13.25 * 10^{12} molyr^{-1}$
ccdeg	CO ₂ degassing flux from the subduction of carbonate	$ccdeg_0 = 6.6 * 10^{12} \text{ molyr}^{-1} (COPSE)$
ocdeg	CO_2 degassing flux from the subduction of organic carbon in rock	$ocdeg_0 = 1.25 * 10^{12} molyr^{-1}$ (COPSE)
mccb	Marine carbonate carbon burial flux	$2.0 * 10^{13}$ mol
mocb	Marine organic carbon burial flux	$mocb_0 = 3.75 * 10^{12} mol$
oxidw	Oxidative weathering flux of organic carbon in rock on the land surface	$oxidw_0 = 3.75 * 10^{12} molyr^{-1}$
$\delta^{13}C_{C}$	Isotopic composition of carbonate carbon rock reservoir	$\delta_{C(0)} = 0$
$\delta^{13}C_{G}$	Isotopic composition of carbonate carbon rock reservoir	$\delta_{G(0)} = -\epsilon = -24.5 \%_0$
$\delta^{13}C_{mccb}$	Isotopic composition of carbonates precipitating in shallow shelf ocean waters (assumed equilibrated with ocean-atmosphere CO_2 reservoir)	Model output, equated with data
ε	Difference between the isotopic composition of the marine organic carbon burial flux mocb and the marine carbonate carbon burial flux mccb. Expressed as a positive number $\varepsilon > 0$, such the isotopic composition of organic matter being buried in shallow eccan sediments is $\delta^{13}C = \delta^{13}C$	$\epsilon = 24.5 \%_0$
	being buried in snahow ocean sediments is $\delta = C_{\text{org}} = \delta = C_{\text{mccb}} - \epsilon < 0$	
F _{LIP}	\mbox{CO}_2 release flux associated with large igneous province eruption.	$\int_{t_{LIPstart}}^{t_{LIPend}} F_{LIP} dt \leq T_{CO_2 LIP}$
		, where $T_{\mbox{\scriptsize CO2LIP}}$ is the total emission potential for the whole lifetime of the LIP,
		and $t_{LIP\ start}$ / $t_{LIP\ end}$ are model parameters describing the time of onset/cessation of LIP associated CO_2 degassing (for most model runs shown,
		$t_{LIP \text{ start}}$ - $t_{LIP \text{ end}}$ = 0.45 Myrs, tuned to match the NCIE). Constrained to be in the within the bounds 6.48 * 10 ¹⁷ mol C \leq T _{CO2 LIP} \leq 1.46 *
		10^{18} mol
$\delta^{13}C_{LIP}$	Isotopic composition of large igneous province derived CO_2	$(\delta^{13}C_{LIP})_{\text{syn-volcanic}} = -5 \%_0 \text{ (Cervantes & Wallace 2003)}$ -27 $\%_0 \le (\delta^{13}C_{LIP})_{\text{thermogenic}} \le +2 \%_0 \text{ (Jones et al, 2016)}$
F _{CH4}	CO_2 release flux associated with the oxidation of CH_4 produced during clathrate decomposition.	Parameterized, see text
$\delta^{13}C_{CH4}$	Isotopic composition of CH ₄ -clathrate	$\delta^{13}C_{CH4} = -60 $ ‰(Kvenvolden, 2002)
ESS	Long term Earth system sensitivity (temperature change per of atmospheric CO_2)	ESS = 5 (Geocarbsulf)
W _S	Solar luminosity temperature dependence parameter	$W_{\rm S} = 7.4$ (Geocarbsulf)
GEOG	continental mean surface temperature (expressing change over time in exposure of fresh minerals to weathering)	GEOG(183 MA) = 3 (Geocarbsulf)
ccaeg ₀	Baseline carbonate carbon degassing flux	$ccdeg_0 = 6.65 * 10^{-2} mol (COPSE)$
A	Total ocean-atmosphere CO_2 reservoir size	$A_0 = 3.193 * 10^{10} \text{ mol} (COPSE)$
φ	Atmospheric UO_2 fraction	Modern value $\phi_0 = 2.8 * 10^{\circ} / (\text{mol}_{\text{atmos}} * A_0) = 0.0155 \text{ (COPSE)}$
ο _C δ	Average isotopic composition of global carbonate carbon rock reservoir	$\delta_{C(0)} = 0 \ \%_{00}$
G fanor	Global ocean anoxic fraction	$G_{G(0)} = -24.3900$ $f_{apox 0} = 0.14$
$\bar{P} = \frac{PO_4}{RO_4}$	Normalized, globally averaged marine phosphate concentration	$PO_{40} = 2.2 \ \mu molkg-1 \ (Redfield)$
$PO_{4\ 0}$	Phosphorous weathering flux from land surface	$nhosw_{0} = 3.675 * 10^{10} molyr^{-1}$
Freeze		$phosw_{0} = 5.675 \cdot 10^{\circ} \cdot mody_{1},$ $phosw_{0} = phosw_{0} \left(f_{silw} \frac{silw}{silw_{0}} + f_{carbw} \frac{carbw}{carbw_{0}} + f_{oxidw} \frac{oxidw}{oxidw_{0}} \right)$
capb	Calcium bound marine phosphate burial	$capb_0 = 1.5 * 10^{10} \text{ molyr}^{-1}$
fepb	Iron absorbed phosphate burial	$fepb_0 = 0.6 * 10^{10} molyr^{-1}$
mopb	Marine organic phosphorous burial	Scales with mocb as a function of anoxia via constants $CP_{ox} = 217 * CP_{anox} = 4320$ (Van Capellen & Ingall, 1994)

time Ma	atmospheric CO ₂ * pre-industrial	silicate weathering mol/a	ocean anoxic fraction	LIP CO ₂ flux mol/a	marine PO ₄ normalized	Fe-ads PO ₄ burial mol/a	marine C _{org} burial mol/a	global temperature °C
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00 -250.00	1.00 1.00	2.71E+12 2.71E+12	$0.1400 \\ 0.1400$	0	$\begin{array}{c} 1.00\\ 1.00\end{array}$	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00 -250.00	1.00 1.00	2.71E+12 2.71E+12	$0.1400 \\ 0.1400$	0	$1.00 \\ 1.00$	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1400 0.1400	0	1.00	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1400	0	1.00	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1400 0.1400	0 0	1.00	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00 -250.00	1.00	2.71E+12 2.71E+12	$\begin{array}{c} 0.1400 \\ 0.1400 \end{array}$	0	1.00 1.00	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1400	0	1.00	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12	0.1400	0	1.00	5.17E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1400	0	1.00	5.17E+09 5.17E+09	3.75E+12 3.75E+12	11.8
-250.00	1.00	2.71E+12	0.1399	0	1.00	5.17E+09	3.75E+12	11.8
-250.00 -250.00	1.00 1.00	2.71E+12 2.71E+12	0.1399 0.1395	0 0	1.00	5.17E+09 5.18E+09	3.75E+12 3.75E+12	11.8 11.8
-250.00	1.00	2.71E+12	0.1391	0	1.00	5.18E+09	3.75E+12	11.8
-250.00	1.00	2.71E+12 2.71E+12	0.1387	0	1.00	5.18E+09 5.18F+09	3.74E+12 3.74F+12	11.8 11.8
-250.00	1.00	2.72E+12	0.1345	0	1.00	5.19E+09	3.73E+12	11.8
-250.00	1.00	2.72E+12	0.1307	0	0.99	5.20E+09	3.71E+12	11.8
-250.00	1.00	2.73E+12 2.73E+12	0.1271 0.1235	0	0.99	5.22E+09	3.69E+12 3.68E+12	11.8
-250.00	1.01	2.76E+12	0.1007	0	0.98	5.28E+09	3.57E+12	11.8
-249.99 -249.99	1.02	2.78E+12 2.81E+12	0.0823 0.0677	0	0.96 0.95	5.30E+09 5.31E+09	3.46E+12 3.36E+12	11.8 11.9
-249.99	1.04	2.84E+12	0.0559	0	0.93	5.30E+09	3.26E+12	11.9
-249.99 -249.98	1.04	2.87E+12 2 92E+12	0.0466 0.0340	0	0.92 0.90	5.28E+09 5 22E+09	3.17E+12 3.02E+12	11.9 12.0
-249.98	1.08	2.98E+12	0.0255	0	0.88	5.15E+09	2.89E+12	12.1
-249.97	1.09	3.03E+12	0.0196	0	0.86	5.08E+09	2.78E+12 2.67E+12	12.1
-249.96	1.12	3.15E+12	0.0135	0	0.83	4.93E+09	2.58E+12	12.2
-249.95	1.15	3.25E+12	0.0093	0	0.81	4.82E+09	2.46E+12	12.4
-249.94	1.10	3.45E+12	0.0059	0	0.79	4.66E+09	2.35E+12 2.27E+12	12.5
-249.93	1.24	3.54E+12	0.0050	0	0.77	4.60E+09	2.21E+12	12.7
-249.92 -249.90	1.27	3.64E+12 3.81E+12	0.0045	0	0.76	4.55E+09 4.49E+09	2.17E+12 2.11E+12	12.8 13.0
-249.89	1.37	3.97E+12	0.0037	0	0.75	4.47E+09	2.09E+12	13.1
-249.88 -249.86	1.42 1.47	4.13E+12 4.28E+12	0.0036 0.0038	0	0.74 0.75	4.46E+09 4.47E+09	2.08E+12 2.09E+12	13.3 13.4
-249.85	1.51	4.42E+12	0.0040	0	0.75	4.49E+09	2.11E+12	13.5
-249.82 -249.80	1.59 1.66	4.63E+12 4.83E+12	0.0046 0.0055	0	0.76 0.77	4.54E+09 4 60E+09	2.16E+12 2.22E+12	13.8 13.9
-249.77	1.72	5.00E+12	0.0066	0	0.78	4.66E+09	2.29E+12	14.1
-249.75 -249.73	1.78 1.84	5.16E+12 5.30E+12	0.0079	0	0.79	4.73E+09	2.37E+12 2.43E+12	14.3 14.4
-249.68	1.94	5.52E+12	0.0126	0	0.82	4.89E+09	2.55E+12	14.6
-249.64	2.02	5.70E+12	0.0160	0	0.84	4.96E+09	2.65E+12	14.8
-249.59	2.10	5.96E+12	0.0194	0	0.86	5.07E+09	2.73E+12 2.80E+12	15.1
-249.50	2.23	6.06E+12	0.0257	0	0.87	5.10E+09	2.86E+12	15.2
-249.45 -249.43	2.28	6.45E+12 6.47E+12	0.0331	0	0.89	5.17E+09 5.19E+09	2.98E+12 3.02E+12	15.3
-249.42	2.31	6.49E+12	0.0393	0	0.90	5.21E+09	3.06E+12	15.4
-249.40 -249.38	2.32	6.51E+12 6.52E+12	0.0418 0.0435	0	0.91 0.91	5.22E+09 5.23E+09	3.09E+12 3.11E+12	15.4 15.4
-249.37	2.34	6.53E+12	0.0454	0	0.91	5.24E+09	3.13E+12	15.4
-249.34 -249 31	2.35 2.37	6.55E+12 6.57E+12	0.0478 0.0495	0	0.92	5.25E+09 5.25E+09	3.16E+12 3.18E+12	15.5 15 5
-249.28	2.38	6.59E+12	0.0508	0	0.92	5.26E+09	3.19E+12	15.5
-249.25	2.39	6.60E+12 6.61E+12	0.0518	0	0.92	5.27E+09	3.21E+12 3.22E+12	15.5 15.6
-249.16	2.43	6.64E+12	0.0533	0	0.92	5.28E+09	3.23E+12	15.6
-249.11	2.45	6.66E+12	0.0538	0	0.93	5.29E+09	3.24E+12	15.6
-249.00	2.47	6.69E+12	0.0540	0	0.93	5.30E+09	3.25E+12 3.25E+12	15.7
-248.94	2.50	6.70E+12	0.0539	0	0.93	5.31E+09	3.26E+12	15.7
-248.88 -248.82	2.51 2.53	6.73E+12	0.0537	0	0.93	5.32E+09 5.33E+09	3.26E+12 3.27E+12	15.8 15.8
-248.76	2.54	6.74E+12	0.0531	0	0.94	5.33E+09	3.27E+12	15.8
-248.70 -248.64	2.56 2.57	6.75E+12 6.76E+12	0.0526 0.0522	0 0	0.94 0.94	5.34E+09 5.35E+09	3.27E+12 3.27E+12	15.8 15.9
-248.54	2.59	6.77E+12	0.0514	0	0.94	5.36E+09	3.28E+12	15.9
-248.51 -248.48	2.60	6.78E+12 7 21F+12	0.0512	0	0.94	5.36E+09 5 37F±00	3.28E+12 3.28F+12	15.9 15.9
-248.46	2.59	7.19E+12	0.0642	0	0.94	5.39E+09	3.39E+12	15.9
-248.44	2.59	7.18E+12	0.0708	0	0.96	5.39E+09	3.45E+12	15.9
-240.42 -248.40	2.58 2.58	7.17E+12 7.16E+12	0.0783	0	0.97	5.39E+09 5.39E+09	3.40E+12 3.50E+12	15.9 15.9
-248.38	2.57	7.15E+12	0.0799	0	0.97	5.40E+09	3.52E+12	15.9
-248.36 -248.34	2.57 2.56	7.13E+12 7.12E+12	0.0808	0	0.98 0.98	5.40E+09 5.40E+09	3.53E+12 3.53E+12	15.9 15.8

Table S10: Example output for model run.

