THE LANCET Infectious Diseases

Supplementary webappendix

This webappendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Cauchemez S, Fraser C, Van Kerkhove MD, et al. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. *Lancet Infect Dis* 2013; published online Nov 13. http://dx.doi. org/10.1016/S1473-3099(13)70304-9.

Supplementary Material

Middle East respiratory syndrome coronavirus: Quantifying the extent of the epidemic, surveillance biases and transmissibility thus far

Simon Cauchemez¹*, Christophe Fraser¹*, Maria D. Van Kerkhove¹, Christl A. Donnelly¹, Steven Riley¹, Andrew Rambaut², Vincent Enouf³, Sylvie van der Werf³, Neil M. Ferguson^{1#}

*contributed equally

[#] to whom correspondence should be addressed (<u>neil.ferguson@imperial.ac.uk</u>)

1: MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK (S Cauchemez PhD, Prof C Fraser PhD, MD Van Kerkhove PhD, Prof CA Donnelly ScD, S Riley PhD, Prof NM Ferguson DPhil)

2: Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK (Prof A Rambaut PhD)

3: Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, UMR3569 CNRS, Université Paris Diderot Sorbonne Paris Cité, Paris, France (V Enouf PhD, Prof S van der Werf PhD)

Contents

1	Epic	demiologic data	. 3
2	Incu	ubation period	. 8
3	Dela	ay between onsets in the first 1 st and 2 nd case in clusters	. 8
4	Epic	demic curve, exponential growth and reproduction number	9
5	Rep	production number averaged across all cases in the cluster (<i>R_{cluster}</i>)	12
6	Rep	production number of the index case in clusters (<i>R_{index}</i>)	13
7 nui		ng cases among returning non-resident travellers to infer comparable domestic ca	
8	Bala	ance between animal-to-human and human-to-human transmission	18
9	Sum	nmary of genetic analysis of MERS-CoV	22
ç	9.1	The data	22
ç	9.2	Choosing the substitution model for phylogenetic analysis	22
g	9.3	Maximum likelihood phylogeny	23
ç	9.4	Evidence for a molecular clock	23
9	9.5	Bayesian coalescent inference of population dynamics	26
	9.5.	1 Methods	26
	9.5.	2 Dated phylogeny	26
	9.5.	3 Population dynamics	26
	9.5.	4 Number of infected individuals	27
ç	9.6	Sensitivity analyses	28
	9.6.	1 Sensitivity analysis to the choice of rooting	28
	9.6.	2 Sensitivity to choice of clock rate	29
	9.6.	3 Sensitivity to choice of generation time distribution	30
	9.6. kee	Table S15. Sensitivity of genetic estimates to mean generation time, T_g , ping coefficient of variation of the generation time distribution constant.	30
	9.6.	5 Sensitivity to choice of dispersion parameter k	31
	9.6.	.6 Sensitivity to choice of substitution model	31
ç	9.7	Update of the phylogenetic analysis, added in proof	32
10	Refe	erences	37

1 Epidemiologic data

As of 8 August 2013, 94 laboratory-confirmed cases of MERS-CoV were reported to the World Health Organization (WHO) many of whom have been described in either case or cluster reports ¹⁻²². A line list was compiled using publically reported data on laboratory-confirmed MERS-CoV cases from a number of sources including WHO, ProMed and in the peer-reviewed literature ¹⁻²². An additional 17 probable cases have been reported from investigations ^{6, 8, 21, 23}. Using these sources, the following data were extracted into the line list shown in Table S1; reporting date either by WHO or to ProMed, symptom onset, age, gender, country where case was identified, nationality and sub-nationality of case, location where infection is believed to have occurred, whether the case was exported to a country outside of the Middle East, country where case was treated, severity of disease, patient outcome, exposure information (i.e., recent travel history to the Middle East and duration of travel, reported animal exposures, if case was a health care worker), co-morbid conditions, and genetic sequencing resulted from any patient samples. A cluster identification number was assigned to cases with specific reported epidemiologic-links and to those reported as being part of clusters.

We define the "index case" as the case with earliest symptom onset in the cluster. The "primary case" is the first case detected in the cluster (not necessarily the index case).

Cluster ID	Date reported	Symptom onset date	age	sex	Country identified	Nationality	Sub-national	Location where infection is believed to have occurred	Exported case	Country where treated	Severity	Outcome	Recent travel history	Duration of travel	Animal Exposure	нсw	Co-morbid conditions	Source
1	20/09/12	13/06/12	60	m	KSA	KSA	Bisha	Bisha	no	KSA	severe	fatal	no		NR	no	no	14, 15
2	01/11/12	05/10/12	70	m	KSA	KSA	Riyadh	Riyadh	no	KSA	severe	fatal	no		NR	no	yes	7, 8, 14
2	28/11/12	24/10/12	39	m	KSA	KSA	Riyadh	Riyadh	no	KSA	severe	fatal	no		NR	no	yes	7, 8, 14
2	19/11/12	04/11/12	31	m	KSA	KSA	Riyadh	Riyadh	no	KSA	severe	recovered	no		NR	no	no	7, 8, 14
3	04/11/12	09/10/12	49	m	KSA	KSA	Riyadh	Riyadh	no	KSA	severe	recovered	no		yes	no	yes	1, 14, 17
4	30/11/12	21/03/12	25	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	severe	fatal	no		no	yes	NR	6
4	30/11/12	02/04/12	40	f	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	severe	fatal	no		no	yes	NR	6
5	22/09/12	03/09/12	49	m	UK	Qatar	Doha, Qatar	Doha, Qatar	no	Doha, UK	severe	in hospital	Saudi Arabia	NR	NR	no	NR	2, 9, 14
6	01/11/12	01/10/12	NR	m	Germany	Qatar	Doha, Qatar	Doha, Qatar	no	Germany	severe	recovered	yes	Qatar	yes	no	NR	3, 14
7	11/02/13	24/01/13	60	m	υк	UK	Birmingham	Riyadh	yes	UK	severe	fatal	Saudi Arabia, Pakistan	unknown	no	no	yes	10-14
7	15/02/13	05/02/13	30	f	UK	UK	Birmingham	Birmingham	no	none	mild	recovered	no		no	no	no	10-14
7	13/02/13	06/02/13	38	m	UK	UK	Birmingham	Birmingham	no	UK	severe	fatal	no		no	no	yes	10-14
8	21/02/13	NR	61	f	KSA	KSA	Riyadh	Riyadh	no	KSA	severe	fatal	no		NR	no	no	14
9	07/03/13	NR	65	m	KSA	KSA	Bur Qassim	Bur Qassim	no	KSA	severe	fatal	no		NR	no	no	14
10	12/03/13	24/02/13	37	m	KSA	KSA	Riyadh	Riyadh	no	KSA	severe	fatal	no		NR	no	no	14
10	23/03/13	NR	NR	NR	KSA	KSA	NR	NR	no	KSA	mild	recovered	NR		NR	no	NR	14
11	26/03/13	NR	73	m	Germany	UAE	Abu Dhabi	Abu Dhabi	no	Germany	severe	fatal	NR		NR	no	NR	14
12	19/06/13	09/04/13	58	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe?	recovered	no		NR	no	NR	21
12	19/06/13	14/04/13	59	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	yes	21
12	19/06/13	15/04/13	24	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	in hospital	no		NR	no	yes	21
12	19/06/13	16/04/13	87	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	yes	21
12	19/06/13	18/04/13	77	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	yes	21
12	19/06/13	19/04/13	58	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	in hospital	no		NR	no	yes	21
12	19/06/13	19/04/13	62	f	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	in hospital	no		NR	no	yes	21
12	19/06/13	19/04/13	94	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	NR	21
12	19/06/13	20/04/13	56	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	yes	21
12	19/06/13	22/04/13	56	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	yes	21
12	19/06/13	23/04/13	50	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	mild?	recovered	no		NR	no	NR	21
12	19/06/13	25/04/13	52	t	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	NR	21
12	19/06/13	27/04/13	33	t	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	recovered	no		NR	no	NR	21
12	19/06/13	28/04/13	81	f	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	NR	

Table S1. Line List of Confirmed Cases as of 8 August 2013.

12	19/06/13	30/04/13	58	f	KSA	NR	Al Hasa	Al Hasa	no	KSA	mild	recovered	no		NR	no	yes	21
12	19/06/13	01/05/13	48	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	NR	21
12	19/06/13	02/05/13	45	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	in hospital	no		NR	ves	no	21
12	19/06/13	04/05/13	81	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	in hospital	no		NR	no	yes	21
12	19/06/13	05/05/13	56	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	mild?	recovered	no		NR	no	yes	21
12	19/06/13	05/05/13	69	f	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	ŃR	21
12	19/06/13	06/05/13	48	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	in hospital	no		NR	no	yes	21
12	19/06/13	08/05/13	42	f	KSA	NR	Al Hasa	Al Hasa	no	KSA	mild?	recovered	no		NR	yes	yes	21
12	19/06/13	12/05/13	56	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	no	yes	21
12	04/06/13	27/05/13	83	m	KSA	NR	Al Ahsa	Al Ahsa	no	KSA	severe	fatal	no		NR	no	yes	14
13	09/05/13	22/04/13	64	m	France	NR	North France	Dubai	yes	France	severe	fatal	yes	Dubai 9- 17 4/13	NR	no	yes	5, 14
13	12/05/13	08/05/13	51	m	France	NR(assume french)	North France	North France	no	France	severe	in hospital	no		no	no	yes	5, 14
14	14/05/13	25/04/13	69	f	KSA	KSA	eastern KSA	eastern KSA	no	KSA	severe	fatal	no		NR	no	yes	14
16	22/05/13	NR	34	m	Tunisia	Tunisia	Monastir	Monastir	no	none	mild	recovered	No		NR	no	NR	14
16	22/05/13	NR	35	f	Tunisia	Qatar	Monastir	Monastir	no	none	mild	recovered	Yes	NR	NR	no	NR	14
17	22/05/13	NR	NR	m	KSA	non-KSA	Al-Qaseem	Al-Qaseem	no	KSA	severe	fatal	NR		NR	NR	NR	14
18	28/05/13	12/05/13	56	m	KSA	NR	eastern KSA	eastern KSA	no	KSA	severe	fatal	NR		NR	no	yes	14
18	28/05/13	17/05/13	85	f	KSA	NR	eastern KSA	eastern KSA	no	KSA	severe	in hospital	NR		NR	no	yes	14
18	28/05/13	18/05/13	73	m	KSA	NR	eastern KSA	eastern KSA	no	KSA	severe	fatal	NR		NR	no	yes	14
18	28/05/13	19/05/13	77	m	KSA	NR	eastern KSA	eastern KSA	no	KSA	severe	fatal	NR		NR	no	yes	14
18	28/05/13	24/05/13	76	f	KSA	NR	eastern KSA	eastern KSA	no	KSA	NR	recovered	NR		NR	no	yes	14
19	02/06/13	NR	2	f	Italy	Italy	Florence	Italy	no	Italy	mild	NR	no		no	no	NR	14
19	02/06/13	NR	42	f	Italy	Italy	Florence	Italy	no	Italy	mild	NR	no		no	no	NR	14
19	01/06/13	NR	45	m	Italy	Italy	Florence	Jordan	yes	Italy	severe	in hospital	yes	Jordan 40 days	NR	no	NR	14
20	05/06/13	29/05/13	14	f	KSA	KSA	eastern KSA	KSA	no	KSA	NR	NR	no		NR	no	yes	14
21	12/06/2013	NR	21	m	KSA	resident of KSA	Hafr Al Batin	eastern KSA	no	KSA	severe	fatal	no		NR	no	NR	14, 24
22	12/06/2013	NR	63	f	KSA	KSA	KSA	eastern KSA	no	KSA	NR	in hospital	no		NR	no	yes	14, 24
23	14/06/2013	NR	65	NR	KSA	KSA	Taif	Taif	no	KSA	severe	in hospital	no		NR	no	yes	14, 24
24	14/06/2013	NR	68	f	KSA	KSA	Taif	Taif	no	KSA	severe	in hospital	no		NR	no	yes	14, 24
25	14/06/2013	NR	46	m	KSA	NR	Wadi Al- Dawaser	Wadi Al- Dawaser	no	KSA	severe	fatal	no		NR	no	NR	14, 24
26	16/06/2013	NR	2	NR	KSA	KSA	Jeddah	KSA	no	KSA	severe	in hospital	no		NR	no	yes	14, 24
27	16/06/2013	NR	42	NR	KSA	KSA	eastern KSA	KSA	no	KSA	NR	in hospital	no		NR	no	yes	14, 24
28	16/06/2013	NR	63	f	KSA	KSA	Riyadh	KSA	no	KSA	NR	in hospital	no		NR	no	yes	14, 24
29	22/06/2013	NR	43	f	KSA	NR	Eastern Province	eastern KSA	no	KSA	NR	recovered	no		NR	NR	no	14, 24

