Supplementary Material

Supplementary discussion

Possible mechanisms for the propagation of conformational changes during the nucleotide hydrolysis cycle

We postulate that, during the transition from the ATP to the ADP state, both NBDs rotate outwards and towards the membrane. Because the PPXD is fixed by its interaction with the SecY channel, this could result in the transient widening of the clamp of SecA. The movement of the NBDs would also be propagated by the long helix of the HSD to the two-helix finger. In one scenario, the NBDs would maintain their interactions with the long helix of the HSD, resulting in its bending. This could change the tilt of the associated two-helix finger, such that its tip would move away from the SecY pore. An alternative possibility is that the interactions of the long helix of the HSD with the NBD1 are broken, perhaps by association of the NBD1 with a non-translocating SecY copy. In this case, the long helix would serve as a lever arm with a pivot point on the 2b/3 loop of SecY, and this could move the finger away from the SecY pore.

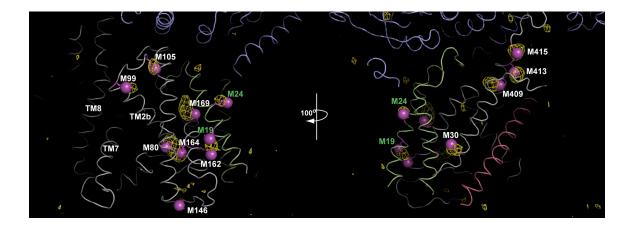


Figure S1| Position of the seleno-methionine residues in *T. maritima* SecYEG. The positions of 11 out of 13 Se-Met in SecY and SecG were identified in an anomalous Fourier difference map shown at 3.2σ contour level (yellow mesh). The positions for Se-Met 162 of SecY and 19 of SecG could not be assigned unambiguously. The sulfur atoms of all 13 Met residues of the SecYEG channel are shown as spheres in magenta. SecA is shown in blue, SecY in gray, SecE in red, and SecG in green.

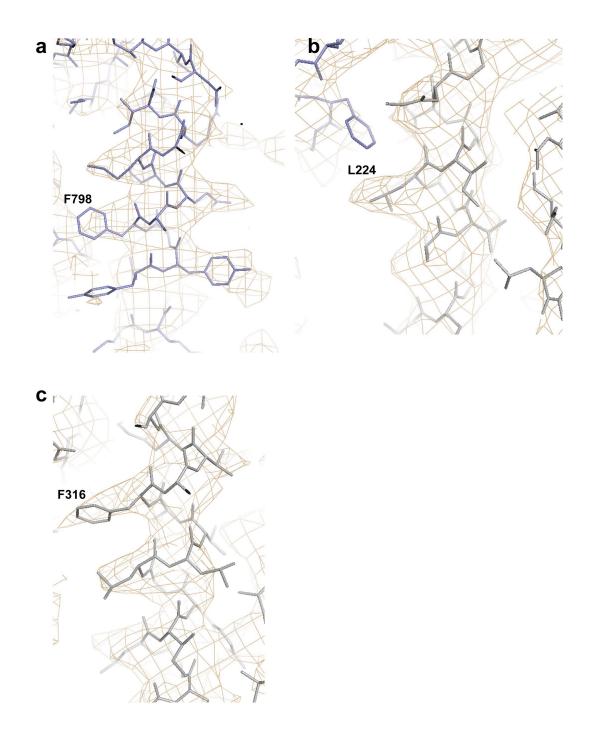


Figure S2| Selected views of the electron density map. Shown are σ A-weighted, phase combined, NCS averaged, and B-factor sharpened (-100) 2FoFc electron density maps (brown mesh, contoured at 1 σ). SecA is shown in blue and SecY in gray. **a**, Helix 2 of SecA's two helix finger inside the cytoplasmic funnel of SecY. **b** and **c**, TM6 and TM9 of SecY. Phe798 of SecA and Leu224 and Phe316 of SecY are labeled for orientation.