0.40.00	0.55	5445 40	0.0005	0	0.00	F 44 F 00	0 505 40	45.0
-248.32	2.55	7.11E+12	0.0805	0	0.98	5.41E+09	3.53E+12	15.8
-248.29	2.55	7.10E+12	0.0796	0	0.98	5.41E+09	3.53E+12	15.8
-248.27	2.55	7.09E+12	0.0785	0	0.98	5.42E+09	3.52E+12	15.8
248.22	254	7.07E + 12	0.0761	0	0.00	5 12E+09	251E+12	15.0
240.23	2.54	7.07 E+12	0.0701	0	0.70	5.420+00	2 505 . 12	15.0
-248.19	2.53	7.05E+12	0.0736	0	0.97	5.43E+09	3.50E+12	15.8
-248.15	2.53	7.04E+12	0.0712	0	0.97	5.44E+09	3.49E+12	15.8
-248.12	2.53	7.03E+12	0.0690	0	0.97	5.45E+09	3.48E+12	15.8
-248.08	2.52	7.02E+12	0.0670	0	0.97	5.45E+09	3.47E+12	15.8
248.04	2.52	7.01E + 12	0.0652	0	0.07	5 16E+09	2.16E + 12	15.0
-240.04	2.52	7.012+12	0.0052	0	0.77	5.460	3.40E+12	15.0
-247.98	2.52	7.00E+12	0.0627	0	0.97	5.46E+09	3.45E+12	15.8
-247.91	2.53	6.99E+12	0.0608	0	0.97	5.47E+09	3.44E+12	15.8
-247.85	2.53	6.99E+12	0.0591	0	0.97	5.48E+09	3.43E+12	15.8
-247 79	2 5 3	6.98F + 12	0.0576	0	0.97	548F+09	3 42F+12	15.8
-247.79	2.55	6.00E+12	0.0570	0	0.77	5.400+00	3.42E+12	15.0
-247.73	2.54	6.98E+12	0.0563	0	0.97	5.49E+09	3.42E+12	15.8
-247.63	2.55	6.98E+12	0.0547	0	0.97	5.50E+09	3.41E+12	15.8
-247.54	2.55	6.99E+12	0.0534	0	0.97	5.51E+09	3.41E+12	15.8
-247.51	2.56	6.99E+12	0.0530	0	0.97	5.51E+09	3.41E+12	15.9
217.01	256	7.29E + 12	0.0526	0	0.97	5 51 E±00	2 40E + 12	15.0
247.40	2.50	7.201 12	0.0520	0	0.97	5.511.00	2.405.12	15.7
-247.46	2.55	7.Z/E+1Z	0.0625	0	0.98	5.52E+09	3.49E+12	15.8
-247.43	2.55	7.26E+12	0.0670	0	0.98	5.53E+09	3.53E+12	15.8
-247.41	2.54	7.25E+12	0.0697	0	0.99	5.53E+09	3.55E+12	15.8
-247 39	2 54	7 23E+12	0.0707	0	0 99	5 53E+09	3 56E+12	15.8
217 26	2.51	7 225 12	0.0710	0	0.00		2 5 7 5 1 2	15.0
-247.50	2.34	7.22E+12	0.0710	0	0.99	5.546+09	3.376+12	15.0
-247.34	2.53	7.21E+12	0.0707	0	0.99	5.54E+09	3.57E+12	15.8
-247.31	2.53	7.20E+12	0.0701	0	0.99	5.54E+09	3.57E+12	15.8
-247.29	2.52	7.19E+12	0.0693	0	0.99	5.55E+09	3.56E+12	15.8
-24726	2 5 2	7 18E+12	0.0682	0	0 99	5 55E+09	3 56E+12	15.8
24724	2.52	7 17E 12	0.0670	0	0.00		2 5 5 5 1 2	15.0
-247.24	2.52	7.17E+12	0.0070	0	0.99	5.556+09	3.55E+12	15.0
-247.19	2.51	7.15E+12	0.0652	0	0.99	5.56E+09	3.54E+12	15.8
-247.15	2.51	7.14E+12	0.0636	0	0.99	5.56E+09	3.53E+12	15.8
-247.11	2.51	7.14E+12	0.0620	0	0.99	5.57E+09	3.52E+12	15.8
-247 07	2 5 1	7 13F+12	0.0606	0	0.99	557F+09	3 52F+12	15.8
-247.07	2.51	7.136+12	0.0000	0	0.77	5.57 E+07	3.526 ± 12	15.0
-247.03	2.51	/.12E+12	0.0594	0	0.99	5.58E+09	3.51E+12	15.8
-246.96	2.51	7.12E+12	0.0575	0	0.98	5.58E+09	3.50E+12	15.8
-246.88	2.52	7.11E+12	0.0561	0	0.98	5.59E+09	3.49E+12	15.8
-246.81	2 5 2	7 11F+12	0.0549	0	0.98	5 59F+09	3 49F+12	15.8
210.01	2.52	7.11E.12	0.0517	0	0.00	5.59E+09	2.405.12	15.0
-240.74	2.52	7.11E+12	0.0550	0	0.90	5.60E+09	3.40E+12	15.0
-246.66	2.53	7.11E+12	0.0529	0	0.98	5.60E+09	3.48E+12	15.8
-246.55	2.54	7.12E+12	0.0518	0	0.98	5.61E+09	3.48E+12	15.8
-246.52	2.54	7.12E+12	0.0514	0	0.98	5.61E+09	3.48E+12	15.8
216.48	254	7.24E+12	0.0511	0	0.00	5 62E+09	$2.47E_{\pm}12$	15.0
-240.40	2.34	7.240+12	0.0511	0	0.90	5.021+09	3.4712+12	15.0
-246.45	2.54	7.23E+12	0.05/4	0	0.99	5.63E+09	3.53E+12	15.8
-246.41	2.54	7.22E+12	0.0575	0	0.99	5.63E+09	3.54E+12	15.8
-246.38	2.54	7.22E+12	0.0569	0	0.99	5.63E+09	3.54E+12	15.8
-24634	2 54	7 21E+12	0.0567	0	0 99	564E+09	3 54E+12	15.8
240.34	2.54	7.211.12	0.0507	0	0.77	5.042+09	2 5 2 5 1 2	15.0
-246.31	2.54	7.20E+12	0.0560	0	0.99	5.04E+09	3.53E+12	15.8
-246.27	2.54	7.20E+12	0.0557	0	0.99	5.64E+09	3.53E+12	15.8
-246.23	2.54	7.19E+12	0.0548	0	0.99	5.65E+09	3.53E+12	15.8
-246.18	2.54	7.19E+12	0.0539	0	0.99	5.65E+09	3.52E+12	15.8
-246.14	254	7 10 5+12	0.0532	0	0.00	5 65F±09	3 5 2 5 + 1 2	15.8
210.11	2.51	7.100.12	0.0532	0	0.00	5.051105	2 5 2 5 1 2	15.0
-240.09	2.54	7.19E+12	0.0520	0	0.99	5.05E+09	5.52E+12	15.0
-246.02	2.54	7.18E+12	0.0516	0	0.99	5.66E+09	3.51E+12	15.8
-245.95	2.55	7.18E+12	0.0508	0	0.99	5.66E+09	3.51E+12	15.9
-245.87	2.55	7.18E+12	0.0501	0	0.99	5.67E+09	3.51E+12	15.9
-245 80	2 56	7.19F+12	0 0494	0	0.99	5.67F + 0.9	3 50F+12	15.9
245.00	2.50	7.100.12	0.0405	0	0.99	5.07 1.09	2 505 12	15.7
-245.69	2.56	7.19E+12	0.0485	0	0.99	5.68E+09	3.50E+12	15.9
-245.57	2.57	7.19E+12	0.0477	0	0.99	5.68E+09	3.50E+12	15.9
-245.45	2.58	7.18E+12	0.0470	0	0.99	5.69E+09	3.50E+12	15.9
-245.34	2.58	7.16E+12	0.0436	0	0.99	5.69E+09	3.47E+12	15.9
245.22	2.00	7175,12	0.0426	0	0.00	E 70E 100	$2.47E \cdot 12$	15.0
-243.22	2.30	7.176+12	0.0430	0	0.99	5.700+09	3.4712+12	13.9
-245.10	2.59	7.17E+12	0.0430	0	0.99	5.70E+09	3.47E+12	15.9
-244.99	2.60	7.18E+12	0.0424	0	0.99	5.71E+09	3.47E+12	15.9
-244.87	2.60	7.18E+12	0.0419	0	0.99	5.71E+09	3.47E+12	16.0
-244 75	2.61	7 18E+12	0.0413	0	0 99	572E+09	3 47E+12	16.0
-244.63	2.62	7 10 5+12	0.04.08	0	0.00	$5.72E_{\pm}0.9$	$3.47E_{\pm}12$	16.0
24451	2.02	7.100.12	0.0400	0	0.77	5.72E+07	3. 1 7E+12	10.0
-244.51	2.62	7.19E+12	0.0403	0	0.99	5.73E+09	3.47E+12	16.0
-244.39	2.63	7.10E+12	0.0372	0	0.99	5.72E+09	3.44E+12	16.0
-244.29	2.65	7.12E+12	0.0353	0	0.99	5.72E+09	3.41E+12	16.0
-244.21	2.66	7.13E+12	0.0351	0	0.99	5.72E+09	3.41E+12	16.1
-244 13	267	7 15F+12	0 0354	Û	0 99	573F+09	3 42F+12	16.1
-2110	2.07	7165,10	0.0001	0	0.00	5725.00	2 /25 12	16.1
-244.03	2.00	7.10E+12	0.0330	U	0.77	J./ JE+U9	J.TJET12	10.1
-243.97	2.68	/.1/E+12	0.0356	U	0.99	5./3E+09	3.43E+12	16.1
-243.89	2.69	7.17E+12	0.0355	0	0.99	5.74E+09	3.43E+12	16.1
-243.81	2.69	7.18E+12	0.0354	0	0.99	5.74E+09	3.43E+12	16.1
-243.72	2 70	7.18E+12	0.0354	0	0.99	5.75E+09	3.44E+12	161
_ 2/2 6/	2.70	7105.10	0.0001	0	0.00	5755.00	2 // 10	16.1
-243.04	2.70	7.198+12	0.0351	U	0.99	5./5E+U9	3.44世+12	16.1
-243.56	2.71	7.19E+12	0.0349	0	0.99	5.75E+09	3.44E+12	16.2
-243.47	2.72	7.04E+12	0.0318	0	0.98	5.74E+09	3.39E+12	16.2
-243.41	2.73	7.06E+12	0.0295	0	0.98	5.72E+09	3.36E+12	16.2
-742.24	2.75	7 በዩፑ⊥12	0 0.288	ñ	0.02	5 725+00	2 25 8+12	167
27J.JT 242.20	2./3	7.00ET12 7.10E 40	0.0200	0	0.70		J.JJUT14 2.2CE.42	10.2
-243.28	2./6	/.IUE+12	0.0292	U	0.98	5./3E+09	3.30E+12	16.2
-243.21	2.77	7.12E+12	0.0297	0	0.98	5.73E+09	3.37E+12	16.2
-243.14	2.78	7.13E+12	0.0299	0	0.98	5.74E+09	3.37E+12	16.3
-243.08	2.78	7.14E+12	0.0300	0	0.98	5.74E+09	3.38E+12	16.3
-747 99	2 70	7 15₽⊥10	0 0300	ñ	0.08	5 74F±00	2 28F+12	162
272.77 212.01	4./ 7	7.1JUT14 7.1CE 40	0.0300	0	0.70		J.JUET14 2.20E.42	10.5
-242.91	2.80	7.16E+12	0.0300	0	0.99	5./5E+09	3.39E+12	16.3
-242.82	2.81	7.17E+12	0.0300	0	0.99	5.75E+09	3.39E+12	16.3
-242.73	2.81	7.17E+12	0.0300	0	0.99	5.76E+09	3.39E+12	16.3
-242 65	2 82	 7 18F+12	0 0298	n	0 99	576F+09	3 39F+12	163
_712.05	2.02	7 105 - 10	0.0270	0	0.77		2 2015 - 12	1()
