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Supplementary Materials 
This document provides supplementary information on data, methods and results for our study on estimating the cost of vaccine 

development against epidemic infectious diseases. The supplement is comprised of five appendices, which are critical companions 

of the main article shedding light on methods, assumptions and data sources across all stages of analysis. The appendices include: 

- Appendix 1: Acknowledgements 

- Appendix 2: EID vaccine R&D pipeline and cost research methods  

- Appendix 3: Statistical analysis methods and results for estimating vaccine development project costs and their 

explanatory factors 

- Appendix 4: Monte Carlo Simulations for determining R&D costs associated with current vaccine pipeline structures for 

11 EIDs 

- Appendix 5: Stochastic optimization methods and sensitivity analysis 
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Appendix 2: EID vaccine R&D pipeline and cost data collection methods and additional results  

In this appendix we present the details of our EID vaccine R&D pipeline and cost data collection methodology, including the 

presentation of some additional findings underpinning assumptions behind our simulation and stochastic optimization methods 

explained in other appendices of this supplement. 

We begin with a discussion of the search methods and assumptions underlying the pipeline research process, including sources 

and strategies used to clean and validate the collected data. We then turn to the steps undertaken to collect cost information 

associated with EID vaccine R&D pipelines, providing details of the raw data findings and the assumptions behind these. 

Step 1: Pipeline research 

Our pipeline research comprised of a two stepped process:  

- Step 1: a literature search  

- Step 2: a survey-based validation process of the literature findings (and in some cases the identification of new candidates not 

available through public sources). 

The final EID vaccine R&D pipeline included in this study is the outcome of these two sequential steps and is constrained by the 

following key assumptions that served as screening criteria in the pipeline compilation process: 

- A vaccine candidate would need to be directed towards human use 

- A vaccine candidate would need to classify as such if it followed the typology on vaccine technologies provided in the 

literature1 

- Candidates demonstrating purely a passive immunization (e.g monoclonal antibodies) would not be considered as 

vaccines 

- Vaccine candidates would only be considered if:  

o They had shown, as a minimum, some immunogenicity data in an animal model. If only in vitro studies and/or 

computational studies were available, candidates would be disregarded. 

o They had generated efficacy data, and showed complete protection. If candidates demonstrated efficacy data but 

did not show complete protection they would be disregarded. 

o They had not been terminated for safety reasons. 

o They were not duplicate entries with other candidates identified through different literature sources or survey 

respondents, on the basis of whether: (1) the candidates targeted the same antigen (and hence the same disease); 

(2) the candidates used the same platform technology; (3) developers of these vaccine candidates were the same. 

If vaccine candidates differed on one or more of these three criteria, and were reported as such by survey 

respondents also, they were considered as different vaccine candidates.  

o They had demonstrated some R&D activity, through published or other sources, during the past 10 years and no 

earlier than 2006. 

Step 1.1: literature search 

From April to July 2016 we collected data on vaccine R&D pipelines from preclinical through Phase III for 11 pathogens deemed 

by the WHO as likely to cause severe outbreaks in the near future. The original dataset was largely based on: a report by the 

Norwegian Institute of Public Health;2 additional expert inputs from CEPI task teams (listed in the CEPI preliminary business plan 

2017–2021);3 mining of key academic literature,3–11 clinicaltrials.gov; the NIH project reporter database; and other publicly 

available sources (e.g. numerous other funder websites and individual researcher and developer websites) for vaccine pipeline 

information on vaccines within the WHO scope. Depending on source searching, search terms were based on [pathogen name], 

[vaccine candidate name], [developer name], ‘vaccine’ and combinations of these. Searches were limited to the last 11 years 

(2006 onwards). 

From January 2017 to September 2017 the original pipeline database was updated. Specifically, we applied different search 

strategies on the following sources: 

- Pubmed: First, we searched using a combination of two search options: “All field” for term “vaccine” and “Meshterm” 

for name of the disease. Second, we searched by name of each EID under “Abstract”. 

- Google & Google Scholar: We searched by EID name and keyword “vaccine”.  

- Clinicaltrial.gov: We searched by EID name under search field ‘condition’ and by keyword “vaccine” under search field 

‘intervention’. 

- ICTRP and country level trial registries: We searched by EID name under search field ‘condition’ and by keyword 

“vaccine” under search field ‘intervention’. 

- NIH reporter: We searched by EID name and keyword “vaccine” using text Search (Logic) under search fields ‘Search 

in: Project and FY: Active Projects’ 

- WHO pipeline tracker: We searched for EID vaccines without specific search terms using this publically available 

dataset. 



In order to ensure completeness of our search efforts, we also searched for pipeline information more freely in websites and press 

releases of organizations identified as vaccine development partners in our previous literature searches. We scanned the reference 

lists of identified articles in the literature for any missed vaccine candidates from previous searches. And we circulated lists of 

vaccine candidates including literature references to members of CEPI’s Scientific Advisory Committee and other experts, for 

confirmation, addition to, or modification of our previous literature findings where more up to date information was made 

available on any particular candidate. 

From an original volume of ~2,500 articles identified through the various sources and search strategies described above, we 

identified  ~600 articles, press releases and online material as in scope and associated with a potential total number of 262 vaccine 

candidates from preclinical through phase III against the 11 EIDs. (See references for these at the end of the appendix)  

Appendix figure 2.1: PRISMA flow diagram  

 

Step 1.2: survey validation 

We acknowledge that the definition of current product pipelines is challenging as there are a number of limitations to information 

gathering, including: not all information is publically available as developers may wish to keep information confidential, not all 

information is updated regularly on the publically available sources, the status of product development is dynamic, including 

partners involved and development status. In order to address these limitations we conducted a survey validation step. 

Specifically, from September 2017 to January 2018 we validated the previously collated EID vaccine R&D pipeline data, through 

a survey sent to 414 organizations identified as directly or indirectly (e.g. as funders or collaborating partners of vaccine project 

owners) relevant to EID vaccine R&D in previous literature searches (covering the 262 vaccine candidates identified in Step 1). 

The survey aimed to: 

- capture the current status of development of the various vaccine candidates identified in the literature 



- identify potentially new vaccine candidates for which information had not been previously made publicly available in the 

literature 

- clarify information on vaccine candidates related to: disease focus; platform technology used; product development 

partners; sources of funding; time spent and timelines projected for bringing candidates from preclinical through phase II 

stages of development; costs realized and costs projected for bringing candidates from preclinical through phase II stages 

of development; drivers of costs, timelines and risks associated with vaccine candidate development programmes. 