30	22/06/2013	NR	29	f	KSA	NR	Taif	Taif	no	KSA	NR	recovered	no	 NR	NR	yes	14, 24
30	22/06/2013	NR	39	f	KSA	NR	Taif	Taif	no	KSA	asympto matic	recovered	no	 NR	NR	yes	14, 24
30	22/06/2013	NR	45	f	KSA	NR	Taif	Taif	no	KSA	asympto matic	recovered	no	 NR	NR	yes	14, 24
8	23/06/2013	NR	41	f	KSA	NR	Riyadh	Riyadh	no	KSA	NR	NR	no	 NR	NR	no	14, 24
31	23/06/2013	NR	32	m	KSA	NR	Eastern Province	eastern KSA	no	KSA	severe	in hospital	no	 NR	NR	no	14, 24
8	26/06/2013	NR	7-15	NR	KSA	NR	Riyadh	KSA	no	KSA	asympto matic	recovered	no	 NR	no	no	14, 24
8	26/06/2013	NR	7-15	NR	KSA	NR	Riyadh	KSA	no	KSA	asympto matic	recovered	no	 NR	no	no	14, 24
8	26/06/2013	NR	7-15	NR	KSA	NR	Riyadh	KSA	no	KSA	asympto matic	recovered	no	 NR	no	no	14, 24
8	26/06/2013	NR	7-15	NR	KSA	NR	Riyadh	KSA	no	KSA	asympto matic	recovered	no	 NR	no	no	14, 24
32	26/06/2013	NR	NR	f	KSA	NR	Eastern Province	KSA	no	KSA	asympto matic	recovered	no	 NR	no	yes	14, 24
33	26/06/2013	NR	NR	f	KSA	NR	Al Hasa	KSA	no	KSA	asympto matic	recovered	no	 NR	no	yes	14, 24
34	26/06/2013	NR	50	f	KSA	KSA	Eastern Province	KSA	no	KSA	NR	in hospital	no	 NR	no	no	14, 24
35	05/07/2013	NR	69	m	KSA	KSA	Riyadh	KSA	no	KSA	severe	in hospital	no	 NR	no	no	14, 24
36	05/07/2013	NR	66	m	KSA	KSA	Riyadh	KSA	no	KSA	severe	in hospital	no	 NR	no	no	14, 24
?	07/07/2013	NR	56	f	KSA	NR	Eastern Province	KSA	no	KSA	NR	recovered	no	 NR	NR	yes	14, 24
37	11/07/2013	NR	66	m	KSA	KSA	Asir	KSA	no	KSA	severe	in hospital	no	 NR	no	no	14, 24
38	13/07/2013	06/07/2013	82	m	UAE	UAE	Silaa, Abu Dhabi	UAE	no	UAE	severe	in hospital	no	 NR	NR	no	14, 24
37	18/07/2013	NR	26	m	KSA	KSA	Asir	KSA	no	KSA	mild	recovered	no	 NR	no	no	14, 24
37	18/07/2013	NR	42	f	KSA	KSA	Asir	KSA	no	KSA	mild	recovered	no	 NR	no	yes	14, 24
38	18/07/2013	NR	28	m	UAE	UAE	Abu Dhabi	UAE	no	UAE	mild	recovered	NR	 NR	no	yes	14
38	18/07/2013	NR	30	f	UAE	UAE	Abu Dhabi	UAE	no	UAE	mild	recovered	NR	 NR	no	yes	14
38	18/07/2013	NR	30	f	UAE	UAE	Abu Dhabi	UAE	no	UAE	mild	recovered	NR	 NR	no	yes	14
38	18/07/2013	NR	40	f	UAE	UAE	Abu Dhabi	UAE	no	UAE	mild	recovered	NR	 NR	no	yes	14
39	21/07/2013	15/07/2013	41	m	KSA	KSA	Riyadh	KSA	no	KSA	severe	in hospital	no	 no	no	no	14, 24
40	21/07/2013	11/07/2013	59	f	KSA	KSA	Al Hasa	KSA	no	KSA	NR	NR	no	 no	no	no	14, 24
41	29/07/2013	17/07/2013	83	m	KSA	KSA	Asir	KSA	no	KSA	NR	in hospital	NR	 NR	no	no	14, 24
42	01/08/2013	25/07/2013	67	f	KSA	KSA	Riyadh	KSA	no	KSA	NR	in hospital	no	 no	no	no	14, 24
37	01/08/2013	NR	NR	f	KSA	KSA	Asir	KSA	no	KSA	mild	recovered	no	 no	no	yes	14, 24
8	01/08/2013	NR	NR	f	KSA	KSA	Riyadh	KSA	no	KSA	mild	recovered	no	 no	no	yes	14, 24

16*	22/05/2013	01/05/2013	66	m	Tunisia	Tunisia	Taif	Monastir	yes	tunisia	severe	fatal	yes	Qatar & KSA several weeks	NR	NR	no	22
4*	30/11/2012	30/03/2012	30	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	02/04/2012	60	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	11/04/2012	29	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	12/04/2012	33	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	13/04/2012	28	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	14/04/2012	45	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	no	6
4*	30/11/2012	15/04/2012	46	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	15/04/2012	25	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	18/04/2012	53	m	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	19/04/2012	28	f	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	yes	6
4*	30/11/2012	26/04/2012	60	f	Jordan	Jordan	Zarqa	Zarqa	no	Jordan	mild	recovered	no		no	no	no	6
2*	NR	03/11/2012	16	m	KSA	KSA	Riyadh	Riyadh	no	KSA	mild	recovered	NR	NR	NR	NR	no	8
10*	NR	NR	NR	m	KSA	KSA	Riyadh	Riyadh	no	KSA	NR	NR	NR	NR	NR	NR	no	23
12*	19/06/2013	11/04/2013	55	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	NR	no	21
12*	19/06/2013	08/04/2013	56	m	KSA	NR	Al Hasa	Al Hasa	no	KSA	severe	fatal	no		NR	NR	no	21
10*	08/08/2013	13/02/2013	61	m	KSA	KSA	Riyadh	KSA	no	KSA	severe	fatal	no		yes	NR	no	23

Notes: * probable case; NR=not reported; m=male; f=female; KSA = Kingdom of Saudi Arabia; UAE = United Arab Emirates

2 Incubation period

To estimate the incubation period, detailed information on the exposure of secondary cases to the index case, in the absence of other potential exposures, was extracted from published description of traveler-related clusters reported from France ⁵, the United Kingdom ¹⁰, Italy ²¹ and Tunisia ²² (Table S2). Precise exposure and onset dates are not publically available for the Tunisia cluster but exposure windows for secondary cases have been reported. The advantage of restricting our analysis to secondary cases caused by recent travelers to affected countries is that the source of infection can be more reliably determined than for cases arising in affected countries such as Saudi Arabia.

In addition, the Al-Ahsa cluster in Saudi Arabia provides substantial information; we deliberately do not use those data in estimating the incubation period distribution here in order to generate a second independent estimate to be compared with existing estimates derived from analysis of that cluster ²¹.

We fitted the following probabilistic distributions to the data: Gamma, Log-Normal, Weibull. The distribution with the best Akaike Information Criterion is presented in the manuscript.

Table S2. Estim	ated incubation	on period for in	dividual MERS-	CoV cases with avai	lable data, excluding
Al Hasa cluster	•				

Country	First date of exposure	Last date of exposure	Symptom Onset	Incubation pe using sympto exposure	m onset or	Source
				Min	Max	
UK	28/01/2013	31/01/2013	06/02/2013	6	9	10
UK	01/02/2013	04/02/2013	05/02/2013	1	4	10
France	26/04/2013	29/04/2013	08/05/2013	9	12	22
Italy	25/05/2013	26/05/2013	29/05/2013	3	4	21
Italy	27/05/2013	27/05/2013	31/05/2013	4	4	21
Tunisia	NR	NR	NR	3	3	22
Tunisia	NR	NR	NR	4	4	22

3 Delay between onsets in the first 1st and 2nd case in clusters

We consider clusters of probable and confirmed cases. Six clusters (clusters 2, 4, 7, 12, 13, 18 had more than 1 case with information on the date of symptom onset. In the Al Hasa cluster (cluster 12), the second case of the cluster (case B, ²¹) is believed to have been infected in the community and is therefore excluded from this analysis. The delay between symptom onset in the first and the second case is given in Table S3.