-242.33	2.02	7.10E+12	0.029/	U	0.99	5./0E+09	3.39E+12	10.3
-242.52	2.82	7.18E+12	0.0296	0	0.99	5.76E+09	3.39E+12	16.3
-242.48	2.83	7.01E+12	0.0279	0	0.98	5.75E+09	3.36E+12	16.4
-242.45	2.83	7.02E+12	0.0262	0	0.98	5.74E+09	3.34E+12	16.4
-747 47	2.00	7 ∩3₽⊥12	0 0251	ñ	0.00	5 728+00	2 27F+12	16.4
272.72 212.20	2.04		0.0231	0	0.70		JJZETIZ 2 24 E . 4 2	10.4
-242.38	2.85	/.U5E+12	0.0245	U	0.98	5./28+09	3.31E+12	16.4
-242.33	2.86	7.06E+12	0.0245	0	0.98	5.73E+09	3.31E+12	16.4
-242.29	2.87	7.07E+12	0.0246	0	0.98	5.73E+09	3.31E+12	16.4
-242.25	2.88	7.08E+12	0.0247	0	0.98	5.73E+09	3.32E+12	16.4
-747 18	2 80	7105+12	0.0250	ñ	0.08	5 748+00	3 32 €+12	161
2.10	2.07	7 11 5 19	0.0200	0	0.00	5715.00	2 2 2 5 1 1 2	16.T
-242.12	2.09	/.110+12	0.0252	U	U.70	3.746+09	3.33E+1Z	10.5

040.05	2.00	5 405 40	0.0050	0	0.00		0.005 40	
-242.05	2.90	7.12E+12	0.0253	0	0.98	5./5E+09	3.33E+12	16.5
-241.98	2.91	7.13E+12	0.0254	0	0.98	5.75E+09	3.34E+12	16.5
-241.88	2.92	7.14E+12	0.0255	0	0.98	5.75E+09	3.34E+12	16.5
-241 78	2 0 3	7 15 5+12	0.0255	0	0.08	5 76F±09	3 34E+12	165
241.70	2.75	7.100.12	0.0255	0	0.70	5.70E+09	2.255.12	10.5
-241.68	2.93	7.16E+12	0.0254	0	0.98	5.76E+09	3.35E+12	16.5
-241.58	2.94	7.16E+12	0.0253	0	0.98	5.77E+09	3.35E+12	16.5
-241.45	2.95	7.02E+12	0.0228	0	0.98	5.74E+09	3.30E+12	16.5
-241.36	2.96	7.04E+12	0.0212	0	0.97	5.73E+09	3.27E+12	16.6
-241 26	2.93	7.05E + 12	0.0210	0	0.97	$5.73E \pm 0.09$	$3.27E_{12}$	16.6
241.20	2.77	7.051112	0.0210	0	0.97	5.731.00	2.205.12	10.0
-241.17	2.98	7.07E+12	0.0213	0	0.97	5.74E+09	3.28E+12	16.6
-241.07	2.99	7.08E+12	0.0215	0	0.98	5.74E+09	3.29E+12	16.6
-240.97	3.00	7.09E+12	0.0215	0	0.98	5.75E+09	3.29E+12	16.6
-240.88	3.00	7 09F+12	0 0214	0	0.98	5 75F+09	3 29F+12	16.6
240.00	2.00	7.000.12	0.0217	0	0.90	5.750,00	3.27112	10.0
-240.77	3.01	7.10E+12	0.0213	0	0.98	5.75E+09	3.29E+12	16.6
-240.67	3.01	7.10E+12	0.0214	0	0.98	5.76E+09	3.29E+12	16.7
-240.57	3.02	7.11E+12	0.0212	0	0.98	5.76E+09	3.29E+12	16.7
-240 47	3 03	7 04E+12	0.0202	0	0.97	575E+09	3 27E+12	167
240.27	2.04	7.05E+12	0.0104	0	0.97	5.74E+0.0	2.26E + 12	167
-240.37	5.04	7.05E+12	0.0194	0	0.97	5.746+09	3.201+12	10.7
-240.27	3.05	7.07E+12	0.0193	0	0.97	5.74E+09	3.26E+12	16.7
-240.17	3.06	7.08E+12	0.0195	0	0.97	5.75E+09	3.26E+12	16.7
-240.06	3.06	7.09E+12	0.0196	0	0.98	5.75E+09	3.27E+12	16.7
-23995	3 07	7 09E+12	0.0195	0	0.98	576E+09	3 27E+12	167
220.84	2.08	7105112	0.0104	0	0.08	5 76E+09	2.27E + 12	167
-239.04	3.00	7.10E+12	0.0194	0	0.90	5.702+09	3.271412	10.7
-239.72	3.08	7.10E+12	0.0193	0	0.98	5.76E+09	3.27E+12	16.8
-239.61	3.09	7.11E+12	0.0193	0	0.98	5.77E+09	3.27E+12	16.8
-239.44	3.09	7.16E+12	0.0199	0	0.98	5.78E+09	3.29E+12	16.8
-23927	3.08	7 15E+12	0.0201	0	0.98	5 79E+09	3 30E+12	168
220.10	2.00	7155112	0.0107	0	0.00	= 70E + 00	$220E \cdot 12$	16.0
-239.10	5.00	7.13E+12	0.0197	0	0.90	5.79E+09	5.50E+12	10.0
-238.92	3.08	7.14E+12	0.0192	0	0.98	5.79E+09	3.29E+12	16.8
-238.75	3.08	7.14E+12	0.0190	0	0.98	5.79E+09	3.29E+12	16.8
-238.58	3.09	7.15E+12	0.0188	0	0.98	5.79E+09	3.29E+12	16.8
-238 43	3.08	7 34F+12	0.0215	0	0.99	5 84F±09	3 35F+12	16.8
-230.43	2.00	7.346+12	0.0215	0	0.77	5.040+07	2.205.12	10.0
-238.39	3.07	7.32E+12	0.0225	0	0.99	5.85E+09	3.38E+12	16.8
-238.35	3.06	7.31E+12	0.0229	0	1.00	5.86E+09	3.39E+12	16.7
-238.30	3.05	7.30E+12	0.0227	0	1.00	5.86E+09	3.38E+12	16.7
-23826	3.04	7 28E+12	0 0224	0	1 00	5 85E+09	3 38E+12	167
230.20	2.04	7.200112	0.0221	0	1.00		2.275.12	16.7
-230.21	5.04	7.27E+12	0.0221	0	0.99	5.05E+09	5.57E+12	10.7
-238.15	3.03	7.26E+12	0.0218	0	0.99	5.85E+09	3.37E+12	16.7
-238.09	3.03	7.25E+12	0.0215	0	0.99	5.85E+09	3.36E+12	16.7
-238.03	3.02	7.24E+12	0.0212	0	0.99	5.85E+09	3.36E+12	16.7
227.07	2.02	7.24E+12	0.0210	0	0.00	5 85E+00	2.25E+12	167
-237.97	3.02	7.241+12	0.0210	0	0.99	5.032+09	3.356+12	10.7
-237.86	3.02	7.23E+12	0.0206	0	0.99	5.84E+09	3.35E+12	16.7
-237.76	3.01	7.22E+12	0.0204	0	0.99	5.84E+09	3.34E+12	16.7
-237.65	3.01	7.22E+12	0.0202	0	0.99	5.84E+09	3.34E+12	16.7
-237 54	3.01	7 22E+12	0.0200	0	0 99	584E+09	3 34E+12	167
237.31	2.00	7.220112	0.0200	0	1.00	5.011+05 F 99E+00	$2.40E \cdot 12$	16.7
-237.40	5.00	7.49E+12	0.0225	0	1.00	5.00E+09	5.40E+12	10.7
-237.44	2.99	7.47E+12	0.0252	0	1.01	5.91E+09	3.45E+12	16.7
-237.39	2.98	7.44E+12	0.0264	0	1.01	5.92E+09	3.47E+12	16.6
-237.35	2.97	7.42E+12	0.0263	0	1.01	5.92E+09	3.47E+12	16.6
-23730	2.96	740F+12	0.0258	0	1 01	592F+09	346F+12	16.6
237.30	2.90	7.100 12	0.0250	0	1.01	5.52E+05	2455.10	16.6
-237.20	2.95	7.50E+12	0.0252	0	1.01	5.91E+09	5.45E+12	10.0
-237.20	2.94	7.37E+12	0.0247	0	1.01	5.91E+09	3.45E+12	16.6
-237.15	2.93	7.35E+12	0.0243	0	1.01	5.91E+09	3.44E+12	16.6
-237.10	2.92	7.34E+12	0.0239	0	1.01	5.91E+09	3.43E+12	16.6
-237 04	2 92	7 33F+12	0.0236	0	1 00	590F+09	3 43F+12	16.6
237.04	2.72	7.331.12	0.0250	0	1.00	5.000.00	2.425.42	10.0
-236.96	2.91	7.32E+12	0.0232	0	1.00	5.90E+09	3.42E+12	16.6
-236.87	2.91	7.31E+12	0.0229	0	1.00	5.90E+09	3.41E+12	16.5
-236.78	2.91	7.30E+12	0.0226	0	1.00	5.90E+09	3.41E+12	16.5
-236.70	2.90	7.30E+12	0.0224	0	1.00	5.90E+09	3.41E+12	16.5
-23656	2 90	7 29 5 + 12	0.0222	0	1.00	5 90F±09	3 40 5+12	165
-230.30	2.70	7.200+12	0.0222	0	1.00	5.000+00	3.465-12	10.5
-236.45	2.89	7.46E+12	0.0246	0	1.01	5.92E+09	3.45E+12	16.5
-236.41	2.88	7.45E+12	0.0257	0	1.01	5.94E+09	3.47E+12	16.5
-236.38	2.88	7.44E+12	0.0263	0	1.01	5.94E+09	3.49E+12	16.5
-236.35	2.87	7.42E+12	0.0263	0	1.01	5.94E+09	3.49E+12	16.5
226.21	2.87	7.11 ± 12	0.0260	0	1.01	50/E+00	2 / 9E + 12	165
-230.31	2.07	7.412+12	0.0200	0	1.01	5.946+09	3.40E+12	10.5
-236.28	2.86	7.40E+12	0.0260	0	1.01	5.94E+09	3.48E+12	16.5
-236.22	2.86	7.39E+12	0.0256	0	1.01	5.94E+09	3.48E+12	16.5
-236.16	2.85	7.38E+12	0.0252	0	1.01	5.93E+09	3.47E+12	16.5
-236.11	2.85	7.37E+12	0.0249	0	1.01	5.93E+09	3.46E+12	16.5
-236.05	2 84	7 36F+12	0 0247	- N	1 01	5 93F+09	346F+12	165
200.00	2.07	7.000-14	0.027/	0	1 0 1		0.100114 0 ACE: 40	10.0
-200.70	2.04	7.55E+1Z	0.0244	U	1.01	J.73E+U7	J.40L+12	10.5
-235.88	2.83	7.35E+12	0.0242	0	1.01	5.93E+09	3.45E+12	16.4
-235.79	2.83	7.34E+12	0.0240	0	1.01	5.93E+09	3.45E+12	16.4
-235.70	2.83	7.34E+12	0.0239	0	1.01	5.93E+09	3.45E+12	16.4
-235 56	2 83	7 34E+12	0 0237	Û	1 01	5 93F+09	3 45E+12	164
_0000	2.00	7 9/15 19	0.0207	0	1 01	5.750.07	2 / / 1 - 1 -	1/ 4
-235.51	2.83	/.34E+1Z	0.023/	U	1.01	5.938+09	3.44E+1Z	16.4
-235.46	2.83	7.45E+12	0.0236	0	1.01	5.93E+09	3.44E+12	16.4
-235.41	2.83	7.45E+12	0.0277	0	1.02	5.96E+09	3.52E+12	16.4
-235.36	2.82	7.44E+12	0.0273	0	1.02	5.96E+09	3.51E+12	16.4
-235 30	2 82	 7 ΔΔ⋤⊥12	0 0260	n N	1 02	5 965-00	2 51 F₊12	164