We received survey responses from 64 organizations, covering 314 vaccine candidates for EIDs in total. Out of these, 121 were 

confirmations of active, not yet started or on hold vaccine candidates due to lack of funding previously identified through the 

literature review. 193 were newly reported vaccine candidates, out of which 97 vaccine candidates concerned infectious diseases 

of epidemic potential outside the scope of the WHO priority list.1  

From the original set of 262 vaccine candidates identified in the literature for the 11 WHO priority EIDs, 104 remained 

unspecified due to lack of responses at the end of the survey, 44 were confirmed as terminated, on hold due to technical reason or 

were not confirmed at all as active projects by survey respondents, and 114 were confirmed as active, not yet started, or on hold 

due to lack of funding or other reasons not related to technical failures. 

Appendix tables 2.1 to 2.11 below presents the validated list of vaccine candidates currently active, not yet started, or on hold due 

to lack of funding or other reasons not associated with technical failures, for 11 WHO priority EIDs. The table provides 

information on a total number of 210 candidates (including: survey validated candidates identified initially through the literature; 

new candidates reported by survey respondents not available in the literature; and excluding candidates from CEPI’s own database 

of projects for which no evidence had been generated either through literature or survey). This table is based on the data collection 

and validation process outlined above and is limited, to our best of effort, and reflection of the current status of the vaccine 

development pipelines as at 30th January 2018. 

Vaccine R&D pipelines for 11 priority EIDs (as of 30th January 2018), including two phase IIb/III ready vaccine candidates for 

Ebola, are presented in appendix tables 2.1 to 2.11 below. 

  

                                                           
1 Anaplasmosis; Argentinian Haemorrhagic Fever; Avian Influenza Type H7; Babesia, atypical; Bolivian Haemorrhagic Fever; Bordetella pertussis; Borrelia 

miyamotoi; Campylobacter jejuni; Coxiella Burnetti (Q Fever); Cytomegalovirus; Dengue; Dobrava virus; East Equine Encephalitis; Ehlrichiosis; Enteroxinogenic 
Escherishia Coli (ETEC) diarrhoeal disease; Guanarito; Hantavirus Cardiopulmonar; Hepatitis E; Herpes Zoster; HPV; Human metapneumovirus and 

parainfluenza combinations; Human monkeypox; Influenza universal; Japanese Encephalitis; Junin; Lyme borreliosis; Machupo; Measles; Neisseria meningitidis; 

Norovirus; O’nyong’nyong virus; Pandemic H1N1; Pandemic H10N8; Pandemic H7N9; Paratyphoid; Plague; Puumala virus; Respiratory syncytial virus; Sabia; 
Schmallenberg disease; Seoul virus; Shigella; Smallpox, Variola major and other related pox viruses; Tickborne Encephalitis Complex Flaviviruses; Tuberculosis; 

Typhoid fever; Venezuelan Equine Encephalitis; Venezuelan Haemorrhagic fever; West Equine Encephalitis; West Nile Virus; Yellow Fever. 



Appendix Table 2.1: Chikungunya vaccine R&D pipeline, preclinical through phase II 

 

Disease Vaccine candidate R&D phase Development Partners 

Chikungunya VRC-CHKVLP059-00-VP (37997) Phase II 
National Institute of Allergy and Infectious Diseases (NIAID); The 

EMMES Corporation; Leidos; FHI 360; PaxVax 

Chikungunya 
MV-CHIK  recombinant measles virus vaccine 
expressing Chikungunya virus antigens 

Phase II 

Themis Bioscience GmbH; Institut Pasteur;  

In cooperation: National Institute of Allergy and Infectious Diseases 

(NIAID); Walter Reed Army Institute of Research (WRAIR) 

Chikungunya CHIKV- 5nsP3 Phase I 
Karolinska Institute; EU research Council; Swedish research Council; 
Valneva SE 

Chikungunya mRNA-1388 Phase I Moderna Therapeutics 

Chikungunya BBV87 (Inactivated whole virion CHIKV vaccine) Phase I Bharat Biotech International 

Chikungunya Formalin inactivated CHIKV181/25 Phase I 
Indian Immunologicals Ltd., US Army Medical Research and Material 
Command (USAMRMC) 

Chikungunya 
AGS-v, a Universal Mosquito-Borne Disease 

Vaccine 
Phase I 

SEEK; National Institute of Allergy and Infectious Diseases (NIAID); 

Imutex; Innovate UK and the UK Department of Health and Social 
Care 

Chikungunya 
Vaccinia [Ankara]-Vectored (MVA-CHIKV 
E1E26KE3) 

Preclinical CSIC Madrid; Karolinska Institutet  

Chikungunya Vaccinia vectored (MVA-CHIKV E2E3) Preclinical University of Wisconsin- Madison 

Chikungunya p181/25-7CHIKV iDNA Preclinical 
Medigen, Inc.; University of Texas Medical Branch (UTMB); National 
Institute of Allergy and Infectious Diseases (NIAID) 

Chikungunya SCV-CHIKV (SCV305), SCV viral vectored vaccine Preclinical Sementis Ltd 

Chikungunya 
Plasmid DNA ‘DREP-env’ encoding the CHIKV 
replicase and envelope proteins (but lacking the 

capsid encoding gene 

Preclinical 
Karolinska Institutet; University of Tartu; Institute of Emerging 

Diseases and Innovative Therapies - IMETI; University Paris-Sud XI 

Chikungunya EILV/CHIKV  Preclinical 
University of Texas Medical Branch (UTMB); University of Alabama 
at Birmingham; United States Army Medical Research Institute of 

Infectious Diseases (USAMRIID) 

Chikungunya 
Recombinant Modified Vaccinia Ankara (MVA) 
expressing E3E2, 6KE1, or the entire CHIKV 

envelope polyprotein E3E26KE1 cassette. 

Preclinical 
Erasmus Medical Center; University of Munich LMU; Erasmus 
Medical Center Laboratory Animal Science Center (EDC); Artemis 

One Health 

Chikungunya Inactivated CHIKV Preclinical 
Najit Technologies, Inc; National Institute of Allergy and Infectious 

Diseases (NIAID) 

Chikungunya PODS Chik 1 Preclinical 
Cell Guidance Systems; Imperial College London; Department of 
Health - UK; University of Cambridge 

Chikungunya Name yet to be assigned as early stage research Preclinical Leaf Expression Systems; Department of Health-UK 

Chikungunya Undisclosed Preclinical Undisclosed 

Chikungunya 
Infectious DNA (iDNA); Plasmid DNA-launched 

full-length attenuated RNA of CHIKV 
Preclinical Karolinska Institutet, Swedish Research Council 

Chikungunya 
Infectious RNA (iRNA); In vitro produced full-
length attenuated genomic RNA of CHIKV 

Preclinical Karolinska Institutet, Swedish Research Council 

Chikungunya E2EP3  (long peptide) Preclinical Singapore Immunology Network 

Chikungunya 
SCV-CHIKV+ZIKV+YF, SCV viral vectored 
vaccine 

Preclinical Sementis Ltd 

Chikungunya 
SCV-CHIKV+ZIKV (SCV1002), SCV viral vectored 
vaccine 

Preclinical Sementis Ltd 

Chikungunya 
CHIKV live attenuated virus, a genetically stabilized 
virus vaccine 

Preclinical Medigen, Inc. 