We fitted the following probabilistic distributions to the data: Gamma, Log-Normal, Weibull. The distribution with the best Akaike Information Criterion is presented in the manuscript.

Cluster ID	Delay between symptom onset from 1 st to 2 nd case (days)						
2	19						
4	9						
7	12						
12	3						
13	16						
18	5						

Table S3. Delay between symptom onset in the first and the second case.

A recent study estimated the mean serial interval to be 7.6 days²¹. However, this value was derived from a large case cluster in Al Hasa, Saudi Arabia, where infection control measures were intensified within two weeks of the detection of the outbreak, the effect of which would be to bias the observed serial intervals to be shorter than would be seen in the absence of control measures. The advantage of restricting our analysis to secondary cases caused by recent travellers to affected countries is that the source of infection can be more reliably determined than for cases arising in affected countries such as Saudi Arabia. It also provides a second independent estimate to be compared with the existing one²¹.

4 Epidemic curve, exponential growth and reproduction number

For each cluster, we determine the earliest date of symptom onset in the cluster. When the date of symptom onset is unavailable, we subtract the median delay from 1st date of symptom onset to 1st date of reporting to estimate the 1st date of symptom onset. Since 19 of 22 clusters with missing onset date were reported after May 1st, we use the median delay onset-reporting for clusters reported after May 1st (=12 days). Table S4 shows the 1st date of symptom onset in each cluster.

Table S4. Summary of cluster data.

Cluster	Cluster	Date of first	First onset	Estimated first symptom	Number of days		
ID	size	reporting	onset date	onset date	since 1 Jan 2012		
4	13	30/11/2012	21/03/2012	21/03/2012	80.00		
1	1	20/09/2012	13/06/2012	13/06/2012	164.00		
5	1	22/09/2012	03/09/2012	03/09/2012	246.00		
6	1	01/11/2012	01/10/2012	01/10/2012	274.00		
2	4	01/11/2012	05/10/2012	05/10/2012	278.00		
3	1 04/11/2012 09/10/2012 09/10/2012		09/10/2012	282.00			
7	3	11/02/2013	24/01/2013	24/01/2013	389.00		
8	7	21/02/2013	NR	09/02/2013	405.00		
10	4	12/03/2013	13/02/2013	13/02/2013	409.00		
9	1	07/03/2013	NR	23/02/2013	419.00		
11	1	26/03/2013	NR	14/03/2013	438.00		
12	26	04/06/2013	08/04/2013	08/04/2013	463.00		
13	2	09/05/2013	22/04/2013	22/04/2013	477.00		
14	1	14/05/2013	25/04/2013	25/04/2013	480.00		
16	3	22/05/2013	01/05/2013	01/05/2013	486.00		
17	1	22/05/2013	NR	10/05/2013	495.00		
18	5	28/05/2013	12/05/2013	12/05/2013	497.00		
19	3	01/06/2013	NR	20/05/2013	505.00		
20	1	05/06/2013	29/05/2013	29/05/2013	514.00		
21	1	12/06/2013	NR	31/05/2013	516.00		
22	1	12/06/2013	NR	31/05/2013	516.00		
23	1	14/06/2013	NR	02/06/2013	518.00		
24	1	14/06/2013	NR	02/06/2013	518.00		
25	1	14/06/2013	NR	02/06/2013	518.00		
26	1	16/06/2013	NR	04/06/2013	520.00		
27	1	16/06/2013	NR	04/06/2013	520.00		
28	1	16/06/2013	NR	04/06/2013	520.00		
29	1	22/06/2013	NR	10/06/2013	526.00		
30	3	22/06/2013	NR	10/06/2013	526.00		
31	1	23/06/2013	NR	11/06/2013	527.00		
32	1	26/06/2013	NR	14/06/2013	530.00		
33	1	26/06/2013	NR	14/06/2013	530.00		
34	1	26/06/2013	NR	14/06/2013	530.00		
35	1	05/07/2013	NR	23/06/2013	539.00		
36	1	05/07/2013	NR	23/06/2013	539.00		
37	4	11/07/2013	NR	29/06/2013	545.00		
38	5	13/07/2013	06/07/2013	06/07/2013	552.00		
40	1	21/07/2013	11/07/2013	11/07/2013	557.00		
41	1	29/07/2013	17/07/2013	17/07/2013	563.00		

*: The time of analysis is 8 August 2013, which corresponds to 585 days since Jan 1st 2012.

Because the discovery of an index case prompts enhanced surveillance in contacts of that case, the timing of first detected cases of clusters presented in Table S4 is likely more representative of the relative magnitude of the epidemic over time than the incidence of cases.

We fit simple non-homogeneous Poisson processes to these data to investigate how the risk of cluster occurrence/detection $\lambda(t)$ changed with time t. The risk $\lambda(t)$ quantified here is a composite of the rate at which clusters happen and the risk they are effectively detected. Denote t_i the first date of symptom onset for the *i*-th cluster (*i*=1,...,*n*) with times defined since 1st January 2012 (time t_0) and *T* the final date considered in these analyses (11 June 2013). The likelihood of the sequence of first detections of clusters is, for a nonhomogeneous Poisson process:

$$L = \exp\left\{-\int_{t_n}^T \lambda(u) du\right\} \prod_{i=1}^n \lambda(t_i) \exp\left\{-\int_{t_{i-1}}^{t_i} \lambda(u) du\right\}$$

We consider different models that are fitted to the data by maximum likelihood with 95% confidence intervals derived using a profile likelihood. The Akaike Information Criterion (AIC) is used for model comparison.

In model M_0 , we assume the risk of cluster occurrence/detection is invariant with time

$$\lambda^0(t) = \alpha_0$$

In model M_1 , we assume the risk of cluster occurrence/detection is growing exponentially with time

$$\lambda^{1}(t) = \alpha_{1} \exp(r_{1}t)$$

In model M_2 , the risk of cluster occurrence/detection is a step function with a sudden change on day D

$$\lambda^{2}(t) = \begin{cases} \alpha_{2} & \text{if } t < D \\ \alpha_{2}\beta_{2} & \text{otherwise} \end{cases}$$

Table S5 gives the estimates. On the basis of AIC, these data provide strong support for Models 1 and 2 over Model 0. Model 2 appears to be marginally better than model 1 although a sudden 10 fold rise in reporting at the end of April seems to be an extreme scenario.

Model	Parameter estimates	Maximum Log likelihood	AIC
Model 0	α ₀ =0.068 [0.049, 0.092]	-147.31	296.62
Model 1	α ₁ =0.0034 [0.0009, 0.0109] r ₁ =0.0077 [0.0052, 0.0106]	-124.53	253.06
Model 2	$lpha_2$ =0.0254 [0.0147, 0.0421] eta_2 =10.3 [5.4, 21.0] D=22 April 2013 [26 March 2013, 25 April 2013]	-121.99	249.98

Table S5. Fit of simple models for the risk of cluster occurrence/detection over time.

Denoting *r* the exponential growth rate, the doubling time is $D = \ln(2) / r$.

Furthermore, assume that the epidemic is driven by human-to-human transmission and that the generation time has a Gamma distribution with mean μ and standard deviation σ . There is the following relationship between the reproduction number *R*, the exponential growth rate *r* and parameters of the Gamma distribution ($a = \mu^2 / \sigma^2$ and $b = \mu / \sigma^2$):

$$R = (1 + r / b)^a$$

As a sensitivity analysis, we estimate the reproduction number from the growth in incident cases. We obtain estimates equal to 1.08 (95% CI: 1.06, 1.09) for T_G =12 days and 1.04 (1.03, 1.05) T_G =7 days, *i.e.* similar to those presented in the manuscript, which are based on incident clusters.

5 Reproduction number averaged across all cases in the cluster (*R_{cluster}*)

Estimates of $R_{cluster}$ are derived from the distribution of cluster sizes (Table S4) using on standard branching process theory. We denote the length of a chain of transmission by *L*. Following Lloyd-Smith el al ²⁵, the offspring distribution (*i.e.* number of persons infected by a case) is modelled with a Negative Binomial distribution with mean *R* and overdispersion parameter *k* (parameter *k* characterizes case-to-case variation in infectiousness). The probability that a chain is of length *L* is given by ²⁶:

$$g(L | R, k) = \frac{\Gamma((k+1)L-1)}{\Gamma(kL+1)\Gamma(L)} \frac{k^{kL+1}R^{L-1}}{(R+k)^{(k+1)L-1}}$$

We assume k=1 and calculate maximum likelihood estimates of $R_{cluster}$. Ninety five percent profile likelihood confidence intervals are also calculated.

6 Reproduction number of the index case in clusters (R_{index})

We derive the reproduction number of the index case (i.e. the case with the earliest date of symptom onset) in each cluster, based on an estimate of the number of cases that were in the second generation of the cluster.

We restrict the analysis to clusters with complete information on symptom onset dates and with a first symptom onset date before 1 June 2013. This is a time period when 93% (13 of 14) of delays from onset to reporting of cluster were ≥ 16 days. In single case clusters, we assume $R_{index}=0$. In clusters with more than 2 cases and for whom dates of symptom onset are available, we use standard statistical methods (see Wallinga and Teunis, ²⁷) to probabilistically reconstruct the transmission tree and derive the reproduction number of the index case for $T_g=12$ days and $T_g=7$ days. Among the 12 clusters with complete onset information and a first date of onset before 1 June 2013, 6 are single case clusters and 6 have at least 1 secondary case. Table S6 presents estimates of R_{index} for the 6 clusters with at least 1 secondary case with complete onset information.

In a sensitivity analysis, we provide a conservative estimate of R_{index} based on all clusters including those with incomplete onset information, with estimated symptom onset before 1 June 2013. In single case clusters, we know that R_{index} =0 even if the onset date is missing. But estimation of R_{index} for larger clusters requires the timing of symptoms onset ²⁷. We cannot simply exclude these clusters from analysis as this would bias estimates downward. In 2 clusters (Tunisian cluster 16 and Italian cluster 19), dates of symptoms onset are unavailable but there is good epidemiological evidence that the index case infected the 2 secondary cases ¹⁴. We therefore assume R_{index} =2 in these 2 clusters. For 2 other clusters with missing data on onset dates (cluster 8 and cluster 10), we are conservative and assume that R_{index} was equal to 1. There are 5 single case clusters with missing onset dates for which we assume R_{index} =0. We obtain R_{index} =1.00 (95% Cl: 0.86, 1.14) for T_G =12 days and R_{index} =0.76 (95% Cl: 0.66, 0.90) for T_G =7 days. Clusters 8 and 10 had size 7 and 4, respectively. Assuming that Rindex was equal to 2 in these clusters, the estimate would become 1.10 (95% Cl: 0.95, 1.24) T_G =12 days and 0.86 (95% Cl: 0.76, 1.00) for T_G =7 days.