SecA	
E_coli	1 MLIKLLTKVFGSRNDRTLRRMRKVVNIINAMEPEMEKLSDEELKGKTABFRARLEKGEVL
B_subtilis	1 -MLGILNKMFDP-TKRTLNRYEKIANDIDAIRGDYENLSDDALKHKTIEFKERLEKGATT
T_maritima	1MILFDK-NKRILKKYAKMVSKINQIESDLRSKKNSELIRLSMVLKEKVNSFEDA
E_coli	61 ENLIPEAFAVVREASKRVFGMRHFDVQLLGGMVLNERCIAEMRTGEGKTLTATLPAYLNA
B_subtilis	59 DDLLVEAFAVVREASRRVTGMFPFKVQLMGGVALHDGNIAEMKTGEGKTLTSTLPVYLNA
T_maritima	54 DEHLFEAFALVREAARRTLGMRPFDVQVMGGIALHEGKVAEMKTGEGKTLAATMPIYLNA
E_coli B_subtilis T_maritima	121 LTGKGVHVVTVNDYLAQRDAENNRPLFEFLGLTVGIN
E_coli B_subtilis T_maritima	158LPGMPAPAKREAYAADITYGTNNEYGFDYLRDN156LNSMSKDEKREAYAADITYSTNNELGFDYLRDN174NWSVWPDGFNGEVLKEESMNKEAVEAFQVELKEITRKEAYLCDVTYGTNNEFGFDYLRDN
E_coli B_subtilis T_maritima	191MAFSPEERVQRKLHYALVDEVDSILIDEARTPLIISGPAEDSSEMYKRVNKIIPHLIRQE189MVLYKEQMVQRPLHFAVIDEVDSILIDEARTPLIISGQAAKSTKLYVQANAFVR234LVLDYNDKVQRGHFYAIVDEADSVLIDEARTPLIISGPSKESPSVYRRFAQIAK
E_coli	251 KEDSETFQGEGHFSVDEKSRQVNLTERGLVLIEELLVKEGIMDEGESLYSPANIMLMHHV
B_subtilis	243TLKAEKDYTYDIKTKAVQLTEEGMTKAEKAFGIDNLFDVKHVALNHHI
T_maritima	288KFVKDKDFTVDEKARTIILTEEGVAKAEKIIGVENLYDPGNVSLLYHL
E_coli	311 TAALRAHALFTRDVDYIVKDGEVIIVDEHTGRTMQGRRWSDGLHQAVEAKEGVQIQNENQ
B_subtilis	291 NQALKAHVAMQKDVDYVVEDGQVVIVDSFTGRLMKGRRYSEGLHQAIEAKEGLEIQNESM
T_maritima	336 INALKALHLFKKDVDYVVMNGEVIIVDEFTGRLLPGRRYSGGLHQAIEAKEGVPIKEESI
E_coli	371 TLASITFQNYFRLYEKLAGMTGTADTEAFEFSSIYKLDTVVVPTNRPMIRKDLPDLVYMT
B_subtilis	351 TLATITFQNYFRMYEKLAGMTGTAKTEEEEFRNIYNMQVVTIPTNRPVVRDDRPDLIYRT
T_maritima	396 TYATITFQNYFRMYEKLAGMTGTAKTEESEFVQVYGMEVVVIPTHKPMIRKDHDDLVFRT
E_coli	431 EAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAI
B_subtilis	411 MEGKFKAVAEDVAQRYMTGQPVLVGTVAVETSELISKLLKNKGIPHQVLNAKNHEREAQI
T_maritima	456 QKEKYEKIVEEIEKRYKKGQPVLVGTTSIEKSELLSSMLKKKGIPHQVLNAKYHEKEAEI
E_coli B_subtilis T_maritima	491VAQAGYPAAVTIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLE471IEEAGQKGAVTIATNMAGRGTDIKLG516VAKAGQKGMVTIATNMAGRGTDIKLG
E_coli	<pre>551 AGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFASDRVSGMMRKL</pre>
B_subtilis	502 LGGLAVVGTERHESRRIDNQLRGRSGRQGDPGITQFYLSMEDELMRRFGAERTMAMLDRF
T_maritima	547 LGGLCIIGTERHESRRIDNQLRGRAGRQGDPGESIFFLSLEDDLLRIFGSEQIGKVMNIL
E_coli	611 GMKPGEAIEHPWVTKAIANAQRKVESRNFDIRKQLLEYDDVANDQRRAIYSQRNELLDVS
B_subtilis	562 GMDDSTPIQSKMVSRAVESSQKRVEGNNFDSRKQLLQYDDVLRQQREVIYKQRFEVIDSE
T_maritima	607 KIEEGQPIQHPMLSKLIENIQKKVEGINFSIRKTLMEMDDVLDKQRRAVYSLRDQILLEK
E_coli	<pre>671 DVSETINSIREDVFKATIDAYIPPQSLEEMWDIPGLQERLKNDFDLDLPIAEWLDKEP</pre>
B_subtilis	622 NLREIVENMIKSSLERAIAAYTPREELPEEWKLDGLVDLINTTYLDEGALEKSDIFGKEP
T_maritima	667 DYDEYLKDIFEDVVSTRVEEFCSGKNWDIESLKNSLSFFPAGLFDLDEKQFSSS
E_coli	729 ELHEETLRERILAQSIEVYQRKEEVVGAEMMRHFEKGVMLQTLDSLWKEHLAAMDYLRQG
B_subtilis	682DEMLELIMDRIITKYNEKEEQFGKEQMREFEKVIVLRAVDSKWMDHIDAMDQLRQG
T_maritima	721BELHDYLFNRLWEEYQRKKQEIG-EDYRKVIRFLMLRIIDDHWRRYLEEVEHVKEA
E_coli	<pre>789 IHLRGYAQKDPKQEYKRESFSMFAAMLESLKYEVISTLSKVQVRMPEEVEELEQQRRMEA</pre>
B_subtilis	738 IHLRAYAQTNPLREYQMEGFAMFEHMIESIEDEVAKFVMKAEIENNLEREEVVQG
T_maritima	776 VQLRSYGQKDPIVEFKKETYYMFDEMMRRINDTIANYVLRVVKVSEKDEKEAKEELG
E_coli	849 ERLAQMQQLSHQDDDSAAAAALAAQTGERKVGRNDPCPCGSGKKYKQCHGRLQ
B_subtilis	793QTTAHQPQEGDDNKKAKKAPVRKVVDIGRNAPCHCGSGKKYKNCCGRTE
T_maritima	833KIRLVHEEFNLVNRAMRRATEKKKKKDGLHSFGRIRVKR