Chikungunya 
CHIKV pMCE321 is a DNA plasmid that encodes 

CHIKV capsid, envelope E1 and E2 proteins 
Preclinical 

Inovio Pharmaceuticals; VGXTM Animal Health; University of 
Pennsylvania; University of South Florida Morsani College of 

Medicine 

Chikungunya ChAdOx1 CHIK Preclinical University of Oxford 

Chikungunya CHIKV-IRES (v1/v2) Preclinical 

Takeda Pharmaceuticals, Vaccines Business Unit; University of Texas 
Medical Branch (UTMB); Center for Disease Control and Prevention 

(CDC); Tulane National Primate Research Center; University of 

Alabama at Birmingham (UAB) 
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Appendix Table 2.2: CCHF vaccine R&D pipeline, preclinical through phase I 

 

Disease Vaccine candidate R&D phase Development Partners 

Crimean Congo 

Haemorrhagic 
Fever (CCHF) 

KIRIM-KONGO-VAX Prepared in Cell Culture and 

Inactivated With Formalin 
Phase I 

Tubitak; Ministry of Health of Turkey; Monitor CRO; Aydin 

Erenmemisoglu; Erciyes University 

Crimean Congo 
Haemorrhagic 

Fever (CCHF) 

ChAdOx1 CCHF Preclinical University of Oxford 

Crimean Congo 

Haemorrhagic 

Fever (CCHF) 

ChAdOx2 CCHF Preclinical University of Oxford 

Crimean Congo 

Haemorrhagic 

Fever (CCHF) 

recombinant MVA expressing CCHFv glycoprotein Preclinical 
Department of Health-UK; Pirbright Institute; University of Oxford; 
Microbiology Services Research, Public Health England 

Crimean Congo 

Haemorrhagic 

Fever (CCHF) 

DNA CCHFv M segment Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID) 

Crimean Congo 
Haemorrhagic 

Fever (CCHF) 

Gc-e Subunit vaccine Preclinical Wageningen Bioveterinary Research 

Crimean Congo 

Haemorrhagic 

Fever (CCHF) 

Undisclosed Preclinical Undisclosed 
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Appendix Table 2.3: Ebola vaccine R&D pipeline, preclinical through phase III 

 

Disease Vaccine candidate R&D phase Development Partners 

Ebola VSV-ZEBOV GP Phase III 

Public Health Agency of Canada; Merck Sharp & Dohme Corp.,; 
World Health Organization (WHO); Wellcome Trust; Institute of 

Tropical Medicine; University of Tuebingen; Albert Schweitzer 

Hospital; Philipps University Marburg Medical Center; 
Universitätsklinikum Hamburg-Eppendorf University Hospital; 

National Institute of Allergy and Infectious Diseases (NIAID); Centers 

for Disease Control and Prevention; University of Sierra Leone; 
Ministry of Health and Sanitation - Sierra Leone; Department of Health 

and Human Services - eHealth Africa; University of Texas Medical 

Branch; Boston University School of Medicine; United States Army 
Medical Research Institute of Infectious Diseases (USAMRIID) 

Ebola Ad26.ZEBOV + MVA-BN-Filo Phase III 

Janssen Vaccines & Prevention B.V.; Bavarian Nordic GmbH; 

National Institute of Allergy and Infectious Diseases (NIAID); 
BARDA; Walter Reed Army Institute of Research (WRAIR); 

EBOVAC 1 and 2 Consortia (IMI): London School of Hygiene and 

Tropical Medicine (LSHTM); Institut National de la Santé Et de la 
Recherche Médicale (INSERM), University of Oxford 

Ebola 

ChAd3 EBOZ - A chimpanzee adenovirus 3–

vectored vaccine encoding the surface glycoprotein 

of Ebolavirus Zaire 

Phase II 

GlaxoSmithKline; Okairos; University of Maryland; National Institute 
of Allergy and Infectious Diseases Vaccine Research Center (in 

collaboration with University of Oxford; Centre Hospitalier 

Universitaire Vaudois; Infectious Disease Service, CHUV, Lausanne; 
Policlinique Médicale Universitaire; University of Lausanne Hospitals; 

Swiss Tropical & Public Health Institute; World Health Organization; 

Immunology and Allergy Service, CHUV, Lausanne; Bernhard Nocht 
Institute for Tropical Medicine) 

Ebola EBOV GP Phase I Novavax, Inc. 

Ebola rVSVN4CT1-EBOVGP1 (VesiculoVax) Phase I 
Profectus BioSciences Inc; Yale University; University of Texas 
Medical Branch (UTMB); United States Department of Defense (US 

DOD); Joint Vaccine Acquisition Program (JVAP); BARDA 

Ebola 
Multivalent Filovirus vaccine (heterologous prime 
boost with Ad26.Filo and MVA-BN-Filo) 

Phase I 
Janssen Vaccines & Prevention B.V.; Bavarian Nordic GmbH; 
National Institute of Allergy and Infectious Diseases (NIAID)   

Ebola 
INO-4201 is a DNA plasmid that encodes the full-

length Ebola virus glycoprotein  
Phase I 

Inovio Pharmaceuticals Inc.; GeneOne Life Science, Inc.; Public 

Health Agency of Canada; University of Pennsylvania; University of 
Manitoba; The University of Texas at Austin 

Ebola Undisclosed Preclinical Undisclosed 

Ebola Marv VLPs; EBOV VLP; SUDV VLPs (Blended) Preclinical 

United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); Integrated Biotherapeutics, Inc; Protein Expression 

Laboratory; Science Applications International Corporation (SAIC)–

Frederick, National Cancer Institute, Frederick, Maryland 

Ebola VRP SUDV GP + VRP EBOV GP Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID) 

Ebola Undisclosed Preclinical Undisclosed 

Ebola 
 CAdVax-filo GP + NP 
 CAdVax-EBOV M7 + M8 

Preclinical 
United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); Medical University of South Carolina 

Ebola  Ad-CAGoptZGP + Ad-IFNα Preclinical Public Health Agency of Canada; University of Manitoba 

Ebola 

inact. BNSP333-coEBOV/SUD/MARV/LASVGP + 

adjuvants (FILORAB1, FILORAB2, FILORAB3, 

LASSARAB) 

Preclinical 

Thomas Jefferson University; Exxell BIO, Inc.; National Institute of 

Allergy and Infectious Diseases (NIAID); United States Army Medical 
Research Institute of Infectious Diseases (USAMRIID); IDT Biologika 

GmbH; Infectious disease research institute (IDRI) 

Ebola VSV-EBOV GP, VSV-SUDV GP, VSV-MARV GP Preclinical 

Public Health Agency of Canada; Boston University School of 
Medicine; United States Army Medical Research Institute of Infectious 