200.00	2.02	7 ADE 40	0.0207	0	1.02		0.010714 0 EAE. 40	10.4
-235.25	2.82	7.43E+1Z	0.0268	U	1.02	5.90E+U9	5.5UE+12	16.4
-235.20	2.81	7.43E+12	0.0265	0	1.02	5.96E+09	3.50E+12	16.4
-235.14	2.81	7.42E+12	0.0264	0	1.02	5.96E+09	3.50E+12	16.4
-235.07	2.81	7.42E+12	0.0263	0	1.02	5.96E+09	3.50E+12	16.4
-235.00	2.81	7 42E+12	0 0262	n	1 02	596F+09	3.50F+12	164
_224.02	2.01	7 / 7 . 10	0.0202	0	1.02	5.701.07	2/05:12	1/ 4
-234.93	2.81	/.4ZE+1Z	0.0261	U	1.02	5.90E+09	3.496+12	16.4
-234.85	2.81	7.41E+12	0.0260	0	1.02	5.96E+09	3.49E+12	16.4
-234.71	2.81	7.41E+12	0.0259	0	1.02	5.96E+09	3.49E+12	16.4
-234.57	2.81	7.41E+12	0.0258	0	1.02	5.96E+09	3.49E+12	16.4
-734 47	2.01	7 <u>4</u> 4F+12	0.0258	ñ	1 02	5 965+00	3 49F+17	161
207.72 204 20	2.01	7.775714 7.405.40	0.0230	0	1.02		3 T 7 D T 1 4 9	10.4
-234.20	2.80	/.43E+1Z	0.0272	U	1.02	5.9/6+09	3.32E+12	10.4
-234.13	2.80	7.42E+12	0.0262	0	1.02	5.96E+09	3.50E+12	16.4
-233.98	2.80	7.42E+12	0.0260	0	1.02	5.96E+09	3.50E+12	16.4
-233.83	2.80	7.42E+12	0.0259	0	1.02	5.96E+09	3.50E+12	16.4
-233.68	2 80		0 0259	n	1 02	5 96F+09	3 50F+12	16.4
_000 _000 E1	2.00	7,146514 7,195,19	0.0207	0	1.02	5.701+07	2 505 12	164
-233.51	2.79	/.4ZE+1Z	0.0258	U	1.02	5.90E+09	3.5UE+12	16.4
-233.38	2.80	7.37E+12	0.0247	0	1.01	5.95E+09	3.48E+12	16.4
-233.24	2.80	7.38E+12	0.0242	0	1.01	5.95E+09	3.47E+12	16.4
-233.11	2.81	7.39E+12	0.0243	0	1.01	5.95E+09	3.47E+12	16.4
-232.97	2.81	7.40E+12	0.0245	0	1.01	5.95E+09	3.47E+12	16.5

222.01	2 0 2	7405.12	0.0246	0	1.01		2405.12	16 5
-232.81	2.82	7.40E+12	0.0246	0	1.01	5.96E+09	3.48E+12	16.5
-232.65	2.82	7.40E+12	0.0247	0	1.02	5.96E+09	3.48E+12	16.5
-232.55	2.82	7.41E+12	0.0246	0	1.02	5.96E+09	3.48E+12	16.5
-232.48	2.82	7.25E+12	0.0226	0	1.01	5.94E+09	3.44E+12	16.5
-232.43	2.83	7.27E+12	0.0214	0	1.01	5.92E+09	3.41E+12	16.5
-232.37	2.84	7.28E+12	0.0209	0	1.00	5.92E+09	3.40E+12	16.5
-232.32	2.85	7.30E+12	0.0210	0	1.00	5.92E+09	3.40E+12	16.5
-232.26	2.85	7.31E+12	0.0212	0	1.01	5.92E+09	3.41E+12	16.5
-232.19	2.86	7.32E+12	0.0215	0	1.01	5.92E+09	3.42E+12	16.5
-232.12	2.86	7.33E+12	0.0218	0	1.01	5.93E+09	3.42E+12	16.5
-232.05	2.87	7.34E+12	0.0219	0	1.01	5.93E+09	3.43E+12	16.5
-231.99	2.87	7 35E+12	0.0221	0	1.01	5 93E+09	3 43E+12	16.6
-231.88	2.88	7 36F+12	0.0222	0	1.01	5 93E+09	3 43F+12	16.6
231.00	2.00	7.301+12	0.0222	0	1.01	5.750+07	2 / 2 E + 1 2	16.0
-231.77	2.00	7.306+12	0.0223	0	1.01	5.940+09	2.445.12	10.0
-231.00	2.88	7.30E+12	0.0223	0	1.01	5.94E+09	3.44E+1Z	10.0
-231.56	2.88	7.37E+12	0.0223	0	1.01	5.94E+09	3.44E+1Z	16.6
-231.49	2.89	7.12E+12	0.0199	0	1.00	5.91E+09	3.38E+12	16.6
-231.45	2.90	7.14E+12	0.0179	0	0.99	5.88E+09	3.34E+12	16.6
-231.40	2.91	7.17E+12	0.0171	0	0.99	5.86E+09	3.32E+12	16.6
-231.35	2.92	7.19E+12	0.0172	0	0.99	5.87E+09	3.32E+12	16.6
-231.30	2.93	7.21E+12	0.0176	0	0.99	5.87E+09	3.33E+12	16.7
-231.26	2.94	7.22E+12	0.0179	0	0.99	5.88E+09	3.34E+12	16.7
-231.19	2.95	7.24E+12	0.0182	0	1.00	5.88E+09	3.34E+12	16.7
-231.13	2.96	7.25E+12	0.0183	0	1.00	5.89E+09	3.35E+12	16.7
-231.07	2.97	7.26E+12	0.0186	0	1.00	5.89E+09	3.35E+12	16.7
-231.01	2.97	7 27E+12	0.0187	0	1 00	589E+09	3 36E+12	167
-230.91	2.98	7 28E+12	0.0190	0	1.00	5 90E+09	3 36E+12	167
-230.80	2.90	7.20E+12 7.29E+12	0.0190	0	1.00	5.90E+09	3.30E+12 3.37F+12	16.7
-230.70	2.90	7.20E+12 7.30E+12	0.0191	0	1.00	5.90E+09	3.37E+12 3.37F+12	16.7
220.60	2.00	7.30E+12 7.20E+12	0.0101	0	1.00	5.00E+00	2 27E+12	16.7
-230.00	2.99	7.306+12	0.0192	0	1.00	5.900+09	3.37 ± 12 3.37 ± 12	10.7
-230.30	2.99	7.516+12	0.0192	0	1.00	5.916+09	3.3711+12	10.0
-230.49	3.00	7.01E+12	0.0182	0	1.00	5.89E+09	3.35E+12	16.8
-230.47	3.00	7.02E+12	0.0163	0	0.99	5.86E+09	3.30E+12	16.8
-230.46	3.00	7.02E+12	0.0156	0	0.99	5.85E+09	3.28E+12	16.8
-230.44	3.01	7.03E+12	0.0152	0	0.99	5.84E+09	3.27E+12	16.8
-230.41	3.02	7.05E+12	0.0145	0	0.98	5.82E+09	3.25E+12	16.8
-230.38	3.03	7.06E+12	0.0142	0	0.98	5.82E+09	3.24E+12	16.8
-230.35	3.04	7.08E+12	0.0142	0	0.98	5.82E+09	3.24E+12	16.8
-230.31	3.05	7.10E+12	0.0143	0	0.98	5.82E+09	3.24E+12	16.8
-230.26	3.06	7.12E+12	0.0145	0	0.98	5.82E+09	3.25E+12	16.9
-230.21	3.07	7.14E+12	0.0148	0	0.98	5.83E+09	3.26E+12	16.9
-230.15	3.08	7 16E+12	0.0150	0 0	0.98	5 84E+09	3 27E+12	169
-230.10	3.00	7.10E+12 7.17F+12	0.0150	0	0.90	5.84F+09	3.27E+12	16.9
-230.10	3.05	7.17E+12 7.10F+12	0.0155	0	0.99	5.04L+09	3.27E+12	16.9
220.00	2.11	7.175+12	0.0155	0	0.00		3.201 + 12 2 20E + 12	16.0
-229.91	3.12	7.216+12	0.0157	0	0.99	5.05E+09	3.29E+12 2.20E+12	10.9
-229.81	3.12	7.22E+12	0.0159	0	0.99	5.86E+09	3.29E+12	16.9
-229.72	3.13	7.23E+12	0.0160	0	0.99	5.86E+09	3.30E+12	17.0
-229.62	3.13	7.23E+12	0.0160	0	0.99	5.86E+09	3.30E+12	17.0
-229.45	3.14	7.21E+12	0.0156	0	0.99	5.86E+09	3.29E+12	17.0
-229.27	3.15	7.22E+12	0.0154	0	0.99	5.86E+09	3.29E+12	17.0
-229.10	3.16	7.23E+12	0.0155	0	0.99	5.86E+09	3.29E+12	17.0
-228.92	3.17	7.24E+12	0.0156	0	0.99	5.87E+09	3.30E+12	17.0
-228.74	3.17	7.24E+12	0.0155	0	0.99	5.87E+09	3.30E+12	17.0
-228.55	3.17	7.25E+12	0.0154	0	0.99	5.87E+09	3.30E+12	17.0
-228.36	3.18	7.22E+12	0.0149	0	0.99	5.87E+09	3.29E+12	17.0
-22817	319	7 23E+12	0 0147	0	0 99	587E+09	3 28E+12	171
-227.98	3 20	7 24E+12	0.0147	0	0.99	5.87E+09	3 28E+12	17.1
-227.50	3.20	7.21E+12 7.24E+12	0.011/	0	0.99	5.87E+09	3.20E+12 3.20E+12	17.1
-227.75	3.20	7.24112	0.0140	0	0.99	5.88F±09	3.29E+12 3.20E+12	17.1
-227.37	3.20	7.236+12	0.0147	0	0.99		3.290 ± 12	17.1
-227.35	3.22	7.24E+12	0.0144	0	0.99	5.88E+09	3.28E+12	17.1
-227.13	3.23	7.26E+12	0.0145	0	0.99	5.88E+09	3.29E+12	17.1
-226.91	3.25	7.28E+12	0.0146	0	0.99	5.89E+09	3.29E+12	17.2
-226.64	3.26	7.29E+12	0.0146	0	0.99	5.89E+09	3.30E+12	17.2
-226.37	3.26	7.27E+12	0.0143	0	0.99	5.89E+09	3.29E+12	17.2
-226.10	3.27	7.29E+12	0.0141	0	0.99	5.89E+09	3.29E+12	17.2
-225.82	3.28	7.29E+12	0.0141	0	0.99	5.90E+09	3.29E+12	17.2
-225.53	3.28	7.30E+12	0.0140	0	0.99	5.90E+09	3.29E+12	17.2
-225.24	3.29	7.29E+12	0.0137	0	0.99	5.90E+09	3.29E+12	17.2
-224.95	3.30	7.30E+12	0.0136	0	0.99	5.90E+09	3.29E+12	17.2
-224.66	3.30	7.30E+12	0.0135	0	0.99	5.90E+09	3.29E+12	17.3
-224.28	3.31	7.29E+12	0.0132	0	0.99	5.90E+09	3.28E+12	17.3
-223.91	3.32	7.30E+12	0.0131	0	0.99	5.90E+09	3.28E+12	17.3
-223.53	3.32	7.31E+12	0.0130	0	1.00	5.91E+09	3.28E+12	17.3
-223.15	3.33	7.29E+12	0.0127	0	0.99	5.91E+09	3.28E+12	17.3
-222.74	3.33	7.30E+12	0.0126	0	0.99	5.91E+09	3.28E+12	17.3
-222.33	3.35	7.32E+12	0.0126	0	1.00	5.92E+09	3.28E+12	17.3
-221.92	3.37	7.35E+12	0.0127	0	1.00	5.92E+09	3.29E+12	174
-221 51	3 38	7 36E+12	0 0127	Õ	1 00	5 93E+09	3 29E+12	174
-221 03	3 39	7 36E+12	0 0125	0 0	1 00	5 93E+09	3 29E+12	174