Figure S3| **Sequence alignment of the SecAs from** *E. coli, B. subtilis and T. maritima*. The C-termini of the truncated SecA constructs used in this study are indicated by a red bar.

SecY		TM1
E coli	1	MAKQPGLDFQSAKGGLGELKRRLLFVIGALIVFRIGSFIPIPGIDAAVLAKLL-EQ
M jannaschii		MKKLIPILEKIPEVELPVKEITFKEKLKWTGIVLVLYFIMGCIDVYTAGAQI
T maritima		MWOAFKNAFKIPELRDRIIFTFLALIVFRMGIYIPVPGLNLEAWGEIFRRI
_		
E coli	56	QRGTIIEMFNMFSGGALSRASIFALGIMPYISASIIIQLLTVVHPTLAEIKKEGES
M ⁻ jannaschii	53	PAIFEFWQTITASRIGTLITLGIGPIVTAGIIMQLLVGSGIIQMDLSIPE
T maritima	52	AETAGVAGILSFYDVFTGGALSRFSVFTMSVTPYITASILQLLASVMPSLKEMLREGEE
—		TM3 TM4
E_coli	112	GRRKISQYTRYGTLVLAIFQSIGIATGLPNMPGMQGLVINPGFAFYFTAVVSLVTGTM
M_jannaschii	103	
T_maritima	112	GRKKFAKYTRRLTLLIGGFQAFFVSFS-LARSNPDMVAPGVN-VLQFTVLSTMSMLAGTM
		TM5
E_coli		FLMWLGEQITERGIGNGISIIIFAGIVAGLPPAIAHTIEQARQGDLHFLVLLL
M_jannaschii	153	
T_maritima	170	FLLWLGERITEKGIGNGISILIFAGIVARYPSYIRQAYLGGLNLLEWIF
		TM6
E_coli		VAVLVFAVTFFVVFVERGQRRIVVNYAKRQQGRRVYAAQSTHLPLKVNMAGVIPAIFASS
M_jannaschii		PIIGTIIVFLMVVYAECMRVEIPLAHGRIKGAVGKYPIKFVYVSNIPVILAAA
T_maritima	219	LIAVALITIFGIILVQQAERRITIQYARRVTGRRVYGGASTYLPIKVNQGGVIPIIFASA
		TM7
E_coli		IILFPATIASWFGGGTGWNWLTTISLYLQPGQPLYVLLYA
M_jannaschii	265	
T_maritima	279	IVSIPSAIAS-ITNNETLKNLFRAGGFLYLLIYG
		TM8 TM9
E_coli		SAIIFFCFFYTALV-FNPRETADNLKKSGAFVPGIRPGEQTAKYIDKVMTRLTLVGALYI
M_jannaschii	325	ITCVMFGIFWVETTGLDPKSMAKRIGSLGMAIKGFRKSEKAIEHRLKRYIPPLTVMS
T_maritima	312	LLVFFFTYFYSVVI-FDPREISENIRKYGGYIPGLRPGRSTEQYLHRVLNRVTFIGAVFL
		ТМ10 — — — — —
E_coli	382	TFICLIPEFMRDAMKVP-FYFGGTSLLIVVVVIMDFMAQVQTLMMSSQYESALKKANLKG
M_jannaschii	382	SAFVGFLATIANFIGALGGGTGVLLTVSIVYRMYEQLLREK-VSELHPAIAKLLNK-
T_maritima	371	VVIALLPYLVQGAIKVN-VWIGGTSALIAVGVALDIIQQMETHMVMRHYEGFIKKGKIRG
E_coli	441	YGR
M_jannaschii		
T_maritima	430	RR-