Diseases (USAMRIID); University of Manitoba; National Institute of 

Allergy and Infectious Diseases(NIAID); National Emerging Infectious 
Diseases Laboratories Institute 

Ebola DNA EBOV GP + rAd5-EBOV GP Preclinical 

United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); National Institute of Allergy and Infectious Diseases 
(NIAID); Centers for Disease Control and Prevention 

Ebola CAdVax-EBOV M7 + M8 Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); Medical University of South Carolina 

Ebola Undisclosed Preclinical Undisclosed 



Ebola 
MVA-VLP-TV vaccine (Haemorrhagic Fever 

Vaccine (Ebola, Sudan,  Marburg, Lassa)) 
Preclinical 

GeoVax; United States Army Medical Research Institute of Infectious 

Diseases (USAMRIID)  

Ebola PODS Ebola 1 Preclinical 
Cell Guidance Systems; University of Cambridge; Imperial College 

London; Department of Health - UK 

Ebola Undisclosed Preclinical Undisclosed 

Ebola Undisclosed Preclinical Undisclosed 

Ebola DNA pWRG/EBOV-GP(opt) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); Ichor Medical Systems 

Ebola DNA pWRG/SUDV-GP(opt) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); Ichor Medical Systems 

Ebola GEO-EM03  Preclinical Geovax 

Ebola 
MV-EBOV recombinant measles virus vaccine 

expressing EBOV antigens  
Preclinical Institut Pasteur  

Ebola NI.LV-EBO Preclinical Institut Pasteur; Theravectys  

Ebola Structuraly designed Pan-ebolavirus vaccine Preclinical Integrated Biotherapeutics 

Ebola 
DREP-GP: DNA plasmid expressing an alphavirus 

replicase and the glycoprotein of Ebola 
Preclinical Karolinska Institutet, Swedish Research Council 

Ebola Ebola RNA-Moderna Preclinical Moderna Therapeutics 

Ebola 
rVSVN4CT1-SUDVGP1 (VesiculoVax™ Vesicular 
Stomatitis Virus Vector) 

Preclinical 

Profectus; Yale University; University of Texas Medical Branch 

(UTMB); National Institute of Allergy and Infectious Diseases 

(NIAID); Joint Vaccine Acquisition Program (JVAP) 

Ebola 

rVSVN4CT1-EBOV/SUDV/MARV/LASV Quadra-

valent (VesiculoVax™ Vesicular Stomatitis Virus 

Vector) 

Preclinical 

Profectus; Yale University; University of Texas Medical Branch 

(UTMB); National Institute of Allergy and Infectious Diseases 

(NIAID) 

Ebola ChAdOX1 triFilo(2A) Preclinical University of Oxford 

Ebola ChAdOx1-biEBOV Preclinical University of Oxford 

Ebola Ebola GP VLP Preclinical 
Vaxine Pty Ltd, Australia; United States Army Medical Research 

Institute of Infectious Diseases (USAMRIID) 

Ebola 

RREP-GP: DNA plasmid expressing an alphavirus 

replicase and the glycoprotein of Ebola; In vitro RNA 
transcript of the template. 

Preclinical Karolinska Institutet, Swedish Research Council 

Ebola DIOS-panEbola Preclinical 
Department of Health - UK; University of Cambridge; University of 
Oxford 

Ebola Undisclosed Preclinical Undisclosed 

Ebola Ebola GPclamp Preclinical 
The University of Queensland; Australian Government - National 

Health and Medical Research Council (NHMRC)  

Ebola GEO-EM01 Preclinical Geovax 

Ebola DNA pWRG/EBOV-Z76(opt); Mayina Preclinical 
United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); PharmaJet 

Ebola DNA pWRG/SUDV-BON(opt); Boniface Preclinical 
United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); PharmaJet 

Ebola DNA pWRG/EBOV-BUN(opt); Bundibugyo Preclinical 
United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); PharmaJet 

Ebola DNA pWRG/EBOV-Z14(opt); Guinea Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); PharmaJet 
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Appendix Table 2.4: Lassa vaccine R&D pipeline, preclinical 

 

Disease Vaccine candidate R&D phase Development Partners 

Lassa fever 
rVSVN4CT1-LASV (VesiculoVax™ Vesicular 

Stomatitis Virus Vector) 
Preclinical 

Profectus Biosciences; Yale University; University of Texas Medical 

Branch (UTMB) 

Lassa fever ML29 L-AttV, rLCMV(IGR/S-S) Preclinical The Scripps Research Institute (TSRI), USA 

Lassa fever 

ML29 virus - reassortant encodes major 

immunogenic proteins, GPC and NP, from LASV 

and RNA polymerase and Z protein from MOPV.  

Preclinical 
Medigen, Inc.(technology licensed from the University of Maryland); 
National Institute of Allergy and Infectious Diseases (NIAID) 

Lassa fever Live attentuated rLCMV/CD Preclinical University of Rochester; The Scripps Research Institute 

Lassa fever GPC441-449 subunit Preclinical 

University of Vermont College of Medicine; The Scripps Research 

Institute; MWH Laboratories; University of North Carolina; PaxVax, 
Inc.,; University of California 

Lassa fever LASV VLP Preclinical 

Tulane University Health Sciences Center; Autoimmune Technologies, 

LLC; Corgenix Medical Corporation; Vybion, Inc.,; United States 
Army Medical Research Institute of Infectious Diseases (USAMRIID) 

Lassa fever 
RABV based on chemically inactivated rabies virus 

containing Lassa Virus coGPC (LASSARAB) 
Preclinical 

Thomas Jefferson University; National Institute of Allergy and 

Infectious Diseases (NIAID); The Geneva Foundation; United States 

Army Medical Research Institute of Infectious Diseases (USAMRIID); 

IDT Biologika GmbH; Infectious disease research institute (IDRI) 

Lassa fever PODS Lassa 1 Preclinical 
Cell Guidance Systems; University of Cambridge; Imperial College 

London; Department of Health - UK 

Lassa fever 
MV-LASV recombinant measles virus vaccine 
expressing Lassa virus antigens 

Preclinical Institut Pasteur; Themis Bioscience GmbH 

Lassa fever 
MOPEVAC (Modified Mopeia virus expressing 
antigens of pathogenic arenaviruses) 

Preclinical Institut Pasteur  

Lassa fever Alphavirus replicon encoding LASV genes Preclinical 
Medigen, Inc.; University of Louisville, United States Army Medical 

Research Institute of Infectious Diseases (USAMRIID) 

Lassa fever Undisclosed Preclinical Undisclosed 

Lassa fever Lassa GPCclamp Preclinical 
The University of Queensland; Australian Government - National 

Health and Medical Research Council (NHMRC) 