-221.05	2 20 3.3 2	7 26F±12	0.0123	0	1 00	5 9/15-00	3.270+12 2 20F±12	17.4
-220.30	2.40	7.306+12	0.0124	0	1.00	5.940+09	2 20E 12	17.4
-220.00 210.21	3.4U 2.40	7.30E+12 7.27E,12	0.0121	0	1.00	J.746+07 E 046,00	J.475714 2 205 - 12	174
-219.01	3.40	/.3/E+1Z	0.0120	U	1.00	5.94E+U9	3.27E+12	17.4
-219.01	3.40	7.3/E+1Z	0.0119	U	1.00	5.94E+U9	3.27E+12	17.5
-218.41	3.40	/.3/E+12	0.0118	U	1.00	5.95E+09	3.29E+12	17.5
-217.80	3.41	7.38E+12	0.0116	0	1.00	5.95E+09	3.29E+12	17.5
-217.20	3.42	7.40E+12	0.0117	0	1.00	5.96E+09	3.30E+12	17.5
-216.58	3.44	7.43E+12	0.0118	0	1.00	5.97E+09	3.30E+12	17.5
-215.95	3.44	7.44E+12	0.0118	0	1.01	5.98E+09	3.31E+12	17.5
-215.32	3.43	7.45E+12	0.0119	0	1.01	5.98E+09	3.32E+12	17.5
-214.70	3.43	7.45E+12	0.0117	0	1.01	5.99E+09	3.31E+12	17.5
-213.99	3.42	7.45E+12	0.0116	0	1.01	5.99E+09	3.31E+12	17.5
-213.28	3.42	7.46E+12	0.0116	0	1.01	6.00E+09	3.32E+12	17.5
-212.57	3.41	7.46E+12	0.0115	0	1.01	6.00E+09	3.32E+12	17.5
-211.86	3.42	7.49E+12	0.0117	0	1.01	6.01E+09	3.33E+12	17.6
-211.15	3.42	7.52E+12	0.0120	0	1.01	6.02E+09	3.34E+12	17.6
-210.44	3.42	7.53E+12	0.0120	0	1.01	6.02E+09	3.35E+12	17.6
-209.73	3.41	7.52E+12	0.0118	0 0	1.01	6.03E+09	3.34E+12	17.6
-208 95	3 41	7 52E+12	0 0117	0	1 01	6.03E+09	3 34E+12	17.0
-208 18	2 40	7 49F+12	0.0117	0 0	1 01	6026+00	3 3 7 F + 1 7	17.0
-207.40	3.39	7.46E+12	0.0108	0	1.01	6.01E+09	3.31E+12	17.6
20676	2 20	7476.10	0.0100	0	1.01	(01E)00	2215.12	17(
---------	--------------	------------------------	--------	--------	------	----------------------	--------------------------	--------------
-200.70	5.59	7.476+12	0.0100	0	1.01	0.01E+09	3.31E+12	17.0
-206.25	3.38	7.43E+12	0.0104	0	1.01	6.00E+09	3.29E+12	17.6
-205.74	3.37	7.42E+12	0.0102	0	1.01	5.99E+09	3.29E+12	17.6
-205.23	3.38	7.38E+12	0.0098	0	1.00	5.98E+09	3.27E+12	17.6
-204.73	3.38	7.40E+12	0.0099	0	1.00	5.98E+09	3.27E+12	17.6
-204.22	3.40	7.36E+12	0.0095	0	1.00	5.97E+09	3.26E+12	17.6
-203.71	3.41	7.38E+12	0.0095	0	1.00	5.97E+09	3.26E+12	17.7
-203.51	3.41	7.39E+12	0.0096	0	1.00	5.97E+09	3.26E+12	17.7
-203.31	3.41	7.32E+12	0.0091	0	1.00	5.95E+09	3.24E+12	17.7
-20314	3 41	7 32E+12	0.0089	0	1.00	595E+09	3 23E+12	177
203.14	2 / 1	7.326 12	0.0000	0	1.00	5.55E+05	2.22E+12	17.7
-202.90	3.41	7.32E+12	0.0009	0	1.00	5.946+09	3.231+12	17.7
-202.81	3.41	7.32E+12	0.0089	0	1.00	5.95E+09	3.23E+12	17.7
-202.58	3.41	7.32E+12	0.0089	0	1.00	5.95E+09	3.23E+12	17.7
-202.35	3.42	7.27E+12	0.0084	0	0.99	5.93E+09	3.21E+12	17.7
-202.16	3.43	7.28E+12	0.0083	0	0.99	5.92E+09	3.20E+12	17.7
-201.98	3.44	7.29E+12	0.0084	0	0.99	5.93E+09	3.21E+12	17.7
-201.80	3.44	7.30E+12	0.0085	0	0.99	5.93E+09	3.21E+12	17.7
-201 61	3 4 4	7 30E+12	0.0085	0	0 99	593E+09	321E+12	177
-201 54	3 4 4	731F+12	0.0085	0	0.99	5 93F+09	3 21F+12	17.7
201.51	2 1 1	7.311 + 12 7.21F+12	0.0005	0	0.99	5.02E+00	2 21E+12	17.7
-201.52	2.44	7.316+12	0.0005	0	0.99	J.93E+09	3.21E+12 2.21E+12	17.7
-201.50	3.44	7.216+12	0.0085	0	0.99	5.93E+09	3.21E+12	17.7
-201.47	3.44	7.21E+12	0.0080	0	0.99	5.91E+09	3.18E+12	17.7
-201.41	3.44	7.21E+12	0.0078	0	0.99	5.90E+09	3.18E+12	17.7
-201.36	3.44	7.22E+12	0.0077	0	0.99	5.90E+09	3.17E+12	17.7
-201.30	3.45	7.22E+12	0.0077	0	0.99	5.90E+09	3.17E+12	17.7
-201.19	3.45	7.23E+12	0.0077	0	0.99	5.90E+09	3.17E+12	17.7
-201.09	3.45	7.23E+12	0.0078	0	0.99	5.90E+09	3.17E+12	17.7
-200.98	3.45	7.23E+12	0.0078	0	0.99	5.90E+09	3.17E+12	17.8
-200 79	3 4 5	7 24E+12	0.0078	0	0.99	5 90E+09	3 17E+12	17.8
-200.60	3.15	7.21E+12 7.24E+12	0.0078	0	0.99	5 90F+09	3.17 E+12 3.18F+12	17.0
200.00	245	7.24E+12	0.0070	0	0.77	5.70E+07	2 10E+12	17.0
-200.55	3.45	7.246+12	0.0070	0	0.99	5.900+09	3.10E+12 2.10E+12	17.0
-200.51	3.45	7.24E+12	0.0078	0	0.99	5.90E+09	3.18E+12	17.8
-200.49	3.45	7.14E+12	0.0078	0	0.99	5.90E+09	3.18E+12	17.8
-200.46	3.46	7.15E+12	0.0073	0	0.98	5.88E+09	3.15E+12	17.8
-200.41	3.46	7.16E+12	0.0072	0	0.98	5.88E+09	3.14E+12	17.8
-200.35	3.47	7.17E+12	0.0072	0	0.98	5.87E+09	3.14E+12	17.8
-200.30	3.47	7.17E+12	0.0072	0	0.98	5.87E+09	3.14E+12	17.8
-200 19	3 48	7 18E+12	0.0072	0	0.98	5 88E+09	314E+12	17.8
-200.19	3 4 8	7.10E+12 7.10E+12	0.0072	0	0.90	5.88F±09	3.15E+12	17.0
100.00	2 40	7.175+12	0.0073	0	0.00	5.00E+07	2.15E+12 2.15E+12	17.0
-199.90	5.49	7.206+12	0.0073	0	0.90	5.00E+09	3.15E+12 2.15E+12	17.0
-199.78	3.49	7.21E+12	0.0074	0	0.99	5.89E+09	3.15E+12	17.8
-199.59	3.50	7.21E+12	0.0074	0	0.99	5.89E+09	3.15E+12	17.8
-199.52	3.50	7.21E+12	0.0074	0	0.99	5.89E+09	3.15E+12	17.8
-199.50	3.50	7.12E+12	0.0072	0	0.98	5.88E+09	3.14E+12	17.8
-199.48	3.50	7.12E+12	0.0069	0	0.98	5.87E+09	3.13E+12	17.8
-199.45	3.50	7.13E+12	0.0069	0	0.98	5.86E+09	3.12E+12	17.8
-199 39	3 51	7 14F+12	0.0068	0	0.98	5.86F+09	3 12F+12	17.8
100 22	252	7.15E+12	0.0000	0	0.90	5.00E+09	2 12E+12	17.0
100.27	252	7.15E+12	0.0000	0	0.00	5.00E+07	3.12E+12 2.12E+12	17.5
-199.27	3.52	7.15E+12	0.0068	0	0.98	5.80E+09	3.12E+12	17.9
-199.22	3.52	7.16E+12	0.0068	0	0.98	5.86E+09	3.12E+12	17.9
-199.09	3.53	7.17E+12	0.0069	0	0.98	5.87E+09	3.13E+12	17.9
-198.97	3.54	7.18E+12	0.0070	0	0.98	5.87E+09	3.13E+12	17.9
-198.84	3.54	7.19E+12	0.0070	0	0.98	5.87E+09	3.13E+12	17.9
-198.72	3.54	7.19E+12	0.0070	0	0.98	5.87E+09	3.13E+12	17.9
-198.56	3.54	7.19E+12	0.0070	0	0.98	5.87E+09	3.14E+12	17.9
-198 50	3 54	7 20F+12	0.0070	0	0.98	5.87E+09	3.14F+12	17.9
100 16	255	7.202+12	0.0070	0	0.90	5.07E+07	2.17E+12	17.5
-190.40	3.33	7.106+12	0.0007	0	0.90	5.000+09	3.121 ± 12	17.9
-198.42	3.55	7.11E+12 7.12E+12	0.0065	0	0.98	5.85E+09	3.10E+12	17.9
-198.38	3.56	7.12E+12	0.0065	0	0.98	5.84E+09	3.10E+12	17.9
-198.31	3.56	7.13E+12	0.0064	0	0.98	5.84E+09	3.10E+12	17.9
-198.24	3.57	7.14E+12	0.0065	0	0.98	5.84E+09	3.10E+12	17.9
-198.18	3.58	7.14E+12	0.0065	0	0.98	5.85E+09	3.10E+12	17.9
-198.11	3.58	7.15E+12	0.0066	0	0.98	5.85E+09	3.11E+12	17.9
-197.94	3.59	7.16E+12	0.0066	0	0.98	5.85E+09	3.11E+12	18.0
-197.76	3.59	7.17E+12	0.0066	0	0.98	5.86E+09	3.11E+12	18.0
-197 59	3.60	717F+12	0.0067	0	0.98	5.86F+09	3 12F+12	18.0
107/1	2.61	7.00F+12	0.0007	0	0.90	5.00E+09	2 00F+12	10.0
-197.41	3.01	7.096+12	0.0002	0	0.90	5.046+09	2.09E+12	10.0
-197.20	3.02	7.110+12	0.0001	0	0.90	5.03E+09	3.00E+12	10.0
-17/.14	3.03	/.13E+1Z	0.0060	U	0.97	5.83E+U9	3.UOE+12	18.0
-19/.01	3.64	/.14E+12	0.0062	U	0.98	5.84E+09	3.09E+12	18.0
-196.84	3.64	/.14E+12	0.0062	0	0.98	5.84E+09	3.09E+12	18.0
-196.67	3.65	7.15E+12	0.0063	0	0.98	5.85E+09	3.09E+12	18.0
-196.50	3.65	7.16E+12	0.0063	0	0.98	5.85E+09	3.10E+12	18.1
-196.47	3.65	7.05E+12	0.0060	0	0.98	5.83E+09	3.08E+12	18.1
-196.45	3.66	7.05E+12	0.0058	0	0.97	5.82E+09	3.06E+12	18.1
