
Supporting Information

“Inferring infection hazard in wildlife populations by

linking data across individual and population scales”

Kim M. Pepin, Shannon L. Kay, Ben D. Golas, Susan S. Shriner, Amy T. Gilbert, Ryan S.

Miller, Andrea L. Graham, Steven Riley, Paul C. Cross, Michael D. Samuel, Mevin B.

Hooten, Jennifer A. Hoeting, James O. Lloyd-Smith, Colleen T. Webb, Michael G.

Buhnerkempe

1 Model implementation

We used a Bayesian approach to parameter estimation. All statistical analyses were coded in R program-

ming language (R Core Team, 2015). Priors for the within-host model parameters (θ), were as follows: A

∼ Unif(1, 8), B ∼ Unif(1, 30), and X1, X2, r, and d all had Gamma(1, 0.1) priors. An inverse-gamma prior

was used for the variance, σ2, with shape and scale parameters both equal to 2, and the mean time since

infection parameter, λ, had a Gamma(10, 0.1) prior. Posterior distributions were calculated using Markov

chain Monte Carlo (50,000 iterations) with a Metropolis-Hastings algorithm on all within-host model pa-

rameters (θ), and time since infection in the seroserveillance data (δ2). A Gibbs sampling algorithm was

used for the mean time since infection parameter (λ) as well as the variance parameter on antibody response

(σ2). Convergence was assessed visually with traceplots and the acceptance rates in the Metropolis-Hastings

algorithms were between 30-40%. R code for fitting the joint antibody kinetic-serosurveillance model is

provided in the Supplementary Information.
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2 Simulation to assess model performance

To evaluate performance of the quantitative antibody model, we developed a stochastic population-level

disease transmission model that could generate known trajectories of incidence and FOI implemented in

Matlab software (Mathworks, R2016b). We used an individual-based model, where individuals were assumed

to have an antibody kinetic response upon exposure to infection according to the within-host model described

in Eq. 1, which incorporated variability in antibody response curves (i.e., see prior distribution for these

parameters above and Tables S1 and S2). Individuals in the population were susceptible, exposed (infected

but not infectious), infectious or recovered, and had antibody levels corresponding to the infection curve

that began with a lag following exposure (Figure 2). When individuals became infected, they transitioned

to infectious after a fixed period of time (1 day) and remained infectious for a period of time that was chosen

at random from a Poisson distribution with a mean rate of 7 days (to mimic infection dynamics similar to

avian influenza A). Antibody levels were followed in each individual that became infected for the remainder

of their life. We assumed a constant population size of 2000 and no seasonality in demographic turnover.

The average lifespan of individuals in our simulation was 2 years (lifespan ∼ Exp(2)). The population mixed

homogenously, the transmission rate was 0.001 per individual per day (R0 = 3.8), and transmission was

frequency-dependent. Infection was seeded with a single infectious individual. We recorded the true time

of infection for all individuals that became infected. We calculated true incidence as the number of newly

infected individuals on day t divided by the total population size at day t. We calculated the true FOI daily

using all individuals in the population by dividing the number of newly infected individuals on day t by the

total number of susceptible individuals on day t− 1.

To generate the experimental data (y1), we simulated antibody quantities every 4 days for one year

for each of 30 individuals using the antibody kinetic model (Eq. 1). To generate serosurveillance sampling

(y2) from the population according to a pattern that matched the sampling of snow goose populations (de-

scribed below), we randomly sampled 200 individuals (10% of the simulated population) each day for one

week without replacement. We assumed that the antibody quantification assay did not introduce additional

noise. For each individual in the serosurveillance data with antibody concentrations, y2j > y∗, we estimated

the TSI. Using TSI values for all samples and the day on which each sample was collected, we generated

a large matrix where rows corresponded to each individual ever sampled, columns were calendar days (t),

and values in the matrix were the predicted epidemiological status of each individual on day t (i.e., suscep-

tible, newly infected or seropositive which were back-calculated based on their antibody concentration at

the time of sampling). For samples with y2j ≤ y∗, those individuals were added as additional rows in the

matrix with a status of susceptible over all time. We derived sample incidence on day t by summing all
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newly infected individuals on day t and dividing by the sample size on day t. We derived FOI for day t as

the ratio of the number of newly infected individuals in the sample on day t to the number of susceptible

individuals in the sample on day t − 1. Note that this method of deriving FOI assumes homogenous mix-

ing in the population (i.e., all S individuals are available to be infected by infectious individuals at each day t).