Lassa fever ChAdOx1 Lassa Preclinical University of Oxford 

Lassa fever MVA Lassa Preclinical University of Oxford 

Lassa fever ChAdOx1-biLAMA Preclinical University of Oxford 

Lassa fever 
Viral genome rearrangement for the development of 
live-attenuated arenavirus vaccines  

Preclinical University of Rochester; The Scripps Research Institute 
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Single cycle infectious viruses  as live attenuated 
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Preclinical University of Rochester; The Scripps Research Institute 
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Lassa fever GEO-LM01 Preclinical GeoVax; The Scripps Research Institute; University of Maryland  

Lassa fever 
pLASV-GPC is a DNA plasmid vaccine that encodes 

the LASV glycoprotein precursor gene (GPC) 
Preclinical 

Inovio Pharmaceuticals; United States Army Medical Research 

Institute for Infectious Diseases (USAMRIID) 

Lassa fever 
MVA-VLP-TV vaccine (Haemorrhagic Fever 

Vaccine (Ebola, Sudan,  Marburg, Lassa)) 
Preclinical 

GeoVax; United States Army Medical Research Institute of Infectious 

Diseases (USAMRIID) 
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Appendix Table 2.5: Marburg vaccine R&D pipeline, preclinical through phase I 

 

Disease Vaccine candidate R&D phase Development Partners 

Marburg Ebola DNA and Marburg DNA - prime boost Phase I 

National Institute of Allergy and Infectious Diseases (NIAID); 

Makerere University; Makerere University Walter Reed Project 
(MUWRP) clinic; Walter Reed Army Institute of Research (WRAIR) 

Marburg DNA Phase I 
AgilVax; Integrated Biotherapeutics; National Institute of Allergy and 
Infectious Diseases (NIAID); Visterra; United States Army Medical 

Research Institute of Infectious Diseases (USAMRIID) 

Marburg MARV VLPs Preclinical 
United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); Integrated Biotherapeutics, Inc. 

Marburg Undisclosed Preclinical Undisclosed 

Marburg 
VEE replicon particles (VRP) expressed GP from 

MARV 
Preclinical 

United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID) 

Marburg Trimeric hybrid GPs (VLPs) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID) 

Marburg 
complex adenovirus (CAdVax) five different 

filoviruses 
Preclinical 

United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID) 

Marburg MARV VP40 and GP (VLPs) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID) 

Marburg 
MVA-VLP-TV vaccine (Haemorrhagic Fever 
Vaccine (Ebola, Sudan,  Marburg, Lassa)) 

Preclinical 
GeoVax; United States Army Medical Research Institute of Infectious 
Diseases (USAMRIID)  

Marburg Undisclosed Preclinical Undisclosed 

Marburg DNA pWRG/MARV-GP(opt) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); Ichor Medical Systems 

Marburg Marburg RNA-Moderna Preclinical Moderna Therapeutics 

Marburg ChAdOx1-biLAMA Preclinical University of Oxford 

Marburg Undisclosed Preclinical Undisclosed 

Marburg GEO-EM05 Preclinical GeoVax 

Marburg DNA pWRG/MARV-ANG(opt); Angola Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); PharmaJet 

Marburg ChAdOX1 triFilo(2A) Preclinical University of Oxford 

Marburg 
rVSVN4CT1-MARVGP1 (VesiculoVax™ Vesicular 
Stomatitis Virus Vector) 

Preclinical 

Profectus BioSciences Inc; Yale University; University of Texas 

Medical Branch (UTMB); National Institute of Allergy and Infectious 

Diseases (NIAID); Joint Vaccine Acquisition Program (JVAP) 

Marburg 
pMARV is a DNA plasmid that encodes Marburg 

virus glycoprotein 
Preclinical Inovio Pharmaceuticals; Public Health Agency of Canada 

Marburg Attenuate VSV vector Preclinical 
National Institute of Allergy and Infectious Diseases (NIAID); Public 
Health Agency of Canada; United States Army Medical Research 

Institute of Infectious Diseases (USAMRIID) 

Marburg 
RABV based on chemically inactivated rabies virus 
virions containing MARV glycoprotein (GP) 

(FILORAB3) 

Preclinical 

Thomas Jefferson University; National Institute of Allergy and 

Infectious Diseases (NIAID); The Geneva Foundation; United States 

Army Medical Research Institute of Infectious Diseases (USAMRIID); 
IDT Biologika GmbH; Infectious disease research institute (IDRI) 
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Appendix Table 2.6: MERS-CoV vaccine R&D pipeline, preclinical through phase I 

 

Disease Vaccine candidate R&D phase Development Partners 

MERS-CoV MVA-MERS-S Phase I 
University of Munich LMU; Erasmus Medical Center; University of 
Marburg; German Centre for Infection Research (DZIF) 

MERS-CoV ChAdOx1 MERS Phase I 
University of Oxford; Department of Health - UK; MRC Human 

Immunology Unit; UK Medical Research Council  

MERS-CoV 
GLS-5300 is a DNA plasmid vaccine that encodes 
the MERS CoV spike (S) glycoprotein 

Phase I 

Inovio Pharmaceuticals; GeneOne Life Science; International Vaccine 

Institute (IVI); Public Health Agency of Canada; University of Laval; 
University of Manitoba; University of Pennsylvania; University of 

Washington; University of South Florida Morsani College of Medicine 

MERS-CoV 

RABV-MERS RABV contains spike protein of the 

MERS-CoV S1 domain fused to the RABV G protein 
C terminus (BNSP333-S1). Live and deactivated 

irons 

Preclinical 

Thomas Jefferson University; IDT Biologika GmbH; National Institute 

of Allergy and Infectious Diseases (NIAID); University of Maryland; 

University of North Carolina; University of Colorado 

MERS-CoV RBD fused with human Fc/ Mersmab1 Preclinical 
New York Blood Center; Baylor College Medicine; University of 

Texas Medical Branch (UTMB) 

MERS-CoV Full length S trimers/ nanoparticle Preclinical Novavax, Inc. 