-196.42	3.66	7.06E+12	0.0057	0	0.97	5.81E+09	3.06E+12	18.1
-196.37	3 67	7.07E+12	0.0056	0	0 97	5.81E+09	3.05E+12	18.1
-196 21	267	7 በՋℾ⊥1 ን	0.0050	0	0.07	5 Q1F±00	2 በራፑ±1ን	1Q 1
-106.26	5.07 2.40	7.005+12	0.0057	0	0.57	5,015+07	2 N/E - 10	10.1
106.20	3.00	7.076+12		0	0.7/		3.00E+12	10.1
-190.20	3.69	7.09E+12	0.0057	U	0.97	5.82E+09	3.U6E+12	18.1
-196.09	3.70	7.11E+12	0.0058	0	0.97	5.82E+09	3.06E+12	18.1
-195.97	3.70	7.11E+12	0.0058	0	0.97	5.82E+09	3.07E+12	18.1
-195.85	3.71	7.12E+12	0.0058	0	0.97	5.83E+09	3.07E+12	18.1
-195.74	3.71	7.13E+12	0.0059	0	0.97	5.83E+09	3.07E+12	18.1
-195.60	3.71	7.13E+12	0.0059	0	0.97	5.83E+09	3.07E+12	18.1
-195.52	3 72	7.13E+12	0.0059	0	097	5.83E+09	3.07E+12	18.1
-105 51	270	7 125112	0.0000	0	0.97	2 83E+02	3.07E±12	1Q 1
-105 50	3.74 272	1.135712 6 00E , 19	0.0039	0	0.97	5.035703	3.07 LT 12 2 N7E - 10	10.1 10 1
-132.20	3.72	0.90E+12	0.0059	U	0.97	5.03E+U9	3.U/E+12	18.1
-195.49	3.72	0.98E+12	0.0056	U	0.97	5.81E+09	3.U5E+12	18.1
-195.45	3.73	6.99E+12	0.0053	0	0.97	5.79E+09	3.03E+12	18.2
-195.42	3.73	7.00E+12	0.0051	0	0.97	5.78E+09	3.02E+12	18.2
-195.38	3.74	7.01E+12	0.0051	0	0.97	5.78E+09	3.01E+12	18.2
-195.33	3.75	7.02E+12	0.0051	0	0.97	5.78E+09	3.01E+12	18.2
-195.27	3.76	7.03E+12	0.0051	0	0.97	5.78E+09	3.02E+12	18.2
-195.22	3.77	7.04E+12	0.0051	0	0.97	5.78E+09	3.02E+12	18.2
-195.11	3.78	7.06E+12	0.0052	0 0	0 97	5.79E+09	3.02E+12	18.2
-195.01	2 70	7 በ7F±12	0.0052	0	0.97	5.775+07 5 80£+00	3.02E+12 2 ()2E+12	1Q 7
104 00	3./Y 2.70	7.U/E+12 7.00E,12	0.0053	0	0.97	5.00E+U9	3.U3E+12 2.02E+12	10.2
-194.90	3.79	7.08E+12	0.0053	U	0.97	5.80E+09	3.U3E+12	18.2
-194.80	3.80	7.09E+12	0.0053	0	0.97	5.80E+09	3.04E+12	18.2
-194.56	3.81	7.10E+12	0.0054	0	0.97	5.81E+09	3.04E+12	18.3

				-				
-194.33	3.82	6.97E+12	0.0048	0	0.96	5.77E+09	3.00E+12	18.3
-194.24	3.83	6.98E+12	0.0046	0	0.96	5.76E+09	2.98E+12	18.3
-194.16	3.84	6.99E+12	0.0046	0	0.96	5.76E+09	2.98E+12	18.3
-194.08	3.85	7.00E+12	0.0047	0	0.96	5.76E+09	2.99E+12	18.3
-193.99	3.85	7.00E+12	0.0047	0	0.96	5.76E+09	2.99E+12	18.3
-193.91	3.86	7.01E+12	0.0047	0	0.96	5.77E+09	2.99E+12	18.3
-193.78	3.86	7.02E+12	0.0047	0	0.96	5.77E+09	2.99E+12	18.3
-193.64	3.87	7.02E+12	0.0047	0	0.96	5.77E+09	3.00E+12	18.3
-193.50	3.87	7.03E+12	0.0047	0	0.96	5.77E+09	3.00E+12	18.3
-193 39	3.88	6 90F+12	0.0043	0	0.96	574F+09	2 96F+12	18.4
102.20	2.00	6.02E+12	0.0043	0	0.90	5.74E+09	2.705 12	10.4
-195.50	5.90	0.92E+12	0.0042	0	0.90	5.750+09	2.956+12	10.4
-193.20	3.91	6.94E+12	0.0042	0	0.96	5.73E+09	2.95E+12	18.4
-193.11	3.92	6.95E+12	0.0042	0	0.96	5.73E+09	2.95E+12	18.4
-192.98	3.93	6.97E+12	0.0043	0	0.96	5.74E+09	2.96E+12	18.4
-192.84	3.95	6.98E+12	0.0043	0	0.96	5.74E+09	2.96E+12	18.4
-192.71	3.95	6.99E+12	0.0043	0	0.96	5.75E+09	2.97E+12	18.4
-192.55	3.96	6.99E+12	0.0043	0	0.96	5.75E+09	2.97E+12	18.5
-192.51	3.96	7.00E+12	0.0043	0	0.96	5.75E+09	2.97E+12	18.5
-192.49	3.96	6.87E+12	0.0042	0	0.96	5.74E+09	2.96E+12	18.5
-192 47	3.96	6.87E+12	0.0041	0	0.96	5 73E+09	2 94E+12	185
-192.46	3.97	6.88F+12	0.0040	0	0.95	572F+09	2 93F+12	185
102.40	2.07	6 00E 12	0.0040	0	0.95	5.72E+09	2.75112	10.5 10 E
-192.42	2.97	0.001 ± 12	0.0039	0	0.95	5.710+09	2.756+12	10.5
-192.39	5.90	0.09E+12	0.0039	0	0.95	5.71E+09	2.926+12	10.5
-192.36	3.99	6.90E+12	0.0038	0	0.95	5.71E+09	2.92E+12	18.5
-192.28	4.00	6.91E+12	0.0039	0	0.95	5.71E+09	2.92E+12	18.5
-192.21	4.01	6.92E+12	0.0039	0	0.95	5.71E+09	2.93E+12	18.5
-192.14	4.01	6.93E+12	0.0039	0	0.95	5.72E+09	2.93E+12	18.5
-191.99	4.03	6.95E+12	0.0040	0	0.96	5.72E+09	2.94E+12	18.5
-191.84	4.04	6.96E+12	0.0040	0	0.96	5.73E+09	2.94E+12	18.6
-191.69	4.05	6.97E+12	0.0040	0	0.96	5.73E+09	2.94E+12	18.6
-191.54	4.05	6.98E+12	0.0040	0	0.96	5.74E+09	2.95E+12	18.6
-191.43	4.07	6.86E+12	0.0037	0	0.95	5.71E+09	2.91E+12	18.6
-191 33	4.08	6.88E+12	0.0036	0	0.95	5 70E+09	2 90E+12	18.6
101 22	1.00	6.00E+12	0.0036	0	0.95	5.70E+09	2.90E+12 2.00E+12	10.0
101 12	4.11	6.01E+12	0.0030	0	0.75	5.70E+07	2.00E+12	10.0
-191.13	4.11	0.91E+12	0.0036	0	0.95	5.70E+09	2.90E+12	18.0
-190.98	4.12	6.92E+12	0.0036	0	0.95	5.71E+09	2.91E+12	18.7
-190.82	4.13	6.94E+12	0.0037	0	0.95	5.71E+09	2.91E+12	18.7
-190.67	4.14	6.95E+12	0.0037	0	0.95	5.72E+09	2.92E+12	18.7
-190.53	4.15	6.95E+12	0.0037	0	0.95	5.72E+09	2.92E+12	18.7
-190.51	4.15	6.95E+12	0.0037	0	0.95	5.72E+09	2.92E+12	18.7
-190.50	4.15	6.95E+12	0.0037	0	0.95	5.72E+09	2.92E+12	18.7
-190.49	4.15	6.70E+12	0.0037	0	0.95	5.72E+09	2.92E+12	18.7
-190 48	416	670E+12	0 0034	0	0.95	5 69E+09	2.88E+12	187
-190.46	416	671E+12	0.0031	0	0.94	5.66E+09	2.86E+12	187
-190.10	4.17	6.72E+12	0.0031	0	0.94	5.60E+09	2.00E+12 2.84F+12	18.7
-190.43	4.17	0.72E+12 6 72E+12	0.0030	0	0.94	5.040+09	2.040+12	10.7
-190.40	4.10	0.75E+12	0.0029	0	0.94	5.036+09	2.02E+12	10.7
-190.36	4.20	6.75E+12	0.0029	0	0.94	5.63E+09	2.82E+12	18./
-190.32	4.21	6.76E+12	0.0029	0	0.94	5.63E+09	2.83E+12	18.8
-190.28	4.22	6.77E+12	0.0029	0	0.94	5.63E+09	2.83E+12	18.8
-190.24	4.23	6.79E+12	0.0029	0	0.94	5.64E+09	2.83E+12	18.8
-190.16	4.25	6.81E+12	0.0030	0	0.94	5.64E+09	2.84E+12	18.8
-190.07	4.27	6.83E+12	0.0031	0	0.94	5.65E+09	2.85E+12	18.8
-189.98	4.29	6.84E+12	0.0031	0	0.94	5.66E+09	2.85E+12	18.8
-189.90	4.30	6.86E+12	0.0031	0	0.94	5.66E+09	2.86E+12	18.8
-189.71	4.32	6.88E+12	0.0032	0	0.95	5.67E+09	2.86E+12	18.9
-189 53	4 34	6.89F+12	0.0032	0	0.95	5.68F+09	2.87F+12	18.9
180.25	4.25	6.05E+12	0.0032	0	0.95	5.60E+07	2.07E+12 2.97E+12	10.7
-109.33	4.30	0.001712	0.0032	0	0.95	5.000+09	2.07E + 12	10.9
-189.17	4.39	0.91E+12	0.0031	0	0.95	5.08E+09	2.87E+12	18.9
-188.95	4.41	6.93E+12	0.0032	0	0.95	5.69E+09	2.88E+12	19.0
-188.72	4.42	6.94E+12	0.0032	0	0.95	5.69E+09	2.88E+12	19.0
-188.50	4.42	6.99E+12	0.0033	0	0.95	5.71E+09	2.90E+12	19.0
-188.27	4.42	6.99E+12	0.0033	0	0.95	5.72E+09	2.90E+12	19.0
-188.05	4.42	6.99E+12	0.0033	0	0.95	5.72E+09	2.90E+12	19.0
-187.77	4.42	6.99E+12	0.0032	0	0.95	5.72E+09	2.90E+12	19.0
-187.56	4.42	6.99E+12	0.0032	0	0.95	5.72E+09	2.90E+12	19.0
-187.48	4.42	7.05E+12	0.0033	0	0.96	5.74E+09	2.92E+12	19.0
-187.41	4.42	7.06E+12	0.0035	0	0.96	5.75E+09	2.93E+12	19.0
-187.33	4.42	7.06E+12	0.0035	0	0.96	5.75E+09	2.93E+12	19.0
-187 20	4 4 2	7 05E+12	0 0034	0 0	0.96	575E+09	2.93E+12	19.0
-187.08	4 4 2	7 05E+12	0.0034	0 0	0.96	5.75E+09	2.92E+12	19.0
-186.95	<u>1.12</u> <u>1.12</u>	7 በ6〒⊥12	0 0034	n	0.20 N Q K	5 758+00	2.725.12 2.92F±12	10.0
-186.93	<u>1.12</u> <u>1.12</u>	7 በሪፑ±12	0 0034	n	0.90 N Q K	5.758±00	2.755112 2.955112 2.955112	10.0
-186 50	л.т <u>с</u> Л. Л.1	7 17F±17	0.0024	0	0.00	5.79E±00	2.755+12 2.05F±12	10.0