Table S7 summarizes estimates obtained in the different analyses.

Table S6. Estimates of the reproduction number of the index case in clusters with more than 1 case, with complete onset information and with first onset before 1 June 2013. The mean generation time is assumed to be $T_G=12$ days and $T_G=7$ days.

The all generation time is assumed to be T_G -12 days and T_G -7 days.										
Cluster ID	Location	Year	Total size (confirmed and probable)	Times of symptom onset in sec. cases (time 0=onset in index case)	R _{index} (<i>T_G</i> =12d)	R _{index} (<i>T_G</i> =7d)				
2	KSA	2012	4	19-29-30	1.04[0.1,2]	1.00 [1,1]				
4	Jordan (Zarqa)	2012	13	9-12-12-21-22-23- 24-25-25-28-29- 36	2.81 [1,4]	1.43 [1,3]				
5	UK	2012	1		0	0				
6	Germany	2012	1		0	0				
7	UK	2013	3	12-13	1.97 [1,2]	1.53 [1,2]				
12	KSA (Al Hasa)	2013	26	(1)-3-6-7-8-10-11- 11-11-12-14-15- 17-19-20-22-23- 24-26-27-27-28- 30-34-49*	4.45 [2,7] ^{\$}	2.89 [1,5] ^{\$}				
13	France	2013	2	16	1	1				
14	KSA	2013	1		0	0				
18	KSA	2013	5	5-6-7-12	3.14 [2,4]	2.59 [1,4]				

*: The times of symptom onset are used to estimate the reproduction number of the index case with the Wallinga and Teunis approach ²⁷.

^{\$}: if case B (i.e the one with onset on day 1; ²¹) is removed from the analysis R=4.87 [2,8] for T_G =12 day and R=2.75 [1,5] for T_G =7 days.

Table S7. Estimates of the reproduction number in index cases of clusters with estimated onset date before 1 June 2013. Estimates are for a mean generation time T_G =12 days and T_G =7 days.

Analysis	R _{index} (T _G =12 days)	R _{index} (T _G =7 days)
Baseline	1.25	0.83
Restricted to clusters with complete onset information	[1.00,1.50]	[0.67,1.08]
Sensitivity analysis 1 All clusters Assuming R _{index} =2 in Tunisian and Italian clusters Assuming R _{index} =1 in 2 other with more than 1 case but missing onset data	1.00 [0.86,1.14]	0.76 [0.66,0.90]
Sensitivity analysis 2 All clusters Assuming R _{index} =2 in Tunisian and Italian clusters Assuming R _{index} =2 in 2 other with more than 1 case but missing onset data	1.10 [0.95,1.24]	0.86 [0.76,1.00]

7 Using cases among returning non-resident travellers to infer comparable domestic case numbers

By 8 August 2013, four cases have been identified (in France, Italy, Tunisia and the UK) among returning non-resident travellers to Middle Eastern countries. Although this number is small, it is possible to use it to estimate the magnitude of comparable cases within Middle Eastern countries that may have occurred testing the assumption that case detection is

much more sensitive for returning non-resident travellers than it is for residents of the affected region. These four cases were recorded as having visited the Jordan, Kingdom of Saudi Arabia, Qatar and United Arab Emirates (see Figure S1).

Figure S1. This map highlights the four countries the Jordan, Kingdom of Saudi Arabia, Qatar and United Arab Emirates from which returning non-resident travellers have subsequently been diagnosed with MERS-CoV.

Estimated 2013 population sizes were obtained for Jordan, Kingdom of Saudi Arabia, Qatar and United Arab Emirates (Table S8). These were used to calculate domestic person-days at risk (per annum) by multiplying these numbers by 365.

The person-days at risk for returning non-resident travellers were estimated by multiplying the number of inbound overnight tourist arrivals per annum (in 2011, excluding those from the Middle East) by the average length of stay (estimated to be 4.0 days for inbound tourists visiting the Kingdom of Saudi Arabia in 2011 – World Tourism Organisation, 2012). The numbers of inbound overnight tourist arrivals in 2011 were as given in Table S8.

We restricted our analysis to travellers from outside the Middle East to ensure we avoided confusing travel-related infections with locally transmitted infections. The data from World Tourism Organization did not exclude those who travelled on pilgrimages.

Table S8. The population sizes and numbers of inbound tourist arrivals for Jordan, Kingdom of Saudi Arabia, Qatar and United Arab Emirates, excluding tourists from within the Middle East.

Country	Population size ^o	Number of inbound tourist arrivals* EXCLUDING those from the Middle East
Jordan	6,482,081	2,066,000
KSA (Saudi Arabia)	26,939,583	6,399,000
Qatar	2,042,444	1,699,000
United Arab Emirates	5,473,972	5,786,315

^oSource: Central Intelligence Agency World Factbook. <u>https://www.cia.gov/library/publications/the-world-factbook/rankorder/2119rank.html</u>

*Except for the United Arab Emirates (UAE), the numbers of inbound tourist arrivals for 2011 were obtained from the World Tourism Organization (2012), Compendium of Tourism Statistics dataset [Electronic], UNWTO, Madrid, data updated in December 2012. For UAE, the number of inbound tourist arrivals was estimated from the Abu Dhabi and Dubai Total Hotel Establishment Guests by Nationality, excluding those from Arab countries obtained from the World Tourism Organization (2012), Compendium of Tourism Statistics dataset [Electronic], UNWTO, Madrid, data updated in December 2012.

The number of comparable domestic cases is then estimated by multiplying 4 (the number of cases identified among returning non-resident travellers to Middle Eastern countries) by the ratio of domestic person-days at risk to returning non-resident traveller person-days at risk. In this case:

4 × 14,942,399,200 / 63,801,260 = 937 domestic cases.

However, this depends crucially on the assumed average length of stay. It is worth noting that the average was estimated to be 2.0 days for inbound tourists visiting Jordan in 2011 (World Tourism Organisation, 2012). However, as Saudi Arabia is has so many more inbound tourists than Jordan, the Saudi Arabia mean (4.0 days) is more indicative of the region as a whole. Table S9 shows the dependence of estimate on the assumed average length of stay as well as the upper and lower confidence limits based on the Poisson-likelihood-based 95% confidence bounds for the underlying rate of cases among returning non-resident travellers. These bounds do not incorporate uncertainty in either the country population sizes nor in the numbers of inbound tourists.

Table S9. Sensitivity to the assumed average length of stay of estimated number of domestic cases in Jordan, Kingdom of Saudi Arabia, Qatar and United Arab Emirates combined, based on cases among returning non-resident travellers.

Average length of stay (in days)	Estimate	Lower Bound	Upper Bound
1	3,747	1,163	8,705
2	1,874	582	4,353
3	1,249	388	2,902
4	937	291	2,176
5	749	233	1,741
6	625	194	1,451
7	535	166	1,244
8	468	145	1,088
9	416	129	967
10	375	116	871
11	341	106	791
12	312	97	725
13	288	89	670
14	268	83	622

These could be subdivided into the separate countries based on the proportion of inbound tourist arrivals to the four countries in total that were to a particular country (Table S10).

Table S10. Country-specific estimates of domestic cases based on cases among returning
non-resident travellers.

Average length of stay (in days)	Jordan	Saudi Arabia	Qatar	United Arab Emirates	Total
	297	1233	93	251	1,874
2					
	(92 – 689)	(383 – 2864)	(29 – 217)	(78 -582)	(582 – 4353)
	148	616	47	125	937
4					
	(46 – 345)	(191 – 1,432)	(15 – 109)	(39 – 291)	(291 – 2,176)
	85	352	27	72	535
7					
	(26 – 197)	(109 – 818)	(8 – 62)	(22 – 166)	(166 – 1244)
	59	247	19	50	375
10					
	(18 – 138)	(77 – 573)	(6 – 43)	(16 – 116)	(116 – 871)

Although this is a simple approximation to a complex system, it yields useful estimates for cases in the affected Middle Eastern countries comparable to the four diagnosed among returning non-resident travellers. In particular, these estimates do not include mild cases that would not have warranted testing had they occurred in returning non-resident travellers. This does not allow for the fact that some comparable cases might well have occurred among returning non-resident travellers that returned to countries that do not test for MERS-CoV regardless of health status and travel history. It implicitly assumes that

the per-day risk of infection of domestic citizens and returning non-resident travelers are the same. Of course, returning non-resident travelers might well have a higher or lower per-day risk than the domestic population, depending on the route(s) of transmission and any within-country regional variation in risk.

As a sensitivity analysis, Table S11 gives the country-specific estimates for Kingdom of Saudi Arabia, Qatar and United Arab Emirates, based on 3 cases identified among returning nonresident travellers to Middle Eastern countries (i.e. excluding the most recent such case identified in a returning non-resident travellers who visited Jordan).

Table S11. Country-specific estimates of domestic cases based on 3 cases identified among returning non-resident travellers to Middle Eastern countries (i.e. excluding the most recent such case identified in a returning non-resident traveller who visited Jordan).

Average length of stay (in days)	KSA (Saudi Arabia)	Qatar	United Arab Emirates	Total
2	1062	81	216	1,359
Z	(440 – 3,290)	(33 – 249)	(89 – 669)	(562 – 4,208)
4	531	40	108	679
4	(220 – 1,645)	(17 – 125)	(45 – 334)	(281 – 2,104)
7	304	23	62	388
/	(126 – 940)	(10 – 71)	(26 – 191)	(161 – 1,202)
10	212	16	43	272
10	(88 – 658)	(7 – 50)	(18 – 134)	(112 – 842)

8 Balance between animal-to-human and human-to-human transmission

We illustrate the balance between animal-to-human and human-to-human transmission under different assumptions about the human-to-human reproduction number using a parsimonious mathematical model, with discrete generations. We fit the model jointly to two epidemiological data, the timing of clusters (that inform growth rates) and the exported cases (that inform the cumulated number of cases), for different values of R_0 .