MERS-CoV 
Venezuelan equine encephalitis replicons (VRP) 

expressing  nucleocapsid proteins 
Preclinical 

University of Iowa; The First Affiliated Hospital of Guangzhou 

Medical University; University of North Carolina; Mayo Clinic 

MERS-CoV VRP expressing spike protein Preclinical University of Iowa; University of North Carolina at Chapel Hill 

MERS-CoV Live-attenuated recombinant MERS-CoVs Preclinical 
University of Iowa; German Centre for Infection Research (DZIF); 
King Abdullah International Medical Research Center; University of 

Kent; University of Marburg; CNB-CSIC 

MERS-CoV MERS RNA Preclinical Moderna Therapeutics 

MERS-CoV MERS Sclamp Preclinical 
The University of Queensland; Australian Government - National 

Health and Medical Research Council (NHMRC) 

MERS-CoV mammalian subunit with triadjuvant Preclinical 

Vaccine and Infectious Disease Organization-International Vaccine 

Centre (VIDO-InterVac); King Saud bin Abdulaziz University for 
Health Sciences 

MERS-CoV replication defective Ad5 vectored Preclinical 

Vaccine and Infectious Disease Organization-International Vaccine 

Centre (VIDO-InterVac); King Saud bin Abdulaziz University for 
Health Sciences 

MERS-CoV live attenuated camelpox (Ducapox) vectored Preclinical 

Vaccine and Infectious Disease Organization-International Vaccine 

Centre (VIDO-InterVac); Central Veterinary Research Lab, Dubai, 
UAE 

MERS-CoV MERS vaccine Preclinical Vaxine Pty Ltd, Australia 

MERS-CoV DNA pWRG/MERScoV(opt) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID); PharmaJet 

MERS-CoV 
Measles S recombinant measles virus expressing the 
spike glycoprotein 

Preclinical Themis Bioscience GmbH 
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Appendix Table 2.7: Nipah vaccine R&D pipeline, preclinical 

 

Disease Vaccine candidate R&D phase Development Partners 

Nipah HeV sG (Hendra virus soluble G protein) Preclinical 

Zoetis Inc.; Uniformed Services University of the Health Sciences 
(USU); Commonwealth Scientific and Industrial Research 

Organisation (CSIRO); Duke-NUS Graduate Medical School; 

Profectus Biosciences; University of Manitoba 

Nipah rMV-NiV-G Preclinical 
University of Tokyo; National Institute of Infectious Diseases, Japan; 

Themis Bioscience GmbH 

Nipah VLP: pCAGGS- G, F, and M protein Preclinical 

University of Texas Medical Branch (UTMB); Commonwealth 

Scientific and Industrial Research Organisation (CSIRO); Mount Sinai 

School of Medicine 

Nipah NiV soluble molecular clamp stabilised F protein Preclinical 

Department of Health - UK; The Pirbright Institute; University of 

Oxford; University of Queensland; CSIRO Health and Biosecurity; 

Australian Government - National Health and Medical Research 
Council (NHMRC); University of Malaya; Assam Agricultural 

University; Monash University Malaysia; Zoetis Inc. 

Nipah 
ChAdOx1 Nipah (Chimpanzee adenoviral vectored 

NiV G protein) 
Preclinical 

Department of Health - UK; The Pirbright Institute; University of 
Oxford; University of Queensland; CSIRO Health and Biosecurity; 

University of Malaya; Assam Agricultural University; Monash 

University Malaysia; Zoetis Inc. 

Nipah Undisclosed Preclinical Undisclosed 

Nipah Undisclosed Preclinical Undisclosed 

Nipah Undisclosed Preclinical Undisclosed 

Nipah NiV soluble G protein subunit Preclinical 

Department of Health - UK; The Pirbright Institute; University of 
Oxford; University of Queensland; CSIRO Health and Biosecurity; 

University of Malaya; Assam Agricultural University; Monash 

University Malaysia; Zoetis Inc. 

Nipah 

VSV-HeV sG recombinant vesicular stomatitis virus 
(VSV), expressing either the codon-optimized or the 

wild-type (wt) HeV glycoprotein (G) gene or Nipah 

(codon optimized) 

Preclinical 
Thomas Jefferson University; National Institute of Allergy and 

Infectious Diseases (NIAID); Rocky Mountain Laboratories 

Nipah 
RABV-HeV G recombinant rabies virus, expressing 
either the codon-optimized or the wild-type (wt) HeV 

glycoprotein (G) gene or Nipah G (codon optimized) 

Preclinical 
Thomas Jefferson University; National Institute of Allergy and 

Infectious Diseases (NIAID); Rocky Mountain Laboratories 
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Appendix Table 2.8: Rilf Valley fever vaccine R&D pipeline, preclinical through phase II 

 

Disease Vaccine candidate R&D phase Development Partners 

Rift Valley 

fever 
TSI-GSD 200 Phase II U.S. Army Medical Research and Materiel Command; Salk Institute  

Rift Valley 

fever 
RVF MP-12  Phase II 

United States Army Medical Research Institute of Infectious Diseases 

(USAMRIID);  Salk Institute  

Rift Valley 
fever 

DNA vaccine pCMV-Ub-N Preclinical 
Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 
Madrid, Spain 

Rift Valley 
fever 

DNA Vaccine, pCMV-M4 encoding mature GnGc 
glycoproteins  

Preclinical 
Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 
Madrid, Spain 

Rift Valley 
fever 

NDFL-GnGc, vector based Preclinical Wageningen Bioveterinary Research 

Rift Valley 
fever 

- Gn-e Subunit Protein 
- Gn/Gc VLP with/without Adjuvant (Stimune) 

Preclinical Wageningen Bioveterinary Research; Utrecht University 

Rift Valley 

fever 
Undisclosed Preclinical Undisclosed 

Rift Valley 

fever 
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Appendix Table 2.9: SARS vaccine R&D pipeline, preclinical 

 

Disease Vaccine candidate R&D phase Development Partners 

SARS 
receptor binding domain (RBD) of the SARS- CoV 

spike (S) protein 
Preclinical 
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(NYBC); University of Texas Medical Branch (UTMB); Walter Reed 

Army Institute of Research (WRAIR); National Institute of Allergy and 

Infectious Diseases (NIAID) 

SARS rSARSCoV-E* Preclinical CNB-CSIC; University of Iowa 

SARS SARS VLPs S protein and inflenza M1 protein Preclinical Novavax 

SARS ChAdOX1 SARS Preclinical University of Oxford 

SARS 
MV-SARS recombinant measles virus vaccine 
expressing SARS CoV antigen 

Preclinical Institut Pasteur  
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 Appendix Table 2.10: SFTS vaccine R&D pipeline, preclinical 

 

Disease Vaccine candidate R&D phase Development Partners 

SFTS DNA Vaccine Preclinical 

GeneOne Life Science; Graduate school of Medical Science and 

Engineering, KAIST; College of Medicine, Chungbuk National 
University 

 

References related to the SFTS vaccine R&D pipeline: 

1. GeneOne Life Sciences. Pipeline. 2017. Available from: http://www.genels.com/en/sub0301.php. [Accessed 26th 

January 2018] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Appendix Table 2.11: Zika vaccine R&D pipeline, preclinical through phase II 

 

Disease Vaccine candidate R&D phase Development Partners 

Zika VRC-ZKADNA090-00-VP   Phase II Paxvax; National Institute of Allergy and Infectious Diseases (NIAID) 

Zika 

GLS-5700 is a DNA plasmid encoding for pre-

membrane and envelope (prME) proteins of the Zika 

virus 

Phase I Inovio Pharmaceuticals; GeneOne Life Science, Inc. 