3 Parameter Distributions for decay rate simulations

Table 1: Mean and standard deviation of simulated parameter distributions used for the within-host anti-
body kinetic model (Eq. 1) while varying the decay rate. Parameters: antibody decay rate (d), antibody
production rate (r), initial lag between exposure and antibody production (A), period of antibody production
in response to infection (B), baseline antibody level prior to exposure (X1) and increase in baseline antibody
levels following antibody decay (X2). All parameters were simulated from a truncated normal distribution.

d r A B X1 X2

Fast 0.04 (0.01) 0.11 (0.02) 5 (1.5) 9 (3) 0.082 (0.01) 0.135 (0.01)
Medium 0.01 (0.01) 0.11 (0.02) 5 (1.5) 9 (3) 0.082 (0.01) 0.135 (0.01)
Slow 0.0001 (0.01) 0.11 (0.02) 5 (1.5) 9 (3) 0.082 (0.01) 0.135 (0.01)

4 Systematic Sampling Model

To accommodate systematic serosurveillance sampling, such as sampling individuals weekly or monthly

throughout the year (as opposed to just one week out of the year), the model can be adjusted to allow for

time-varying mean TSI. Thus, estimates of mean TSI in sampling time unit k (λk) are allowed to learn from

previous time steps through an auto-regressive process, so that the mean TSI of the samples can vary with

epidemiological dynamics according to a normally distributed difference between time steps (ηk). As in the

main text, we use a mechanistic model of antibody kinetics, adapted from Simonsen et al. (2009), which

includes both the rise and decay of antibody levels within hosts (Eq. 1, Fig. 2).

Sampling Serosurveillance Data

Sampling in the serosurveillance data was done without replacement once a week. Approximately

1% of the individuals in the population were randomly sampled on each sampling day (20 individuals each

time out of a population of approximately 2000). Thirty individuals were included in each antibody kinetic

dataset, with measurements taken on each individual every 4 days for a year (91 observations per individual).

Bayesian Model
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Let y1i denote the antibody kinetic data for individuals i = 1, ..., n, and let y2j,k denote the sero-

surveillance data for individual j sampled on week k. Additionally, let δ = k − τ be the time since last

infection where τ is the week of the infection and k is the sampling date. Further, assume antibody re-

sponses for recently infected individuals are normally distributed around some curve, g(δ,θ), with curve

parameters θ. The model specification is given below where σ2 is the variance around the curve, y∗ is a fixed

threshold value for indicating whether individual j has been recently infected, and δ2j,k is the estimated TSI

for individual j on sampling week k. The mean TSI for recently infected individuals sampled on week k

in the serosurveillance data, λk, is autoregressive where λ0 denotes the TSI infection for the first sampling

week in which individuals had titers greater than y∗. The model specification is then,

y1i = g(δ1i,θ) + ε (1)

y2j =


y2j y2j ≤ y∗

g(δ2j ,θ) + ε y2j > y∗
(2)

ε ∼ N(0, σ2) (3)

X1 ∼ Gamma(α, β) (4)

X2 ∼ Gamma(α, β) (5)

r ∼ Gamma(α, β) (6)

d ∼ Gamma(α, β) (7)

A ∼ Unif(0, UA) (8)

B ∼ Unif(1, UB) (9)

σ2 ∼ IG(rσ, qσ) (10)

δ2j,k ∼ Pois(λk) (11)

λk = λk−1 + ηk (12)

ηk ∼ N(0, σ2
λ) (13)

λ0 ∼ Gamma(αλ, βλ) (14)

σ2
λ ∼ IG(rλ, qλ) (15)

(16)

where θ = {X1, X2, r, d, A,B}, α=1, β=0.1, UA=8, UB=30, rσ and qσ = 2, αλ=10, βλ=0.1, rλ=1, and qλ=1.
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Markov Chain Monte Carlo (MCMC) was used to estimate model parameters with 50,000 iterations where

a Metropolis-Hastings algorithm was used for all within-host model parameters (θ) as well as δ2 and ηk,

where the acceptance rate was between 30–40%. A Gibbs sampling algorithm was used for the parameters

σ2
y, λ0, and σ2

λ. Convergence was assessed visually using traceplots.