We model infection in an animal host that is assumed to seed infections into humans. Animal hosts can be infected by other animals, plus we include a low constant background risk of infection to prevent epidemic extinction in the animal host. The number $I_A(g)$ of infected animals at generation g is the sum of the number infected by the background risk, $I_{B\to A}(g)$, assumed to be Poisson distributed with mean $\lambda_{B\to A}$ and $I_{A\to A}(g)$, the number infected by other animals. Assuming a Negative Binomial distribution of the offspring distribution in animals with reproduction number R_A and overdispersion parameter k_A , we have

$$I_{A \to A}(g) \sim NegBin\{I_A(g-1)r_A, 1-p_A\}$$

with $p_A = 1/(1 + k_A/R_A)$ and $r_A = R_A(1 - p_A)/p_A$.

At generation g, the number of human infections caused by animals is Poisson distributed $I_{A \to H}(g) \sim Pois(\gamma I_A(g))$. Assuming a Negative Binomial distribution of the offspring distribution in humans with reproduction number R and over-dispersion parameter k, the number of events of human-to-human transmission at generation g is

$$I_{H \to H}(g) \sim NegBin\{I_H(g-1)r, 1-p\}$$

with p=1/(1+k/R) and r=R(1-p)/p .

Given the (unobserved) number of human cases $I_H(g)$ at generation g, the observed number of cases $O_H(g)$ at that generation has a Binomial distribution

$$O_{H}(g)|I_{H}(g) \sim Bin(I_{H}(g), r)$$

where ρ is the detection rate.

Last, given the total number of cases $\sum_{g} I_{H}(g)$, the observed number of exported case n_{E} =4 is Poisson distributed with mean $\sum_{g} I_{H}(g)/234.2$ (see section 6 describing the analysis of exported cases).

For $\lambda_{B\to A} = 1$ per week, $k_I = 1$ and k = 1, we use Particle Markov chain Monte Carlo²⁸ to fit the model jointly to the data for different values of *R* and for generation times of 12 and 7 days. We use 3,000 particles and 30,000 MCMC iterations per run, with a burn in of 500 and derive the posterior distribution of parameters as well as the reconstructed trajectories of human infections due to the animal host and those due to human-to-human transmissions. We use the Deviance Information Criterion (DIC) for model comparison²⁹. Smaller values of the DIC indicate a better fit. A difference of 5 DIC units is considered to be substantial.

Figures S2-S5 present for the different models the DICs, the estimated cumulated number of cases, proportion of human-to-human transmission so far and the probability that current chains of transmission will be sustained for a finite period (1 year), respectively.

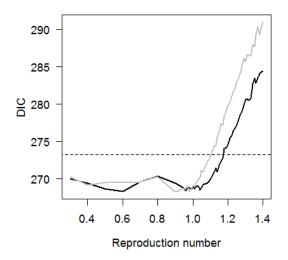


Figure S2. DIC as a function of *R* for T_g =12 and 7 days. The dotted line indicates the threshold for a substantial difference from the best fitting model (5 DIC units).

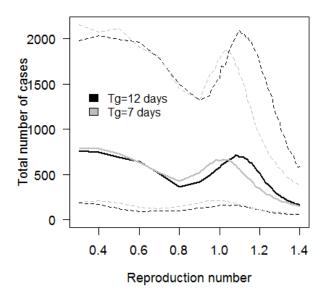


Figure S3: Total number of cases as a function of *R* for $T_g=12$ and 7 days (solid line: median; dashed line: 95% Cl).

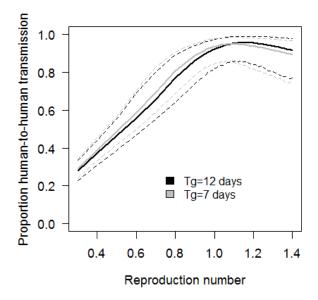


Figure S4. Proportion of human-to-human transmission in the epidemic so far as a function of *R* for T_g =12 and 7 days (solid line: median; dashed line: 95% Cl).

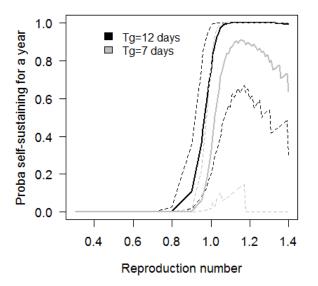


Figure S5. Probability that current chains of transmission will be sustained for 1 year into the future as a function of R for T_g =12 and 7 days (solid line: median; dashed line: 95% Cl).

9 Summary of genetic analysis of MERS-CoV

9.1 The data

There are currently nine publicly available full-length MERC-CoV sequences. We also include in our analysis a sequence generated from a viral isolate of a patient diagnosed in France, who had previously travelled and presumably been infected in Dubai.

Accession number	Name	Date of isolation	Cluster ID
KC776174	Jordan-N3	2012-04-14	4
JX869059	KSA/EMC	2012-06-13	1
KC667074/ KC16505*	Qatar/England 1	2012-09-12	5
PHE website**	England2	2013-02-10	7
KF192507	AbuDhabi/ Munich	2013-03-22	11
KF186564	KSA/Al Hasa 1	2013-05-09	12
KF186565	KSA/Al Hasa 2	2013-04-21	12
KF186566	KSA/AI Hasa 3	2013-04-22	12
KF186567	KSA/AI Hasa 4	2013-05-01	12
KF745068	France-UAE/1627/2013	2013-05-07	13

*The first English isolate was sequenced twice, by Public Health England (formerly HPA) with accession number KC16505 and once at the Wellcome Trust Sanger institute (KC667074), which is the sequence included here³⁰. **http://www.hpa.org.uk/ webc/HPAwebFile/HPAwebC/1317138176202

***The sequence of the isolate Hu/France-UAE/1627/2013 (Dubai/France 1) patient was generated at the Pasteur Institute in Paris using Sanger sequencing, essentially as described³¹ and will be posted on Genbank as this paper is published.

In aligning these sequences, UTRs were ignored as they could be problematic to assemble, and inter-genic spacers as they were conserved. Coding regions were aligned using Muscle to produce an in-frame alignment.

9.2 Choosing the substitution model for phylogenetic analysis

Different substitution models were tested using jModelTest v2.1.3, and we report only values for common models (TN93, GTR and HKY).

Model	-LL	N Params	BIC
TN93	41936	17	84047
ТΝ93+Г	41932	18	84049
TN93+I	41936	18	84057
TN93+I+Γ	41932	19	84059
НКҮ	41948	16	84062
GTR	41928	20	84062
НКҮ+Г	41945	17	84064
GTR+Γ	41924	21	84064
HKY+I	41948	17	84072
GTR+I	41928	21	84072
НКҮ+І+Г	41945	18	84074
GTR+I+Γ	41924	22	84074

Table S13. Comparison of alternate substitution models.

Based on this analysis, we use the TN93 substitution model for our main analysis, and perform sensitivity analysis to this choice below, with the HKY and GTR models, and also the SRD06 model, which allows for different substitution rates at third base positions in codons.

9.3 Maximum likelihood phylogeny

The maximum likelihood phylogeny was estimated using PhyML with the TN93 model, with 1,000 bootstrap iterations. Within this tree, we highlight in red a clade from within which all recent samples were drawn. Given the topology of the tree, we hypothesise that this clade is more likely to include samples from an outbreak of sustained human-to-human transmission, and that the other two sequences not in this clade were independent zoonotic introductions. This hypothesis could only be proved with identification and extensive sampling of the animal reservoir for this new virus.

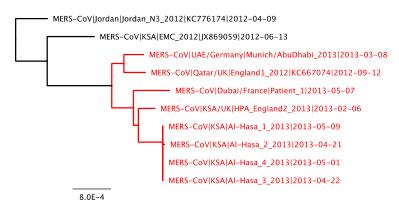


Figure S6. Maximum likelihood phylogeny estimated using PhyML with the TN93 model.

9.4 Evidence for a molecular clock

For all further modelling and hypothesis testing, we include only one sequence from the Al-Hasa outbreak (Al-Hasa 1, the most recent) as these are not independent from each other. We find very strong evidence of clock-like evolution, which supports the use of a molecular clock analysis.

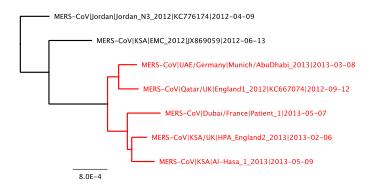


Figure S7. Tree with highest correlation between root-to-tip distance and calendar time.

The tree shown in Figure S7 gives the highest possible correlation between root-to-tip distance and calendar time, as illustrated by the regression shown in Figure S8.

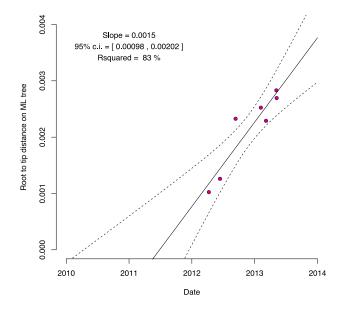
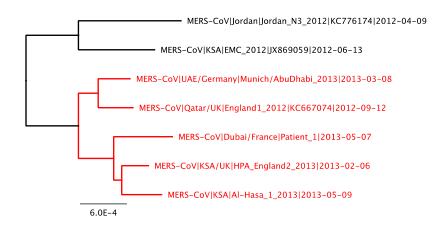
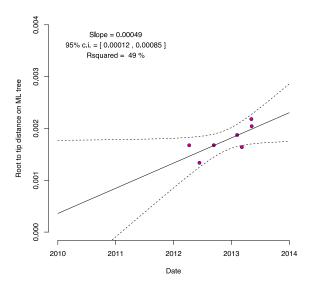



Figure S8. Regression of root-to-tip distance against calendar time for tree shown in Figure S7.


For this tree, the correlation between calendar time and root-to-tip distance tree is high (R^2 =83%) with an estimated molecular clock rate of 1.50 ×10⁻³ substitutions per site per year (95% confidence interval 0.98 to 2.02 ×10⁻³), and an estimate of the TMRCA of mid 2011.

However, we note that the choice of root for this tree need not be based on the highest correlation of root-to-tip distance and time. There is alternative rooting of the tree that fits the data well, and gives a lower estimate of the clock rate. The alternative choice of root for the tree is shown in Figure S9.

Figure S9. Maximum likelihood phylogeny with alternative root.

This choice minimizes the sum of square residuals in the regression between root-to-tip distance in the tree and calendar time, as illustrated by the regression shown in Figure S10.

Figure S10 Regression of root-to-tip distance against calendar time for tree shown in Figure S9.

For this choice of tree, the correlation between the root-to-tip distance in this tree is moderate (R^2 =49%) and suggests instead an estimate of the molecular clock rate of 0.49 × 10⁻³ substitutions per site per year (95% confidence interval 0.12 to 0.85 × 10⁻³).