Zika AGS-v Phase I 
SEEK; National Institute of Allergy and Infectious Diseases (NIAID); 
Imutex; Innovate UK and the UK Department of Healt and Social Care 

Zika mRNA-1325 Phase I Moderna Therapeutics 

Zika MV-Zika based on measles vector platform Phase I Themis Bioscience GmbH; Institut Pasteur 

Zika VRC ZIKV DNA Phase I National Institute of Allergy and Infectious Diseases (NIAID) 

Zika ZIKV PIV Phase I 

Walter Reed Army Institute of Research (WRAIR); Beth Israel 

Deaconess Medical Center (BIDMC); Harvard University; National 

Institute of Allergy and Infectious Diseases (NIAID); Sanofi Pasteur 

Zika BBV121 (Inactivated whole virion ZIKV vaccine) Phase I Bharat Biotech International 

Zika UOL- Zika vaccine Phase I University of Liverpool; Department of Health - UK 

Zika GEO-ZM02 Preclinical 
GeoVax; University of Georgia; Center for Disease Control and 
Prevention (CDC) 

Zika NI.LV-ZIK Preclinical Institut Pasteur  

Zika ChAdOx1 Zika Preclinical University of Oxford 

Zika Undisclosed Preclinical Undisclosed 

Zika 
SCV-CHIKV+ZIKV+YF, SCV viral vectored 

vaccine 
Preclinical Sementis Ltd 

Zika 
SCV-CHIKV+ZIKV (SCV1002), SCV viral vectored 

vaccine 
Preclinical Sementis Ltd 

Zika SCV-ZIKV (SCV1003), SCV viral vectored vaccine Preclinical Sementis Ltd 

Zika Inactivated whole target organism Preclinical Takeda Pharmaceuticals, Vaccines Business Unit 

Zika VLA1601 (Inactivated whole target organism) Preclinical Emergent BioSolutions; Valneva SE 

Zika Paxvax VLP Preclinical Paxvax; Center for Disease Control and Prevention (CDC) 

Zika 
Single cell infectious ZIKV (SCIrZIKV) Live 
attentuated vaccine  

Preclinical University of Rochester; Centro Nacional de Biotecnología, Spain 

Zika mRNA-1706 Preclinical Moderna Therapeutics 

Zika Undisclosed Preclinical Undisclosed 

Zika PODS Zika 1 Preclinical 
Cell Guidance Systems; University of Cambridge; Imperial College 

London; Department of Health - UK 

Zika Undisclosed Preclinical Undisclosed 

Zika Undisclosed Preclinical Undisclosed 

Zika Undisclosed Preclinical Undisclosed 

Zika Undisclosed Preclinical Undisclosed 

Zika 

ZIKV iDNA, a DNA vaccine encoding genetically 

stable, live-attenuated chimeric flavivirus encoding 
ZIKV genes 

Preclinical Medigen, Inc. 

Zika Inactivated ZIKV Preclinical 
Najit Technologies, Inc; National Institute of Allergy and Infectious 

Diseases (NIAID) 

Zika 
rISFVN4CTΔ25-ZIKV (VesiculoVax™ Isfahan 

Virus Vector) 
Preclinical 

Profectus Biosciences; Yale University; University of Texas Medical 

Branch (UTMB) 

Zika ZIKA DIII Preclinical Singapore Immunology Network 

Zika Adeno virus based Preclinical CanSino Biologics Inc. 

Zika Zika PrME vaccine Preclinical Vaxine Pty Ltd, Australia ; Protein Sciences 

Zika 
Codon deoptimization for the development of ZIKV 
live attenuated vaccines 

Preclinical University of Rochester 

Zika Undisclosed Preclinical Undisclosed 

Zika DNA pWRG/ZIKA-JE-prME(opt) Preclinical 
United States Army Medical Research Institute of Infectious Diseases 
(USAMRIID); PharmaJet 

Zika 
Subunit vaccine based on critical neutralizing 

fragment in ZIKV EDIII  
Preclinical New York Blood Center 
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Step 2: Cost research 

The vaccine EID R&D cost data informing our regression, simulation, and stochastic optimization analyses was collected through 

the same survey process that we employed to validate the EID R&D pipeline data, described in step 1: Pipeline research above. 

From September 2017 to January 2018 we launched a cost data collection process as part of the same survey described in the 

previous section. A copy of the survey can be accessed in the following weblink, under heading ‘CEPI vaccine R&D pipeline and 

cost tracking survey’: http://cepi.net/news. 

Out of the 313 vaccine candidates confirmed through the survey responses, 113 vaccine candidates were reported with full R&D 

costs by R&D phase. Our definition of full R&D costs included whether reported costs covered all or most critical non-clinical, 

clinical, chemistry, manufacturing and control (CMC) and regulatory activities associated with each R&D phase, as classified in 

an R&D scope checklist that was used to assess completeness of cost estimates by R&D phase. (See Appendix table 1.2 for more 

details)  

Based on this criterion, we compiled an initial set of 113 vaccine candidate cost entries. Following on several statistical tests 

which we describe in more detail in appendix 3, we merged this dataset with additional CEPI data on vaccine project costs to 

generate a total set of 138 unique vaccine development project cost entries, including information by: R&D phase, platform 

technology and disease, indirect costs, sectoral affiliation (industry versus non-industry) and geographical location of product 

developers. 

Cost estimates reported in this study do not include: 

- Basic laboratory research activities (e.g. basic epidemiology and pathogen biology studies; studies for antigen detection, 

expression, genetic construct, development of new animal models to assist in vaccine design, in-vitro studies, 

development of functional, neutralization or other assays / immunoassays, etc.) 

- Activities associated with Phase IIb/III efficacy testing, CMC, regulatory and delivery 

- Activities associated with stockpiles of investigational material for phase IIb/III studies 

- Activities associated with manufacturing capacity building or maintenance to support phase IIb/III studies or scale up 

production in response to public health emergencies 

Appendix table 2.12: R&D scope checklist to support survey-based reporting and quality checking of completeness of EID 

vaccine R&D costs by R&D phase 

R&D Phase Activities 
Preclinical - Safety & Immunogenicity: Dosing and safety studies in animal models; Toxicology or equivalent studies; 

Immunogenicity and protective efficacy studies in animal models 

- Chemistry, Manufacturing and Control (CMC): Establishment of seed lot; Establishment of Good 
Laboratory Practice (GLP) production / Pilot lot production planning; Potency demonstration/ Identity/ 

Sterility/ Purity studies; Good Manufacturing Practices (GMP) production consistency studies 

- Regulatory: Investigational New Drug (IND) or equivalent regulatory advice and application procedures 

Phase I - Safety: Phase Ia studies assessing safety, dosing and adverse events in humans 

- Immunogenicity: Evaluation of immuno-assays for correlates of immunity and risk in clinical studies; 

Phase Ia studies assessing immunogenicity in humans 

- Chemistry, Manufacturing and Control (CMC): Stability studies; Product quality control and quality 
assurance validation studies; Clinical lot consistency studies 

- Regulatory: Regulatory planning and clinical trial protocol development 

Phase II - Safety: Phase IIa studies assessing safety, dosing and common short-term side effects in humans 

- Immunogenicity: Phase IIa studies assessing immune responses in target populations 

- Chemistry, Manufacturing and Control (CMC): Clinical lot consistency studies and GMP product 

formulation 

- Regulatory: Development and finalization of clinical development and regulatory pathway strategy 
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Appendix 3: Statistical methods and results for estimating vaccine development project costs and 

their explanatory factors 

In this appendix we present the details of our statistical tests and regression analysis to determine average vaccine development 

project cost estimates by R&D phase. We begin with a discussion of the variables considered and the rationale behind these. We 

then turn to a description of the statistical tests conducted and rationale for performing these, including how their results impacted 

the final selection of explanatory variables informing the average vaccine development project cost functions.  