Figure S4| Sequence alignment of the SecYs from *E. coli, M. jannaschii and T. maritima*. TM-helices are indicated by gray bars, and regions not modeled in our crystal structure are indicated by red dashed lines.

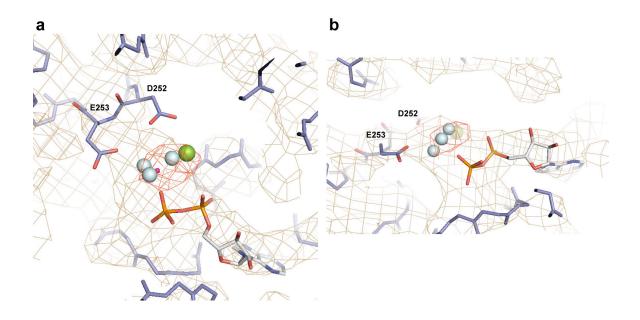


Figure S5| The ADP-BeFx complex in the nucleotide binding pocket of SecA. **a**, A σ A-weighted, phase combined, NCS averaged, and B-factor sharpened (-50) 2FoFc electron density map (brown mesh, contoured at 1.2 σ). The model phases were calculated with only ADP in the nucleotide-binding pocket and were also used to calculate a FoFc difference map (red mesh, contoured at 4.5 σ). The modeled Mg²⁺/BeF₃⁻ complex is shown in spheres (green magnesium, blue fluorine, pink beryllium). **b**, as in **a**, but side view of the ADP-BeF₃⁻ complex. Asp252 and Glu253 in the DEAD box of SecA are labeled for orientation.

а 2009 (Income as R b SecA SecE SecY

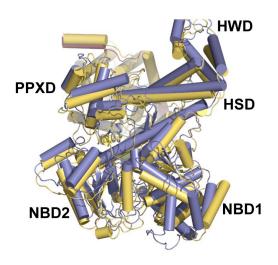
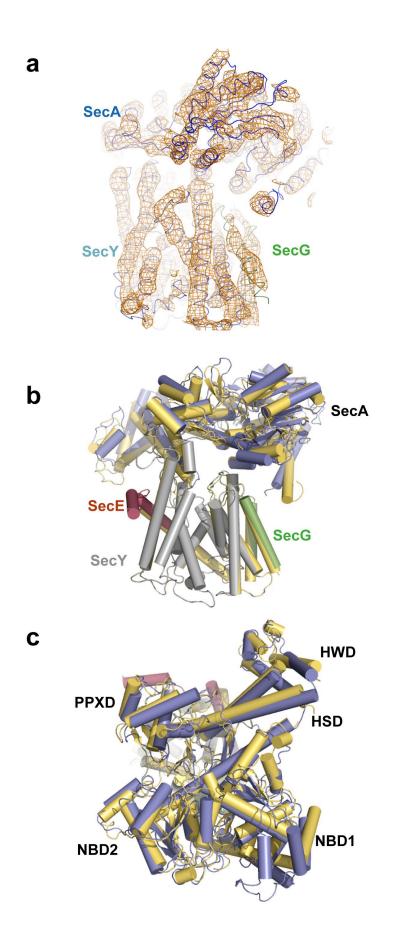