-196.30	ד.ד. 1 יח ג א	7.120712 7.10E+10	0.0033	0	0.70	5705-00	2.755T12 2.655±12	10.0
105.00	4.37 197	7.100+12	0.0033	0	0.70		2.70E+12 2.04E - 12	19.0
-105.99	4.3/	7.U0E+12	0.0033	U	0.96	5.//E+U9	2.946+12	19.0
-185.73	4.37	7.08E+12	0.0033	0	0.96	5.77E+09	2.93E+12	19.0
-185.48	4.37	7.17E+12	0.0036	0	0.97	5.80E+09	2.97E+12	19.0
-185.29	4.36	7.16E+12	0.0036	0	0.97	5.81E+09	2.98E+12	19.0
-185.09	4.36	7.16E+12	0.0037	0	0.97	5.82E+09	2.98E+12	19.0
-184.90	4.35	7.15E+12	0.0036	0	0.97	5.81E+09	2.98E+12	19.0
-184.61	4.35	7.15E+12	0.0035	0	0.97	5.81E+09	2.97E+12	19.0
-184.53	4.35	7.15E+12	0.0035	0	0.97	5.81E+09	2.97E+12	19.0
-184.51	4.35	7.15E+12	0.0035	0	0.97	5.81E+09	2.97E+12	19.0
-184 48	4 35	7 29E+12	0.0035	0 0	0.97	5 81E+09	2 97E+12	19.0
-184 46	1.33 4 24	7 28F±12	0 0030	n	0.97 N 98	5 855+00	2.01F⊥10	10.0
-191.11	т.Jт Л 2Л	7 77EJ 10	0.0037	0	0.70	5.055707	3.010+12 2 በንፑ±1ን	10.0
-104.41	4.34	7.2/E+1Z	0.0039	U	0.98	5.05E+U9	3.UZE+1Z	19.0
-104.37	4.33	/ 26E+12	0.0041	U	0.98	5.8/E+09	3.03E+12	18.9
-184.32	4.32	/.26E+12	0.0040	0	0.98	5.86E+09	3.03E+12	18.9
-184.24	4.31	7.24E+12	0.0039	0	0.98	5.86E+09	3.02E+12	18.9
-184.16	4.30	7.23E+12	0.0039	0	0.98	5.85E+09	3.02E+12	18.9
-184.08	4.29	7.22E+12	0.0039	0	0.98	5.85E+09	3.01E+12	18.9
-183.90	4.28	7.21E+12	0.0038	0	0.98	5.85E+09	3.01E+12	18.9
-183.72	4.27	7.20E+12	0.0037	0	0.97	5.84E+09	3.00E+12	18.9
-183.54	4.26	7.19E+12	0.0037	0	0.97	5.84E+09	3.00E+12	18.9
-183.36	4.26	7.29E+12	0.0037	0	0.97	5.84E+09	3.00E+12	18.9
-183.21	4.25	7.28E+12	0.0040	0	0.98	5.88E+09	3.04E+12	18.9
-183.07	4.24	7.27E+12	0.0040	0	0.98	5.88E+09	3.04E+12	18.9
-182.93	4.24	7.27E+12	0.0040	0	0.98	5.88E+09	3.04E+12	18.9
-182 72	4 23	7 26E+12	0 0040	0 0	0.98	5.87E+09	3.03E+12	18.9
	4.22	7 266 12	0.0020	0	0.00	E 07E . 00	2.025.12	10.7

-182.48	4 2 2	735E+12	0 0041	0	0.98	589E+09	3 05E+12	189
-182.44	4.22	7.35E+12	0.0043	0	0.99	5.90E+09	3.06E+12	18.9
-182.41	4.21	7.34E+12	0.0043	0	0.99	5.91E+09	3.07E+12	18.9
-182.34	4.21	7.33E+12	0.0043	0	0.99	5.91E+09	3.07E+12	18.9
-182.27	4.20	7.32E+12	0.0043	0	0.99	5.91E+09	3.07E+12	18.8
-182.21	4.19	7.32E+12	0.0042	0	0.98	5.90E+09	3.06E+12	18.8
-182.14	4.19	7.31E+12	0.0042	0	0.98	5.90E+09	3.06E+12	18.8
-181.97	4.17	7.30E+12	0.0041	0	0.98	5.90E+09	3.06E+12	18.8
-181.93	4.17	7.30E+12 7.20E+12	0.0041	0	0.98	5.90E+09	3.06E+12 2.05E+12	18.8
-101.00 -181.87	4.17	7.29E+12 7.29E+12	0.0041	0	0.98	5.90E+09 5.90E+09	3.05E+12 3.05E+12	10.0 18.8
-181.87	4.17	7.29E+12 7.29E+12	0.0041	0	0.98	5.90E+09	3.05E+12 3.05E+12	18.8
-181.87	4.17	7.29E+12	0.0041	0	0.98	5.90E+09	3.05E+12	18.8
-181.87	4.18	7.30E+12	0.0041	3.60E+13	0.98	5.90E+09	3.05E+12	18.8
-181.87	4.20	7.33E+12	0.0041	3.60E+13	0.98	5.90E+09	3.05E+12	18.8
-181.87	4.21	7.34E+12	0.0041	3.60E+13	0.98	5.90E+09	3.05E+12	18.9
-181.87	4.24	7.38E+12	0.0041	3.60E+13	0.98	5.90E+09	3.05E+12	18.9
-181.87	4.27	7.41E+12	0.0041	3.60E+13	0.98	5.90E+09	3.06E+12	18.9
-181.87	4.30	7.45E+12	0.0041	3.60E+13	0.98	5.90E+09	3.06E+12	19.0
-181.80	4.48	7.05E+12 7.84E+12	0.0042	3.00E+13 2.60E+12	0.99	5.90E+09 5.01E+00	3.06E+12 2.07E+12	19.1
-181.86	4.03	7.04E+12 8.03F+12	0.0045	3.60E+13	0.99	5.91E+09	3.07E+12 3.09F+12	19.5
-181.85	5.02	8.21E+12	0.0047	3.60E+13	0.99	5.94E+09	3.11E+12	19.6
-181.84	5.57	8.73E+12	0.0056	3.60E+13	1.00	6.01E+09	3.19E+12	20.1
-181.83	6.14	9.21E+12	0.0070	3.60E+13	1.02	6.09E+09	3.28E+12	20.5
-181.82	6.72	9.66E+12	0.0091	3.60E+13	1.04	6.19E+09	3.40E+12	20.9
-181.81	7.32	1.01E+13	0.0120	3.60E+13	1.06	6.28E+09	3.52E+12	21.3
-181.80	7.93	1.05E+13	0.0159	3.60E+13	1.08	6.37E+09	3.65E+12	21.6
-181.78	8.74	1.09E+13	0.0228	3.60E+13	1.10	6.47E+09	3.82E+12	22.0
-181.77	9.56	1.13E+13	0.0323	3.60E+13	1.13	6.55E+09	3.99E+12	22.4
-101.75 -181.75	10.40	1.1/E+13 1 18F+13	0.0455	3.00E+13 3.60F±13	1.15	6.60E+09	4.10E+12 1.10E+12	22.0
-181.75	10.65	1.18E+13	0.0498	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.65	1.18E+13	0.0499	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.65	1.18E+13	0.0499	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.65	1.18E+13	0.0500	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.66	1.19E+13	0.0500	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.66	1.19E+13	0.0500	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.66	1.19E+13	0.0501	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.66	1.19E+13	0.0501	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.66	1.19E+13	0.0502	3.60E+13	1.16	6.61E+09	4.21E+12	22.9
-181.75	10.67	1.19E+13 1 10F+12	0.0503	3.00E+13 2.60E+12	1.10	6.61E+09	4.21E+12 4.22E+12	22.9
-181.75	10.68	1.19E+13	0.0505	3.60E+13	1.16	6.61E+09	4.22E+12 4.22E+12	22.9
-181.75	10.71	1.19E+13	0.0511	3.60E+13	1.16	6.61E+09	4.22E+12	22.9
-181.75	10.75	1.19E+13	0.0518	3.60E+13	1.16	6.61E+09	4.23E+12	22.9
-181.75	10.78	1.19E+13	0.0525	3.60E+13	1.16	6.61E+09	4.24E+12	22.9
-181.75	10.81	1.19E+13	0.0531	3.60E+13	1.16	6.61E+09	4.24E+12	22.9
-181.74	11.13	1.20E+13	0.0598	3.60E+13	1.17	6.62E+09	4.30E+12	23.1
-181.74	11.45	1.22E+13	0.0672	3.60E+13	1.18	6.61E+09	4.37E+12	23.2
-181.73	11.76	1.23E+13	0.0755	3.60E+13	1.19	6.60E+09	4.43E+12	23.3
-181./3 -181.73	12.09	1.24E+13 1.25F±13	0.0847	3.60E+13 3.60E+13	1.19	6.58E+09 6.57E+09	4.49E+12 4.52E+12	23.4 23.5
-181 72	12.24	1.25E+13 1.25E+13	0.0074	3.60E+13	1.20	6.57E+09	4.52E+12 4.53E+12	23.5
-181.72	12.20	1.25E+13	0.0912	3.60E+13	1.20	6.56E+09	4.53E+12	23.5
-181.72	12.31	1.25E+13	0.0917	0	1.20	6.56E+09	4.53E+12	23.5
-181.72	12.29	1.25E+13	0.0921	0	1.20	6.56E+09	4.54E+12	23.5
-181.72	12.29	1.25E+13	0.0926	0	1.20	6.56E+09	4.54E+12	23.5
-181.72	12.29	1.25E+13	0.0931	0	1.20	6.56E+09	4.54E+12	23.5
-181.72	12.29	1.25E+13	0.0937	0	1.20	6.56E+09	4.55E+12	23.5
-181.72	12.29	1.25E+13	0.0944	0	1.20	6.55E+09	4.55E+12	23.5
-181.72	12.28	1.25E+13	0.0950	0	1.20	6.55E+09	4.55E+12	23.5 22 F
-181.72	12.27	1.25E+13 1.25E+13	0.0956	0	1.20	0.55E+09 655E+09	4.50E+12 4.56E+12	23.5
-181 72	12.27	1.25E+13	0.0989	0	1.20	6.54E+09	4.50E+12 4.58E+12	23.5
-181.72	12.23	1.25E+13	0.1016	0	1.21	6.53E+09	4.59E+12	23.5
-181.72	12.22	1.25E+13	0.1043	0	1.21	6.52E+09	4.61E+12	23.5
-181.72	12.20	1.25E+13	0.1070	0	1.21	6.51E+09	4.62E+12	23.5
-181.71	12.08	1.24E+13	0.1251	0	1.22	6.44E+09	4.71E+12	23.4
-181.70	11.96	1.24E+13	0.1436	0	1.24	6.36E+09	4.80E+12	23.4
-101.07 -101.09	11.84 11 79	1.24世+13 1 925±19	U.1624 0 1914	U	1.25 1 25	0.20E+U9 6.10E+00	4.0/E+12 1.055±19	∠3.3 ววว
-181.67	11.72	1.23E+13 1.23E+13	0.1014	0	1.25	5.10L+09	4.950 ± 12 5 07F+12	23.3
-181.65	11.32	1.22E+13	0.2497	0	1.28	5.79E+09	5.17E+12	23.1
-181.65	11.28	1.22E+13	0.2565	õ	1.29	5.75E+09	5.19E+12	23.1