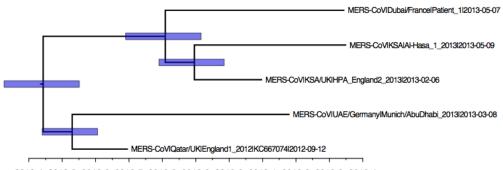
The first choice of root for the tree seems more consistent with epidemiological evidence, given the first human case was reported in early 2012. Both choices of clock rate are broadly consistent with estimates from other coronaviruses and in particular the 2003 SARS epidemic. At this stage, it is not possible to definitively root the tree. This would likely require other early samples, or identification and sampling of the source animal reservoir.

Molecular evolutionary rates have been estimated for a few different coronaviruses for complete genomes or subgenomic regions. Probably the most pertinent estimate would be

for the other known beta coronavirus in humans, SARS-CoV. But here there is also a disparity in rate estimates from 4×10^{-4} for the large and relatively conserved ORF1ab open reading frame³² to 1.5×10^{-3} based on complete genomes ³³.

Based on epidemiological plausibility, we focus on the estimate of 1.5×10^{-3} per site per year in our main analysis, and perform an extensive sensitivity analysis to this choice of clock.

9.5 Bayesian coalescent inference of population dynamics


We focus on the recent clade of the virus, and so work with an alignment of five virus sequences, highlighted in red in the trees above. The rooting of this clade is unambiguous when considered in the light of the earlier sequences, and so we enforce this rooting in the analysis of the highlighted in-group.

9.5.1 Methods

We use BEAST ³⁴ to estimate the dated phylogeny and the changing population size, using exponential population change for the coalescent model. We use a fixed value of the strict molecular clock. As a sensitivity analysis, we vary it between 5.0×10^{-4} and 2.5×10^{-3} in increments of 10^{-4} substitutions per site per year. We use the TN93 substitution model, but consider other models in a sensitivity analysis. We use a coalescent model with an exponentially changing population size. We assume a very broad and symmetric prior for the exponential rate of change, *r* (prior is normal with mean 0 and standard deviation 100 per year). We assign all other priors to the default values used by BEAST (v1.7.4). Using a fixed clock, convergence of the MCMC chains was excellent. We emphasise that it is not a prior assumption that the infected population is growing, since the population size parameter and the rate of exponential change parameters are independent.

9.5.2 Dated phylogeny

Figure S11 shows the estimates dated phylogeny drawn from the posterior distribution (maximum clade credibility), based on the substitution rate of 1.5×10^{-3}

2012.4 2012.5 2012.6 2012.7 2012.8 2012.9 2013.0 2013.1 2013.2 2013.3 2013.4

Figure S11. Time resolved phylogeny of the recent clade of 5 samples.

9.5.3 Population dynamics

Posterior estimates of the date of the most recent common ancestor (MRCA) and of the exponential growth rate are output from BEAST. The posterior distribution of the basic reproduction number R_0 are obtained by noting that in a growing epidemic, R_0 is related to

the growth rate r and the generation time distribution by $R_0 = M (-r)^{-1}$, where M is the moment generation function of the generation time distribution ³⁵. We assume a Gamma distributed generation time with mean Tg and shape coefficient α , so that $R_0(r)=(1+rT_g/\alpha)^{\alpha}$. In our baseline scenarios we assume that T_g is 12 days and the coefficient of variation consistent with that of SARS (mean over standard deviation) of 0.45, corresponding to α =4.94 ³⁶. Under these assumptions we obtain the following posterior distributions shown in Figure S12.

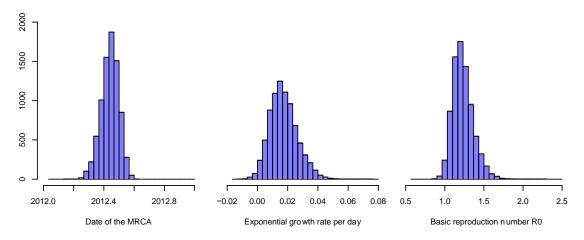


Figure S12. Posterior distribution of the TMRCA, population growth rate and R₀.

9.5.4 Number of infected individuals

We use two methods to estimate population sizes. Population sizes in BEAST, N_B , are reported in units of effective population size in coalescent time, i.e. the population size is $N_B = N_e \times T_g$ where N_e is the effective population size and T_g is the generation time. The effective population size N_e is related to the census population size N by a further transformation. Assuming a negative binomial offspring distribution and nearly neutral evolution, then the relationship between the effective population size and the actual population size is given by $N_1(t_c) = N_B R_0 (R_0 + k)/(kT_g)^{37, 38}$, where t_c is the current time. The population size at any other time is given by $N_1(t) = N_1 (t_c) \exp[r (t - t_c)]$. In estimating N_1 , we assume by default that k = 1. An alternative, and simpler, way to estimate the number infected is as $N_2(t) = \exp[r (t - t_0)]$ where r is the growth rate, t_0 is the estimated TMRCA. Ideally, these estimates should be very similar if the epidemic has started from a single case and if estimates of T_g and k are accurate, but this consistency is not enforced in BEAST. We report both values. More specifically, we report the estimates of the cumulative number of people infected, i.e. $N_i (t_0) (\exp[r (t_s - t_0)] - 1)/(rT_g)$ for i = 1, 2, where t_a is the reported analysis time for this study (set as 8 August 2013).

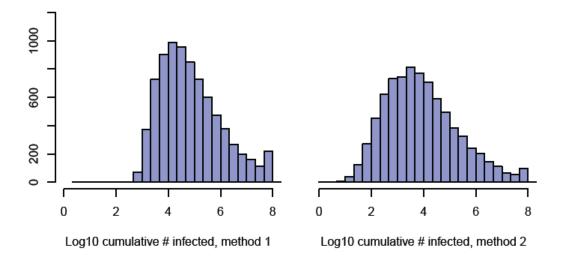
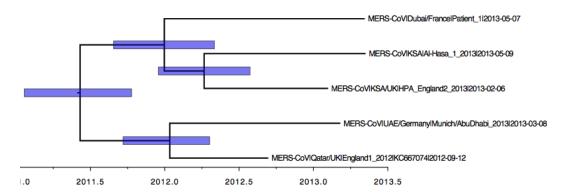



Figure S13. Posterior distribution of the cumulative number of infections derived by the two methods described in the text.

9.6 Sensitivity analyses

9.6.1 Sensitivity analysis to the choice of rooting

As mentioned above, there are two plausible rootings for the tree of all ten MERS-CoV viruses, which yield two different estimates of the clock rate of 5×10^{-4} and 1.5×10^{-3} per site per year, respectively. As no cases were reported prior to 2012, we judge the faster estimate to be somewhat more plausible, but neither can be ruled out. Here, we present results for the alternative substitution rate of 5×10^{-4} . The time-resolved MCC tree for the slower alternative (5×10^{-4}) is shown in Figure S14.

Figure S14. Time resolved phylogeny of the recent clade of 5 samples assuming the slower clock rate (5×10^{-4}).

The corresponding posterior estimates of population parameters are shown in Figures S15 and S16.

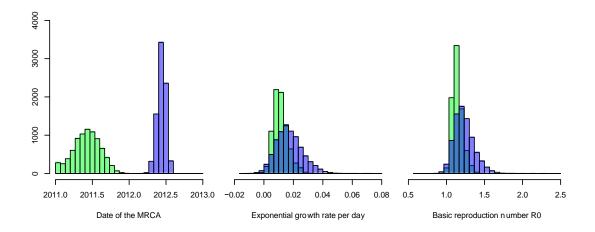


Figure S15. Posterior distribution of the TMRCA, population growth rate and R_0 for the faster (blue) and slower (green) clock rates. The plots are semi-transparent, so darker colour represents overlap between the histograms.

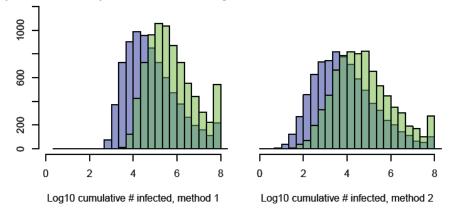


Figure S16. Posterior distribution of the cumulative number of infections derived by the two methods described in the text for the faster (blue) and slower (green) clock rates. The plots are semi-transparent, so darker colour represents overlap between the histograms.

9.6.2 Sensitivity to choice of clock rate

Table S14 summarises sensitivity of our estimates to the assumed clock rate.

Clock rate	TMRCA (95% cr.i.)	R ₀ (95% cr.i.)	Cumulative N_2 (IQR)
5.0e-4	2011.43 (2011.03, 2011.76)	1.14 (1.04, 1.31)	39663 (5918, 363979)
6.0e-4	2011.68 (2011.36, 2011.96)	1.15 (1.04, 1.34)	31598 (4789, 286669)
7.0e-4	2011.88 (2011.59, 2012.11)	1.17 (1.04, 1.4)	27943 (3773, 308827)
8.0e-4	2012.01 (2011.75, 2012.22)	1.18 (1.04, 1.42)	23080 (2920, 239478)
9.0e-4	2012.12 (2011.91, 2012.3)	1.2 (1.04, 1.49)	25000 (3127, 272845)
1.0e-3	2012.2 (2012, 2012.36)	1.2 (1.04, 1.52)	14730 (1954, 173209)
1.1e-3	2012.27 (2012.09, 2012.42)	1.22 (1.04, 1.51)	16197 (2008, 166826)
1.2e-3	2012.33 (2012.16, 2012.46)	1.21 (1.03, 1.54)	10006 (1332, 116413)
1.3e-3	2012.37 (2012.22, 2012.49)	1.21 (1.02, 1.53)	6869 (989 <i>,</i> 71249)
1.4e-3	2012.41 (2012.27, 2012.52)	1.22 (1.03, 1.54)	8074 (1090, 76445)
1.5e-3	2012.44 (2012.31, 2012.54)	1.21 (1.02, 1.53)	5636 (777, 55434)
1.6e-3	2012.47 (2012.35, 2012.56)	1.21 (1.02, 1.57)	4322 (665, 37870)
1.7e-3	2012.49 (2012.39, 2012.58)	1.21 (1.01, 1.55)	3392 (543 <i>,</i> 34189)
1.8e-3	2012.51 (2012.41, 2012.59)	1.22 (1.01, 1.6)	3724 (560 <i>,</i> 38991)
1.9e-3	2012.53 (2012.44, 2012.6)	1.22 (1.02, 1.56)	3176 (565, 29330)
2.0e-3	2012.55 (2012.46, 2012.61)	1.21 (1.01, 1.52)	2676 (437, 23496)
2.1e-3	2012.56 (2012.48, 2012.62)	1.2 (1.01, 1.54)	2099 (368, 16835)
2.2e-3	2012.57 (2012.49, 2012.63)	1.2 (1, 1.54)	1967 (353, 17108)
2.3e-3	2012.58 (2012.51, 2012.63)	1.21 (1.01, 1.59)	2006 (360, 16759)
2.4e-3	2012.59 (2012.52, 2012.63)	1.2 (1, 1.52)	1600 (320, 11297)
2.5e-3	2012.59 (2012.53, 2012.64)	1.2 (1, 1.52)	1526 (299, 10813)

Table S14. Estimates of TMRCA, R_0 and the cumulative number of infections calculated by method 2 (see text) as a function of the assumed clock rate.