Figure S6| Comparison of the *B. subtilis* SecA – *T. maritima* SecYE and *T. maritima* SecA-SecYEG complexes. a, Stereo view of a σ A-weighted, 4-fold averaged, solvent-flattened 2FoFc electron density map of the *B. subtilis* SecA - *T. maritima* SecYE complex. The view is on the lateral gate of SecY. SecY is shown in gray, the plug domain in orange, and SecA in blue. b, Side view of an alignment of the complex of *B. subtilis* SecA and *T. maritima* SecYE (both components in yellow) with the complex of *T. maritima* SecA and *T. maritima* SecYEG (SecA in blue, SecY in gray, SecE in red, SecG omitted). The complexes were aligned with respect to the SecY channel. c, Top view of the aligned complexes.

Figure S7 Comparison of the *B. subtilis* SecA – *A. aeolicus* SecYEG and *T. maritima* SecA-SecYEG complexes. **a**, Shown is a NCS averaged 2FoFc electron density map of the *B. subtilis* SecA - *A. aeolicus* SecYEG complex. The view is on the lateral gate of SecY. SecY is shown in light blue, SecG in green, SecE in red, and SecA in blue. **b**, Side view of an alignment of the complex of *B. subtilis* SecA and *A. aeolicus* SecYEG (both components in yellow) with the complex of *T. maritima* SecA and *T. maritima* SecYEG (SecA in blue, SecY in gray, SecE in red, SecG green). The complexes were aligned with respect to the SecY channel. **c**, Top view of the aligned complexes.

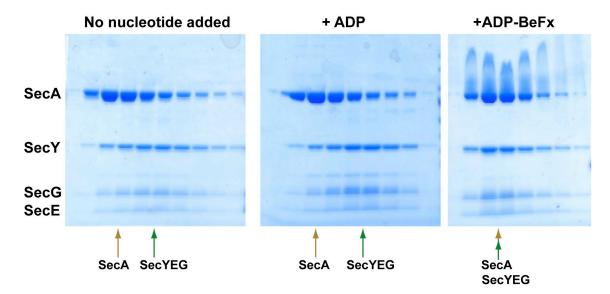
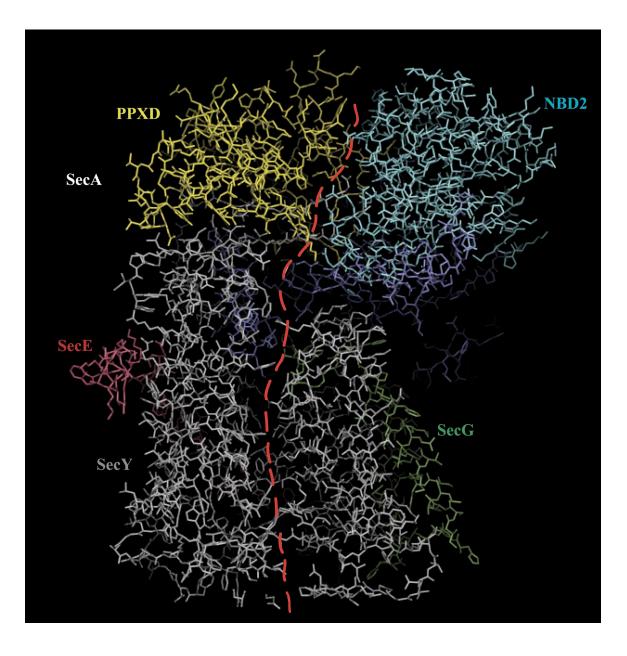
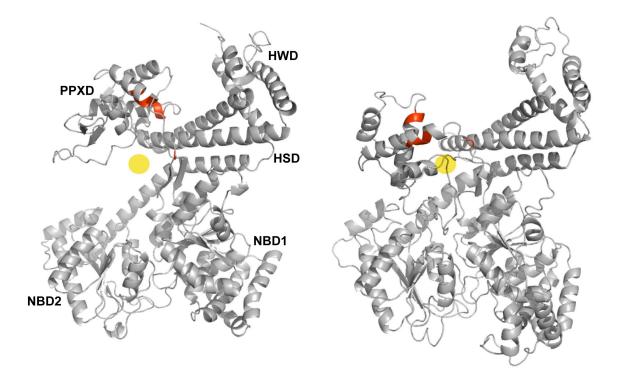
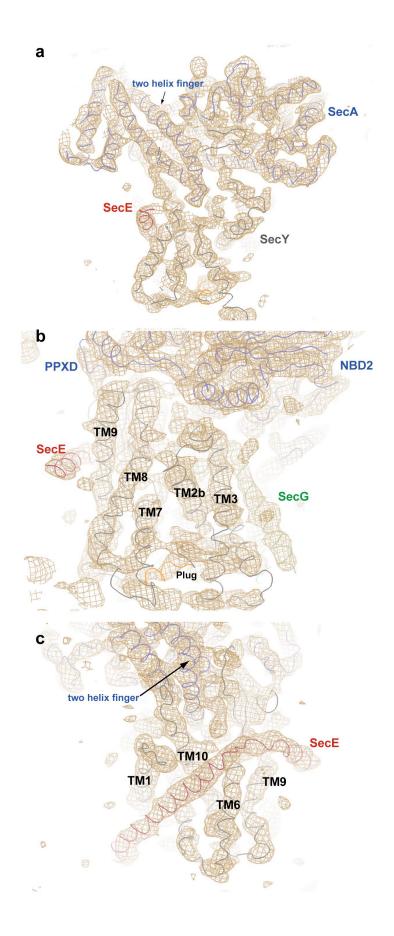