The FOI is a derived quantity of the number of newly infected individuals divided by the susceptible

individuals in the previous time step. We use a sliding window approach to deriving FOI from systematic

serosurveillance sampling to account for long-term changes in individuals’ infection status that are not

estimable (e.g., how long after or before sampling a susceptible individual should that individual remain

classified as susceptible). Therefore, the estimated FOI on week k is calculated based on individuals in the

serosurveillance data that were sampled within a sliding window time period, x, which was fixed to be seven

weeks in our simulations. Based on each individual’s estimated TSI on the week they were sampled, we

derive their TSI for every sampling week within the sliding window time period to create a longitudinal

dataset of TSI for recently infected individuals. Note in our notation TSI = 0 is the day of infection thus

negative values indicate time prior to infection. This longitudinal dataset spans the length of the sliding

window period (i.e., seven weeks), where columns correspond to weeks and rows correspond to individuals.

Any susceptible individuals (i.e., with y≤y*) sampled within the sliding window time period are considered

susceptibles for the duration of this sliding window time period, and are included in the second term of the

denominator in the FOI derivation for all weeks within the sliding window time period (Figure S1). The

first term in the denominator for FOI includes seropositive individuals (sampled within the sliding window

time period) that are estimated to have a time since infection before week k. Counts of newly infected

individuals are also taken from this longitudinal dataset and used in the numerator of the FOI derivation.

Thus, point estimates of FOI for week k are averaged since there are multiple point estimates for FOI on

each sampling week, with fewer points at the beginning and end of the sampling period (due to the sliding

window approach, week k could be included in up to seven different longitudinal datasets described above).
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Figure S1: Outline of temporal TSI model. Leftmost column contains model specification, middle panel
depicts directed acyclic graph (DAG), and rightmost panel describes observed data and parameters. The
bottom panel shows the derivation of FOI.
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5 Case study: influenza A in wild birds

Serosurveillance in snow geese. We captured molting, flightless lesser snow geese during July and Au-

gust on Wrangel Island, Russia during 1993-1995. Geese were banded with U.S. Fish and Wildlife Service

metal legbands and most of the adult geese were marked with colored plastic neckcollars engraved with

a unique two or three-character code (Samuel et al. 2015) for further details on field methods and AIV

diagnostics). We obtained blood samples (< 5 ml) from adult lesser snow geese by jugular venipuncture

(Samuel et al. 1999). Serum collection and other banding procedures were approved by the U.S. Geological

Survey, National Wildlife Health Center, Animal Care and Use Committee. Snow goose sera were tested

for antibodies to AIV (regardless of subtype) using the IDEXX FlockChek MultiS-Screen blocking enzyme

linked immunosorbent assay (bELISA) according to the manufacturers instructions (IDEXX Laboratories,

Westbrook, ME, USA).

Antibody kinetic data in mallards and snow geese. We orally inoculated 10 mallards with 1mL 103

Egg Infectious Dose 50/mL low pathogenic influenza A virus, A/wild bird/IL/183983-24/06(H6N2). Each

inoculated bird was co-housed with 3 naive contact birds, all of which became infected by contact with

inoculated birds. For all 40 (10 + 3x10) mallards, we collected serum samples from each mallard on days 0,

7, 10, 14, 21, and 28 post inoculation and then every 4-8 weeks for a year. Animal procedures were approved

by the U.S.D.A National Wildlife Research Center, Animal Care and Use Committee. Samples were tested

for anti-influenza A virus antibodies via the FlockCheck Avian Influenza MultiS-Screen Antibody Test Kit

(IDEXX Laboratories, Inc., Westbrook, ME) following the manufacturers instructions except that an alter-

native threshold of 0.7 was applied and quantitative antibody concentrations were recorded (Shriner et al.