We show the inter-quartile range (IQR) for estimates of the number infected, as the 95% credibility intervals are extremely wide, reflecting the fact that the genetic analysis is only moderately informative with respect to this quantity.

9.6.3 Sensitivity to choice of generation time distribution

Table S15 summarises sensitivity of our estimates to the assumed mean generation time.

9.6.4 Table S15. Sensitivity of genetic estimates to mean generation time, T_g , keeping coefficient of variation of the generation time distribution constant.

<i>T_g</i> (days)	<i>R</i> ₀ (95% cr.i.) for clock rate = 1.5 × 10 ⁻³	R_0 (95% cr.i.) for clock rate =5 × 10 ⁻⁴
7	1.12 (1.01, 1.29)	1.08 (1.02, 1.17)
8	1.14 (1.01, 1.33)	1.09 (1.03, 1.2)
9	1.16 (1.02, 1.38)	1.1 (1.03, 1.23)
10	1.18 (1.02, 1.43)	1.11 (1.03, 1.25)
11	1.2 (1.02, 1.48)	1.12 (1.04, 1.28)
12	1.21 (1.02, 1.53)	1.14 (1.04, 1.31)
13	1.23 (1.02, 1.58)	1.15 (1.04, 1.34)
14	1.25 (1.02, 1.64)	1.16 (1.05, 1.37)
15	1.27 (1.03, 1.69)	1.17 (1.05, 1.4)
16	1.29 (1.03, 1.75)	1.18 (1.05, 1.43)

9.6.5 Sensitivity to choice of dispersion parameter *k*

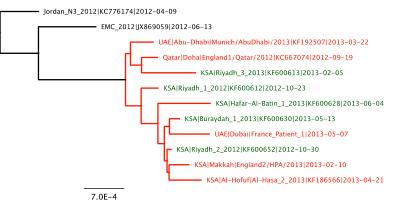
The only estimated quantity that depends on the choice of dispersion parameter k is the cumulative population size estimated by method 1, N₁. With the default value k=1 (geometric offspring distribution), the posterior-median estimate is 45,976 (IQR: 9,419-359,662), while for k=0.16 (estimate for SARS from ²⁵) the estimate is 100,386 (IQR: 20,103-804,184). The increased estimate as k decreases, reflects the fact that lower k implies a greater fraction of people who infect no-one, and thus while infected do not contribute to the effective infectious population and hence observed viral evolution.

9.6.6 Sensitivity to choice of substitution model

All of the analyses were repeated with the HKY, GTR and SRD06 model instead of theTN93 model. Dependence on the choice of substitution model was found to be minimal (Table S16).

Substitution model	= TN93		
Clock rate	- 1195 TMRCA (95% cr.i.)	R ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
5.0e-4	2011.43 (2011.03, 2011.76)	1.14 (1.04, 1.31)	39663 (5918, 363979)
1.0e-3	2012.2 (2012, 2012.36)	1.2 (1.04, 1.52)	14730 (1954, 173209)
1.5e-3	2012.44 (2012.31, 2012.54)	1.21 (1.02, 1.53)	5636 (777, 55434)
2.0e-3	2012.55 (2012.46, 2012.61)	1.21 (1.01, 1.52)	2676 (437, 23496)
2.5e-3	2012.59 (2012.53, 2012.64)	1.2 (1, 1.52)	1526 (299, 10813)
Substitution model	= HKY		
Clock rate	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
5.0e-4	2011.43 (2011.03, 2011.76)	1.13 (1.04, 1.28)	32298 (5268, 281051)
1.0e-3	2012.2 (2012, 2012.36)	1.2 (1.04, 1.48)	14482 (2029, 156319)
1.5e-3	2012.44 (2012.32, 2012.54)	1.21 (1.02, 1.56)	5119 (790, 55458)
2.0e-3	2012.55 (2012.46, 2012.61)	1.2 (1.01, 1.51)	2255 (408, 17926)
2.5e-3	2012.59 (2012.53, 2012.64)	1.2 (1, 1.54)	1655 (316, 10825)
Substitution model	= GTR		
Clock rate	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
5.0e-4	2011.43 (2011.03, 2011.75)	1.13 (1.04, 1.31)	34548 (5454, 304665)
1.0e-3	2012.2 (2012.01, 2012.36)	1.2 (1.04, 1.5)	14610 (2072, 164641)
1.5e-3	2012.44 (2012.32, 2012.54)	1.21 (1.02, 1.54)	5049 (726, 51705)
2.0e-3	2012.55 (2012.46, 2012.61)	1.21 (1.01, 1.54)	2655 (447, 23557)
2.5e-3	2012.59 (2012.53, 2012.64)	1.2 (1.01, 1.51)	1722 (340, 1004)
Substitution model	= SRD06		
Clock rate	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
5.0e-4	2011.44 (2011.03, 2011.77)	1.13 (1.04, 1.3)	33568 (4947, 322555)
1.0e-3	2012.21 (2012.02, 2012.37)	1.21 (1.04, 1.5)	17082 (2153, 237427)
	2012.45 (2012.32, 2012.54)	1.22 (1.03, 1.55)	5597 (806, 56719)
1.5e-3	2012.45 (2012.52, 2012.54)	· · · ·	
1.5e-3 2.0e-3	2012.55 (2012.46, 2012.61)	1.21 (1.01, 1.56)	2310 (430, 19677)

Table S16. Estimates of TMRCA, R_0 and the cumulative number of infections calculated by method 2 (see text) for different substitution models and clock rates.


9.7 Update of the phylogenetic analysis, added in proof

After the review of this paper was complete, Cotten et al ³⁹ published an extensive analysis of viral sequences collected from Saudi Arabia, and the sequences were made publicly available on GenBank. Here, we describe an updated version of our phylodynamic analysis which includes these latest sequences. In updating the analysis, we include only one representative of the 19 sequences collected from the large Al-Hasa outbreak, since the coalescent model used to estimate population dynamics assumes the sample being analysed is randomly drawn from the infected population. Because of the controversy surrounding the EMC/2012 and the Bisha_1_2012 sequences ³⁹, we exclude both from our analysis.

The results of the revised systematic comparison of substitution models are given in Table S17.

Model	-LL	N Params	BIC
τν93+Γ	41616	24	83479
НКҮ+Г	41626	23	83488
TN93+I+Γ	41616	25	83489
НКҮ+І+Г	41626	24	83498
GTR+Γ	41613	27	83503
TN93	41636	23	83508
GTR+I+Γ	41613	28	83514
НКҮ	41646	22	83517
TN93+I	41636	24	83519
HKY+I	41646	23	83528
GTR	41636	26	83537
GTR+I	41636	27	83543

Increased number of parameters compared to Table S13 reflects more branch lengths to optimise in the estimation of the tree (# params = # substitution rates + #branch lengths). Compared to the previous analysis, the data are now better fitted with models with Gamma rate variation between sites, so the revised list of favoured models used in the analysis are the TN93+G, HKY+G, GTR+G. Here, we focus on the TN93+G model (with four rate categories for Gamma rate variation). The resulting maximum likelihood tree is shown in Figure S16.

Figure S16. Updated maximum phylogenetic tree, with new sequences shown in green and outgroup in black.

The regression of root-to-tip distance on calendar time is shown in Figure S17, which shows a slight increase in the estimated clock rate, from 1.5×10^{-3} per site per year for the previous analysis, to 1.8×10^{-3} per site per year here. As in the earlier analysis, there is more than one well supported position for the root of the phylogeny, and the regression analysis of the alternative rooting is shown in Figure S18. This also shows an increase in the clock rate estimate, from 4.9×10^{-4} previously to 9.4×10^{-4} substitutions per site per year here, with a TMRCA in late 2010. We find below that this latter estimate is the most consistent with a new in-depth analysis of the ingroup.

Table S17

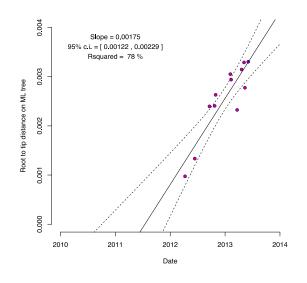


Figure S17. Updated root-to-tip regression for the maximum likelihood phylogeny.

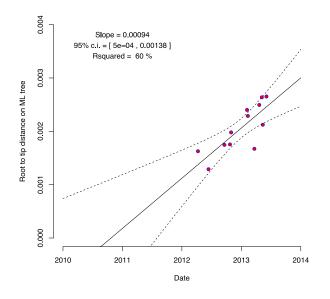


Figure S18. Updated root-to-tip regression for the maximum likelihood phylogeny with alternative rooting, leading to a slower clock and earlier TMRCA.

We updated the phylodynamic analysis with BEAST ³⁴ to estimate the dated phylogeny and the changing population size, using identical similar assumptions to our previous analysis, with one important modification. As we had more data, we estimated the clock rate rather than assuming fixed values and varying over a fixed range. We assumed a strict clock, and chose an (improper) clock rate with uniform distribution on $[0,\infty[$.

As before, convergence of the MCMC chains was excellent. We emphasise that it is not a

prior assumption that the infected population is growing, since the population size parameter and the rate of exponential change parameters are independent.

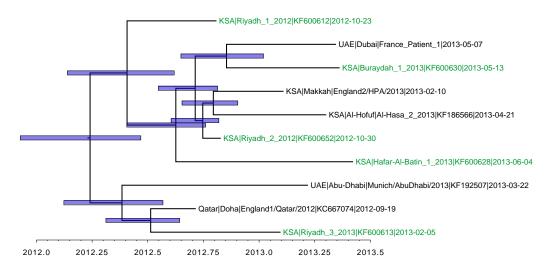
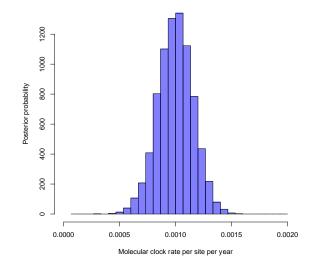



Figure S19 shows the estimates dated phylogeny drawn from the posterior distribution (maximum clade credibility).