Figure S8 Nucleotide dependence of the stability of a SecA-SecY complex. SecA from *B. subtilis* and SecYEG from *A. aeolicus* were gel-filtered in the absence of nucleotide or in the presence of ADP or ADP-BeFx in 20mM MES pH 6.5, 150mM NaCl, 10% glycerol, 0.5mM Cymal-6, 10mM MgCl₂ (\pm 1mM ADP, 2mM BeCl₂, and 7mM NaF). Samples of the fractions were analyzed by SDS-PAGE and stained with Coomassie blue. The "smearing" of SecA in the presence of ADP and BeFx is likely due to an increased SDS resistance of SecA and disappears upon boiling of the samples in SDS prior to electrophoresis. The arrows indicate the peak positions of SecA and SecY.

Figure S9 Alignment of the mouth of the SecA clamp with the lateral gate of the SecY channel. The seam on the surface of the SecA-SecYEG complex is indicated by a dashed red line. The polypeptide chains are colored as in Figure 1.

Figure S10 Signal peptide binding site of SecA as identified by NMR spectroscopy. SecA residues interacting with the hydrophobic core of the synthetic signal peptide KRR-LamB are mapped in red onto *B. subtilis* SecA (left) and the *T. maritima* SecA-SecYEG complex (right) (*E. coli* residues: P228, M235, Y236, V239, I304, M305, L306). The position of the SecY pore is indicated by a yellow circle.


T. martima SecG DNA sequence:

ATGAAGACGTTTTTCCTAATCGTTCACACCATCATAAGCGTGGCTCTCATCTA CATGGTCCAGGTGCAGATGTCGAAATTCTCAGAGCTCGGT<u>GGTGCCTTCGGA</u> AGTGGAGGACTTCACACCGTTTTTGGAAGAAGAAAAGCCTCGACACCGGTGG AAAGATCACTCTTGTCCTGTCTGTACTCTTTTCGTTTCCTGCGTAGTAACAGC TTTCGTTCTAACGAGGTAA

T. maritima SecG protein sequence:

MKTFFLIVHTIISVALIYMVQVQMSKFSELG<u>GAFG</u>SGGLHTVFGRRKGLDTGGKI TLVLSVLFFVSCVVTAFVLTR

Figure S11 Nucleotide and amino acid sequence of *T. maritima* SecG. The gene was PCR-amplified from genomic DNA (ATCC code 43589, DSM: 3109). The database entry for the *T. maritima* SecG gene has a nucleotide deletion after the Ala33 codon, resulting in a frame shift. The extra cytidine found in our sequence is highlighted in red.

Figure S12 | **Experimental electron density map for the** *T. maritima* **SecA-SecYEG complex**. The map was calculated at 4.5Å and contoured at 1.0σ. Experimental phases were derived from 11 Se-Met positions identified in SecY and SecG in an anomalous Fourier difference map and were refined by NCS averaging. **a**, Overview of the SecA-SecYEG complex; **b**, Close-up view on the lateral gate of SecY. **c**, 90° rotation of **b**. SecA is shown in blue, SecY in gray, SecE in red, and SecG in green. SecY's plug is shown in orange.