2016). On day 380 post inoculation, the ducks were rechallenged with the same virus, again at 103 Egg

Infectious Dose50/mL and serum samples were collected on days 4, 7, 10, 14, 28 and then every 4 weeks for

a second year. Six snow geese were inoculated similarly except they were orally inoculated with one mL 105

Egg Infectious Dose50 (EID50)/mL of A/mallard/CO/P66F1-5/08 [H4N6] low pathogenic influenza A virus.

We collected serum samples on days 2, 4, 7, 10 14, 21, 29, 42, 57 days post infection (dpi), and then every 4

weeks through 365 dpi.
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Figure S2: Comparison of antibody kinetics in mallards and snow geese separately (top) and together (bottom
right). For the mallards, a secondary inoculation occurred 1 year after the first. The secondary response is
shown in the bottom left panel. Red lines indicate predictions from the fitted within-host model (main text
Equation 1) to the data shown in each plot.
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Table 2: Comparison of mallard and snow geese parameter estimates. Mean and 95% credible intervals
of parameter estimates from fitting Eq. 1 (main text) to the experimental mallard and snow geese data.
Parameter estimates from the last two columns were used for analyses in Figure 7. Parameters: antibody
decay rate (d), antibody production rate (r), initial lag between exposure and antibody production (A),
period of antibody production in response to infection (B), baseline antibody level prior to exposure (X1),
increase in baseline antibody levels following antibody decay (X2) and variation around antibody response
(σ2).

Mallard primary Mallard secondary Snow geese primary Mallard + snow geese primary
d 0.021 (0.015,0.032) 0.08 (0.044,0.18) 0.10 (0.012,0.37) 0.025 (0.16,0.037)
r 0.012 (0.088,0.16) 0.21 (0.12,0.54) 0.11 (0.041,0.25) 0.12 (0.092,0.17)
A 4.9 (3.6,5.7) 2.2 (1.1,3.7) 3.9 (1.4,6.1) 4.9 (3.9,5.7)
B 8.5 (6.4,12) 6.6 (1.6,16.8) 11.0 (2.5,27.7) 7.8 (5.5,10.5)
X1 0.076 (0.046,0.011) 0.26 (0.031,0.46) 0.095 (0.009,0.19) 0.085 (0.054,0.11)
X2 0.043 (0.002,0.012) 0.23 (0.034,0.47) 0.13 (0.011,0.26) 0.065 (0.005,0.13)
σ2 0.017 (0.015,0.020) 0.057 (0.05,0.065) 0.051 (0.037,0.069) 0.022 (0.019,0.025)

6 Simulations: individual-level variation in antibody responses

Table 3: Mean and standard deviation of simulated parameter distributions used for the within-host antibody
kinetic model (Eq. 1) with different levels of variation. All parameters were simulated from a truncated
normal distribution.

d r A B X1 X2

Low 0.01 (0.0001) 0.11 (0.002) 5 (0.001) 9 (0.001) 0.082 (0.013) 0.135 (0.001)
Medium 0.01 (0.001) 0.11 (0.02) 5 (1.5) 9 (3) 0.082 (0.013) 0.135 (0.01)
High 0.01 (0.05) 0.11 (0.02) 5 (1.5) 9 (3) 0.082 (0.013) 0.135 (0.01)
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Figure S3: Fits of the model for FOI over time. Predicted FOI with 95% credible intervals is shown in blue
with the true FOI plotted in black. Three levels of individual variation were examined: low, medium and
high. Rows indicate effects of variation in serosurveillance data while holding variation in antibody kinetic
data constant. Columns indicate effects of variation in antibody kinetic data while holding variation in
serosurveillance data constant. Table 2 in SI.3 shows the parameter values used for simulating the antibody
kinetic and serosurveillance data. Mean values were similar to those estimated from the experimental mallard
data. Variances were increased relative to the mallard data to examine effects of higher individual variation.
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Figure S4: True incidence (black lines) along with posterior mean incidence (red dashed lines) and corre-
sponding 95% credible intervals. Design is similar to Figure S4 and Figure 4 in the main text.
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7 Implementation of additional complexities: high variation due

to route of exposure variation and anamnestic response

We simulated within-host antibody kinetics using mean values and levels of variation similar to plague in

coyotes (Baeten et al. 2013) and influenza A in mallards (our data). For plague in coyotes, the intradermal

route of exposure leads to much lower antibody levels relative to the oral route of (Baeten et al. 2013;