Figure S19. Updated time resolved phylogeny of the recent clade of 10 samples. New sequences are shown in green.

The estimates of the clock rate are presented in Figure S20. The posterior median estimate is 1.0×10^{-3} substitutions per site per year (95% credibility interval $6.8 \times 10^{-4} - 1.3 \times 10^{-3}$). This compares to estimates by Cotten et al ³⁹, who find 6.3×10^{-4} (95% credibility interval $1.4 \times 10^{-4} - 1.1 \times 10^{-3}$). Differences in the central estimates may be the result of our inclusion of the new UAE | Dubai | France sequence which is relatively distant from the root, and exclusion of the controversial Bisha_1 sequence, which is relatively close to the root. These estimates are consistent, in that their credible intervals are highly overlapping.

Figure S20. Posterior distribution of the molecular clock rate, per site per year.

The updated results from the population dynamics are shown in Figures S21 and S22 and Table S18. In all cases updated estimates are consistent with previous estimates, but with reduced uncertainty.

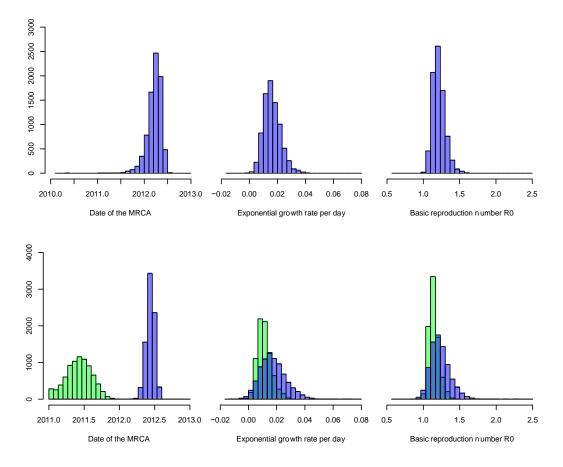


Figure S21. Updated posterior distribution of the TMRCA, population growth rate and R_0 . Upper panels: new results. Lower panels: old results, reproduced from figure S15.

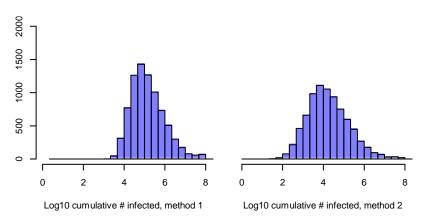


Figure S22. Updated posterior distribution of the cumulative number infected (updated version of figure S16.

Substitution model	= TN93+ <i>Γ</i>		
Clock rate (95% cr.i.)	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
1.0e-3 (6.8e-4-1.3e-3)	2012.24 (2011.85, 2012.43)	1.20 (1.08, 1.40)	14340 (3419, 75006)
Substitution model	= НКҮ+ <i>Г</i>		
Clock rate (95% cr.i.)	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
1.0e-3 (6.9e-4-1.3e-3)	2012.24 (2011.85, 2012.43)	1.20 (1.08, 1.41)	16098 (3820, 80538)
Substitution model	= GTR+ <i>I</i> '		
Clock rate (95% cr.i.)	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
1.0e-3 (6.9e-4-1.3e-3)	2012.24 (2011.87, 2012.43)	1.20 (1.08, 1.41)	16029 (3613, 82795)
Substitution model	= SRD06		
Clock rate (95% cr.i.)	TMRCA (95% cr.i.)	<i>R</i> ₀ (95% cr.i.)	Cumulative N ₂ (IQR)
1.0e-3 (6.8e-4-1.3e-3)	2012.24 (2011.86, 2012.43)	1.21 (1.08, 1.41)	17490 (3903, 94507)

Table S18. Updated estimates of TMRCA, R_0 and the cumulative number of infections calculated by method 2 (see text) for different substitution models.

10 References

1. AlBarrak AM, Stephens GM, Hewson R, Memish ZA. Recovery from severe novel coronavirus infection. Saudi Med J. 2012; **33**(12): 1265-9.

2. Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2012; **17**(40): pii=20290. Available online: <u>http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=</u>

3. Buchholz U, Müller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T, et al. Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012. Euro Surveill 2013;18(8):pii=20406 Available online: http://wwweurosurveillanceorg/ViewArticleaspx?ArticleId=20406 2013.

4. ECDC. Novel Coronavirus Updates Available at:

http://www.ecdc.europa.eu/en/healthtopics/coronavirus-infections/whatsnew/Pages/whats_new.aspx, Last Accessed 13 March 2013. 2012-2013.

5. Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lemaire X, et al. Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission. The Lancet. 2013.

6. Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, et al. Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. Eastern Mediterranean Health Journal. 2013; **19**(Supplement 1): S12-S8.

7. Memish ZA, Alhakeem R, Stephens GM. Saudi Arabia and the emergence of a novel coronavirus. Eastern Mediterranean Health Journal. 2013; **19**(Supplement 1): S7-S11.

8. Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. Family Cluster of Middle East Respiratory Syndrome Coronavirus Infections. NEJM. 2013; **Published 29 May 2013**: DOI: 10.1056/NEJMoa1303729.

9. Pebody RG, Chand MA, Thomas HL, Green HK, Boddington NL, Carvalho C, et al. The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2012; **17**(40): pii=20292. Available online: <u>http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=</u>

10. The Health Protection Agency (HPA) UK Novel Coronavirus Investigation team. Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2013; **18**(11): pii=20427. Available online: <u>http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=</u>T.

11. UK Health Protection Agency. Press Release: Third case of novel coronavirus infection identified in family cluster, 15 February 2013. Available at:

http://www.hpa.org.uk/NewsCentre/NationalPressReleases/2013PressReleases/1302153rdc aseofcoronavirus/. Last Accessed 13 March 13. 2013.

12. UK Health Protection Agency. Press Release: Case of novel coronavirus identified in the UK. 11 February 2013 Available at:

http://www.hpa.org.uk/NewsCentre/NationalPressReleases/2013PressReleases/130211stat ementonlatestcoronaviruspatient/ Last Accessed 13 March 13. 2013.

13. UK Health Protection Agency. Press Release: Further UK case of novel coronavirus.13 February 2013. Available at:

http://www.hpa.org.uk/NewsCentre/NationalPressReleases/2013PressReleases/130213stat ementonlatestcoronaviruspatient/. Last Accessed 13 March 13. 2013.

14. WHO. World Health Organization. Disease Outbreak News Novel Coronavirus. Available at:

http://www.hoint/csr/don/archive/disease/coronavirus_infections/en/index.html Last Accessed 22July 2013. 2012-2013.

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England journal of medicine. 2012; **367**(19): 1814-20. doi: 10.056/NEJMoa1211721. Epub 2012 Oct 17.
Saudi Arabia Ministry of Health. Available at:

http://www.moh.gov.sa/en/HealthAwareness/Corona/PressReleases/Pages/PressStatement -2013-05-29-001.aspx, Lat accessed 31 May 2013. 2012-2013.

17. ProMed. NOVEL CORONAVIRUS - SAUDI ARABIA (15): NEW CASE, Published Date: 2012-11-04 13:11:42. Available at:

http://www.promedmail.org/direct.php?id=20121104.1391285. 2012.

18. ProMed. NOVEL CORONAVIRUS - EASTERN MEDITERRANEAN (17): SAUDI ARABIA Published Date: 2013-05-03 11:27:27 Available at:

http://www.promedmail.org/direct.php?id=20130503.1688355. 2013.

19. ProMed. NOVEL CORONAVIRUS - EASTERN MEDITERRANEAN (18): SAUDI ARABIA. Published Date: 2013-05-05 18:49:21Available at:

http://www.promedmail.org/direct.php?id=20130505.1693290. 2013.

20. ProMed. NOVEL CORONAVIRUS - EASTERN MEDITERRANEAN (21): SAUDI ARABIA.Published Date: 2013-05-09 10:10:04, Available at:

http://www.promedmail.org/direct.php?id=20130509.1701527. 2013.

21. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al. Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus. New England Journal of Medicine. 2013; **2013 Jun 19. [Epub ahead of print]**.

22. WHO. World Health Organization: MERS-CoV summary and literature update – as of 20 June 2013. Available at:

http://www.who.int/csr/disease/coronavirus_infections/update_20130620/en/index.html. Last accessed 2 July 2013. 2013.

23. Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2013; **17**(9): e668-e72.

24. Saudi Arabia Ministry of Health. Media Statements. Corona. Available at: <u>http://www.moh.gov.sa/en/HealthAwareness/Corona/Pages/PressStatements.aspx</u>, last acessed 15 August 2013. 2013.

25. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005; **438**(7066): 355-9.

26. Nishiura H, Yan P, Sleeman CK, Mode CJ. Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks. J Theor Biol. 2012; **294**: 48-55.

27. Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004; **160**(6): 509-16.

28. Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2010; **72**(3): 269-342.

29. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J Roy Stat Soc B. 2002; **64**: 583-616.

30. Cotten M, Lam TT, Watson SJ, Palser A, Petrova V, Grant P, et al. Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerging infectious diseases. 2013; **19**(5): 736-42B. doi: 10.3201/eid1905.130057.

31. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; **3**(6).

32. Salemi M, Fitch WM, Ciccozzi M, Ruiz-Alvarez MJ, Rezza G, Lewis MJ. Severe acute respiratory syndrome coronavirus sequence characteristics and evolutionary rate estimate from maximum likelihood analysis. Journal of virology. 2004; **78**(3): 1602-3.

33. Zhao Z, Li H, Wu X, Y. Z, Zhang K, Zhang YP, et al. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol. 2004; **4**: 21.

34. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 2007; **7**: 214.

35. Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the Royal Society B: Biological Sciences. 2007; **274**(1609): 599-604.

36. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003; **300**(5627): 1966-70. Epub 2003 May 23.

37. Magiorkinis G, Sypsa V, Magiorkinis E, Paraskevis D, Katsoulidou A, R. B, et al. Integrating phylodynamics and epidemiology to estimate transmission diversity in viral epidemics. PLoS Comput Biol. 2013; **9**(1): e1002876. doi: 10.1371/journal.pcbi.. Epub 2013 Jan 31.

38. de Silva E, Ferguson NM, Fraser C. Inferring pandemic growth rates from sequence data. J R Soc Interface. 2012; **9**(73): 1797-808.

39. Cotten M, Watson SJ, Kellam P, Al-Rabeeah AA, Makhdoom HQ, Assiri A, et al. Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. Lancet. 2013.