-181.65	11.26	1.22E+13	0.2605	0	1.29	5.73E+09	5.20E+12	23.1
-181.65	11.25	1.22E+13	0.2618	0	1.29	5.72E+09	5.20E+12	23.1
-181.65	11.24	1.22E+13	0.2631	0	1.29	5.71E+09	5.21E+12	23.1
-181.65	11.23	1.22E+13	0.2644	0	1.29	5.70E+09	5.21E+12	23.1
-181.65	11.23	1.22E+13	0.2657	0	1.29	5./0E+09	5.22E+12	23.1
-101.00 -181 65	11.22 11.71	1.22E+13 1.22F+12	U.207U N 2686	0	1.27 1.20	ን.ወንፎ+ብእ ፫ ሮሪፎችሀን	ン.ムスロナオス ビンンビナオン	23.1 22 1
-181.65	11 20	1.22E+13	0.2702	0	1.29	5.67E+09	5.23E+12	23.1 23.1
-181.65	11.18	1.22E+13	0.2718	0 0	1.29	5.66E+09	5.23E+12	23.1
-181.65	11.17	1.22E+13	0.2735	0	1.29	5.65E+09	5.24E+12	23.1
-181.64	11.16	1.22E+13	0.2751	0	1.29	5.64E+09	5.24E+12	23.1
-181.64	11.12	1.22E+13	0.2821	0	1.30	5.60E+09	5.26E+12	23.1
-181.64	11.07	1.21E+13	0.2891	0	1.30	5.55E+09	5.28E+12	23.0
-181.64	11.03	1.21E+13	0.2963	0	1.30	5.51E+09	5.30E+12	23.0
-101.03 101.20	10.98	1.21E+13 1.21E 12	0.3036	U	1.3U 1.21	5.46E+U9	5.33E+12 E 20E 12	23.0
-181.62	10.04	1.21E+13 1.20E+13	0.3279	0	1.31	5.14E+09	5.46E+12	23.U 22 Q
-181.61	10.55	1.20E+13	0.3816	0 0	1.33	4.95E+09	5.53E+12	22.8
-181.60	10.40	1.20E+13	0.4121	0	1.34	4.74E+09	5.61E+12	22.8
-181.59	10.26	1.19E+13	0.4457	0	1.35	4.51E+09	5.69E+12	22.7
-181.58	10.09	1.19E+13	0.4902	0	1.37	4.19E+09	5.80E+12	22.6
-181.57	9.96	1.18E+13	0.5311	0	1.38	3.89E+09	5.90E+12	22.6
-181.56	9.82	1.18E+13	0.5764	0	1.39	3.55E+09	6.01E+12	22.5
-181.55 -181 54	9.69 0 E E	1.17E+13 1 17E, 19	0.6259	U	1.41 1.42	3.1/E+09 2.765,00	6.14E+12 6.20E,12	22.5
-101.JH	2.55	111/11413	0.0700	U	1.72	2.7 ULTU7	0.201712	22.4

-181.54	9.41	1.16E+13	0.7328	0	1.44	2.32E+09	6.45E+12	22.3
-181.52	9.23	1.15E+13	0.7991	0	1.47	1.78E+09	6.68E+12	22.3
-181.52	9.09	1.15E+13	0.8451	0	1.50	1.39E+09	6.88E+12	22.2
-181.51	8.95	1.14E+13	0.8827	0	1.52	1.07E+09	7.09E+12	22.1
-181.50	8.80	1.14E+13	0.9121	0	1.54	8.16E+08	7.31E+12	22.1
-181.49	8.65	1.14E+13	0.9339	0	1.57	6.24E+08	7.51E+12	22.0
-181.48	8.51	1.13E+13	0.9493	0	1.59	4.85E+08	7.71E+12	21.9
-181.47	8.31	1.12E+13	0.9631	0	1.62	3.59E+08	7.94E+12	21.8
-181.46	8.11	1.10E+13	0.9712	0	1.64	2.84E+08	8.12E+12	21.7
-181.44	7.91	1.09E+13	0.9759	0	1.65	2.40E+08	8.26E+12	21.6
-181.43	7.71	1.07E+13	0.9786	0	1.67	2.15E+08	8.36E+12	21.5
-181.42	7.52	1.06E+13	0.9798	0 0	1.68	2.04E+08	8.42E+12	21.4
-181.40	7.25	1.04E+13	0.9798	0	1.68	2.05E+08	8.45E+12	21.2
-181.38	6.99	1.01E+13	0.9779	0 0	1.68	2.24E+08	8.41E+12	21.1
-181.36	6.75	9.88E+12	0 9741	0	1.68	2.62E+08	8 33E+12	20.9
-181.35	6.52	9.65E+12	0.9679	0	1.67	3 23E+08	8 20E+12	20.8
-181 33	631	9 42E+12	0.9581	0	1.66	4 18E+08	8.05E+12	20.6
-181 29	5.89	8 93E+12	0.9086	0	1.00	8 89E+08	7 57E+12	20.3
-181 27	5 78	8 80E+12	0.8795	0	1.60	1 16E+09	7 39E+12	20.2
-181 26	5.68	8.67E+12	0.8356	0	1.50	1.101+0.9 1 56E+0.9	7.18E+12	20.2
-181 25	5.50	8 55F+12	0.7659	0	1.50	2 19F+09	6.93F+12	20.2
-101.25	5.57	8.46F+12	0.7035	0	1.55	2.17E+07 2.03E+09	6.69F±12	20.1
-101.24	5.52	8 20F+12	0.5803	0	1.55	2.73E+07 2.79F±09	6.07E+12	20.0
-101.25	5.47	8 22F+12	0.3003	0	1.50	1.86F±09	6.15F+12	20.0
-101.22	5 38	0.33E+12 8 28E+12	0.4494	0	1.47	5 96F+09	5.81E+12	20.0
-101.22	5.30	0.20E+12 8 22E+12	0.3030	0	1.43	5.90E+09	5.01E+12 5.45E+12	19.9
-101.21 191.20	5.34	0.23E+12 8 10E+12	0.1010	0	1.30	0.00E+09	5.45E+12 5.10E+12	19.9
-101.20	5.30 E 20	0.195+12	0.1010	0	1.34	7.236+09	J.10E+12	19.9
-101.20	5.20 E 26	0.10E+12 0.12E+12	0.0000	0	1.31	7.546+09	4.0/E+12 4.66E+12	19.9
-101.19	5.20	0.13E+12	0.0444	0	1.20	7.55E+09	4.00E+12	19.0
-101.10	5.25	0.11E+12	0.0300	0	1.25	7.31E+09	4.40E+12	19.0
-101.10	5.25 E 21	0.09E+12 0.07E+12	0.0210	0	1.25	7.24E+09	4.31E+12	19.0
-101.17	5.21	8.07E+12	0.0144	0	1.20	7.13E+09	4.12E+12	19.8
	5.19	8.04E+12	0.0102	0	1.18	7.02E+09	3.90E+12	19.8
-181.15	5.18	8.02E+12	0.0076	0	1.16	6.92E+09	3.83E+12	19.8
-181.15	5.16	8.01E+12	0.0059	0	1.14	6.83E+09	3./ZE+1Z	19.8
-181.14	5.15	7.99E+12	0.0048	0	1.13	6./6E+09	3.63E+12	19.7
-181.12	5.13	7.96E+12	0.0034	0	1.11	6.63E+09	3.48E+12	19.7
-181.10	5.11	7.94E+12	0.0026	0	1.09	6.53E+09	3.38E+12	19.7
-181.09	5.09	7.92E+12	0.0022	0	1.08	6.46E+09	3.30E+12	19.7
-181.07	5.08	7.90E+12	0.0019	0	1.07	6.41E+09	3.25E+12	19.7
-181.05	5.06	7.89E+12	0.0018	0	1.06	6.38E+09	3.21E+12	19.7
-181.02	5.04	7.87E+12	0.0016	0	1.05	6.34E+09	3.17E+12	19.7
-180.99	5.03	7.84E+12	0.0015	0	1.05	6.30E+09	3.14E+12	19.6
-180.96	5.01	7.83E+12	0.0014	0	1.05	6.28E+09	3.12E+12	19.6
-180.93	4.99	7.81E+12	0.0014	0	1.04	6.28E+09	3.11E+12	19.6
-180.90	4.98	7.80E+12	0.0014	0	1.04	6.27E+09	3.11E+12	19.6
-180.83	4.96	7.77E+12	0.0013	0	1.04	6.26E+09	3.10E+12	19.6
-180.77	4.94	7.75E+12	0.0013	0	1.04	6.25E+09	3.09E+12	19.6
-180.70	4.92	7.73E+12	0.0013	0	1.04	6.24E+09	3.08E+12	19.5
-180.64	4.90	7.71E+12	0.0013	0	1.04	6.23E+09	3.07E+12	19.5
-180.57	4.89	7.70E+12	0.0013	0	1.04	6.22E+09	3.07E+12	19.5
-180.45	4.86	7.71E+12	0.0013	0	1.04	6.22E+09	3.07E+12	19.5
-180.32	4.83	7.69E+12	0.0013	0	1.04	6.22E+09	3.07E+12	19.5
-180.20	4.81	7.67E+12	0.0013	0	1.03	6.21E+09	3.07E+12	19.5
-180.08	4.79	7.65E+12	0.0013	0	1.03	6.20E+09	3.06E+12	19.4
-179.95	4.78	7.64E+12	0.0013	0	1.03	6.20E+09	3.06E+12	19.4
-179.78	4.76	7.63E+12	0.0014	0	1.03	6.19E+09	3.06E+12	19.4
-179.61	4.75	7.62E+12	0.0014	0	1.03	6.18E+09	3.06E+12	19.4
-179.44	4.74	7.64E+12	0.0014	0	1.03	6.18E+09	3.06E+12	19.4
-179.27	4.73	7.64E+12	0.0015	0	1.03	6.19E+09	3.07E+12	19.4
-179.10	4.73	7.65E+12	0.0015	0	1.03	6.18E+09	3.07E+12	19.4
-179.00	4.72	7.65E+12	0.0015	0	1.03	6.18E+09	3.07E+12	19.4

	Time relative LIP-CO _{2 input}		
Changing quantity/flux	onset of initial increase	maximum value/inflection point	complete return to pre perturbation value
Atmospheric CO ₂	n/a	146 kyr after initial input, immediately after final input	~2 Myrs
Silicate weathering	Instantaneous/one model time step	Concurrent with end of input	~2 Myrs
Ocean anoxic fraction	Incremental increase within 18 kyrs of first CO_2 input	Maximum value at 323 kys after last input, 487 kyrs after first	Falls below f_{anox} = 0.01 by ~ 570 kyrs after final input
Fe-adsorbed phosphate burial	Initial transient increase instantaneous with first input, subsequent decrease due to increasing anoxia within 133 kyrs of first input	Falls to below one order of magnitude of its pre- perturbation value within 226 kyrs of final input	~515 kyrs after final input
Marine organic carbon burial	Incremental increase within one model timestep of first input	469 kyrs after final input	Approximately 800 kyrs after final input
Marine phosphate reservoir	Incremental increase within one model timestep of first input	469kyrs after final input	