Figure S3, top, Table 4), generating high individual-level variation. For influenza A in mallards, the primary

infection takes slightly longer to rise and rises and decays more slowly relative to the secondary infection

(Figure S2, Table 4, Figure S3, bottom; below). Sixty individuals were included in each antibody kinetic

dataset where half of them had oral route of infection or primary antibody responses and the other half had

intradermal route of infection or secondary (anamnestic) response. Antibody kinetic measurements were

taken on each individual every 4 days for a year (91 observations per individual).

Serosurveillance data were simulated as in SI.2 except that individuals could have antibody responses

chosen from one of two distributions (see Table 4 for parameter values). For the route of exposure scenario,

oral versus intradermal responses were chosen at random for each individual at the time of infection. For the

anamnestic scenario, secondary infections were allowed once antibody titers from primary infection dropped

to half the baseline (X2) value. Secondary infections did not lead to infectiousness, rather they only caused a

new antibody response. Sampling of the simulated serosurveillance data was done without replacement once

a week. We recorded the route of infection or type of infection (primary versus amannestic) for each infection.

Approximately 2.5% of the population was randomly sampled on each sampling day (50 individuals each

time out of a population of approximately 2000).

Table 4: Parameter values used to simulate antibody kinetic and serosurveillance data for the route of
exposure and anamnestic scenarios. Mean and standard deviation of parameter estimates. These were used
for analyses in Figure 8. Antibody kinetics with these parameters are shown in Figure S3. Parameters:
antibody decay rate (d), antibody production rate (r), initial lag between exposure and antibody production
(A), period of antibody production in response to infection (B), baseline antibody level prior to exposure
(X1), and increase in baseline antibody levels following antibody decay (X2). Note: coyote d values depended
on a threshold r value, where if r > 0.4 then mean d = 0.04 and if r ≤ 0.4 then mean d = 0.02 (oral); and
if r > 0.12 then mean d = 0.08 and if r ≤ 0.12 then mean d = 0.03 (intradermal).

Mallard primary Mallard secondary Coyote: oral Coyote: intradermal
d 0.040 (0.01) 0.057 (0.014) 0.02 or 0.04 (0.001) 0.03 or 0.08 (0.001)
r 0.11 (0.02) 0.14 (0.01) 0.35 (0.20) 0.12 (0.05)
A 5 (1.5) 1 (0) 1 (0.5) 1 (0.5)
B 9 (3) 8 (1.1) 14 (0.5) 12 (0.5)
X1 0.082 (0.01) 0.22 (0.023) 0.01 (0.01) 0.01 (0.05)
X2 0.14 (0.01) 0.23 (0.028) 1 (0.001) 0.3 (0.01)

A within-host mixture model was added to the Systematic Sampling Model (SI.4 above) to account for
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Figure S5: Antibody kinetic data (black) and serosurveillance data (red) which were used in the analyses
presented in Figure 8.
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differences in types of transmission (i.e., orally vs. intradermally) or infection (i.e., primary vs. secondary),

assuming the type of transmission or infection is known. We compared fits of the single-function Systematic

Sampling Model to this new mixture model. Let w denote the transmission or infection type, θ1 denote the

parameters of the within-host model g(δ,θ) for route or response of type 1, and θ2 denote the parameters

for route or response of type 2. Some of the within-host parameters may be shared among the two types,

but is not necessary. We assumed global parameters for X1, A, and B in our simulations, and allowed the

parameters r, d, and X2 to vary by type. Thus, the mean antibody response,

g(δ,θ) =


g(δ,θ1) w = 1

g(δ,θ2) w = 2,

(17)

is dependent on transmission or infection type (w) as well as time since infection (δ).

MCMC was used to estimate model parameters with 50,000 iterations where a Metropolis-Hastings

algorithm was used for all within-host model parameters (θ) as well as δ2 and ηk, where the acceptance rate

was between 30–40%. A Gibbs sampling algorithm was used for the parameters σ2
y, λ0, and σ2

λ. Convergence

was assessed visually using traceplots.
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