Consistency checking 

Prior to determining what variables are likely to determine average vaccine development project costs, we checked for consistency 

of the survey data with CEPI’s own database of vaccine R&D budgets. Based on a Student’s T-test conducted between the two 

samples we found no significant inconsistency in the survey data, for both one-tailed and two-tailed tests (see Appendix table 3.1).  

Appendix table 3.1: t-Test: Two-Sample Assuming Unequal Variances 

  CEPI data Survey data   

Observations 57 113   

Hypothesized Mean Difference 0     

Df 123     

t Stat 1·008532207     

P(T<=t) one-tail 0·157589464     

t Critical one-tail 1·657336397     

P(T<=t) two-tail 0·315178928     

t Critical two-tail 1·979438685     

        

 

These results allowed us to merge the two samples into a new set of 138 unique cost data entries (some of the CEPI cost data was 

later reported by survey respondents independently, we therefore removed a total of 32 duplicate entries from the final dataset). 

This check allowed to us to minimize the risk of skewing or increasing the reporting bias of the baseline data used to determine 

average vaccine development project costs.  

Variables 

Based on the data made available to us, we constructed the following variables which we assumed may have an explanatory role 

in the determination of average vaccine project development costs by R&D phase: 

- R&D timelines (#years) 

- Indirect cost (%) (Such costs may include: (1) In-kind R&D contributions (e.g. training of developing country scientists, 

sharing of compounds); (2) Overhead costs including, but not limited to, building running costs and general 

administrative and management costs). 

- Product Developer licensure track-record (YES=1/NO=0) 

- Industry (YES=1/NO=0) 

- Platform technology licensure track-record against any disease (YES=1/NO=0) 

- Vaccine licensure track-record against the disease (YES/NO) 

All above listed variables are clearly identified as drivers of pharmaceutical R&D costs in numerous literature sources.1-21 
Moreover, in a discussion of cost drivers by R&D phase, survey respondents commonly cited Non-Human Primate studies, 

toxicology studies, analytical testing and manufacturing/ process development, project management, salaries, consumables, 

equipment, clinical trial costs associated with numbers of enrolees and locations of studies among several of common reasons for 

escalation of costs. Other reasons, such as unforeseen regulatory requirements, were also argued to drive vaccine development 

project costs, but which we could not translate into quantifiable variables due to lack of sufficient information collected via the 

survey.  

It is worth noting that we did not consider geographical location of product developers as a variable, although we do recognize 

that this can have a more or less substantial effect on R&D costs, for two reasons. First, almost all reported vaccine R&D projects 

included partners from multiple countries and regions, making it difficult to quantify the relationship between geographical 

location and cost. Second, our sample size was not large enough to accurately differentiate between geographies and therefore 

provide significant statistical inferences for our model (only 5 out of 138 vaccine project cost entries were clearly attributed to 

Low and Middle Income Country organizations). 



Descriptive statistics 

Prior to assessing the statistical significance of the constructed variables that would allow us to conclude whether to consider these 

or not as explanatory factors of average vaccine development projects in our model, we ran some descriptive statistics to assess 

averages and distributions of the reported data by variable. Appendix table 3.2 summarizes these statistics for the two continuous 

variables (timelines and indirect cost share) and Appendix table 3.3 summarizes the breakdown of self-reported costs in the survey 

by data clusters and explanatory variables considered in the regression (for clustering analysis see below) Appendix box plots 3.1 

to 3.4 summarize the ranges for the four dichotomous variables (product developer licensure track-record, industry/non-industry, 

platform technology licensure track-record, disease track-record of licensed vaccines).  

As Appendix table 3.2 demonstrates, the average timeline for bringing EID vaccine development projects from preclinical through 

end of phase II is 6 to 7 years (+/- 2 years) and can arguably range from 4 to 15 years. The average share of indirect costs out of 

total vaccine development project costs from preclinical through end of phase II is 20-23% (+/- 18%) and can arguably range from 

0% to 79%. 

Appendix table 3.2: Descriptive statistics for timelines (#years) and indirect costs (%) from preclinical through phase II 

(N=138) 

Descriptive 

Statistic 

R&D timeline preclinical through 

phase II (# years) 

Indirect cost share preclinical through 

phase II (%) 

Mean ~7 years ~23% 

Standard Deviation +/-2 years +/-18% 

Median 6 years 20% 

Maximum 4 years 79% 

Minimum 15 years 0% 

 

Appendix table 3.3: Self-reported data through survey, by data clusters and explanatory variables considered in 

regression 

 
Data clusters Product 

Developer 

licensure track-

record 

Licensed product for 

disease already exists 

Industrial sector affiliation 

of lead developer 

Licensed 

products on this 

platform 

technology exist  
Cluster  

1 

Cluster  

2 

Cluster  

3 

(YES 

=1) 

(NO 

=0) 

(YES=1) (NO=0) (YES=1) (NO=0) (YES 

=1) 

(NO 

=0) 

Observations                       

Total (#) 103 21 14 33 105 10 128 105 33 56 82 

PD track-record  

(YES=1) (% of total) 

19% 19% 64% 100% 0% 40% 23% 22% 30% 23% 24% 

Industry  
(YES=1) (% of total) 

76% 86% 64% 70% 78% 70% 77% 100% 0% 77% 76% 

Licensed disease  

(YES=1) (% total) 

9% 5% 0% 12% 6% 100% 0% 7% 9% 5% 9% 

Licensed tech  
(YES=1) (% total) 

42% 52% 14% 39% 41% 30% 41% 41% 39% 100% 0% 

 

As Appendix box plots 3.1 to 3.4 below demonstrate, the distribution of reported costs from preclinical through phase II is skewed 

more upwards for vaccine developers with previous vaccine licensure track-record than those without (box plot 1), whereas they 

are relatively the same for technologies for which there are licensed vaccines in other disease settings in comparison to those for 

which no licensed vaccines exist (box plot 2). In contrast, reported costs from preclinical through phase II are distributed towards 

the lower end for diseases where licensed vaccines exist than those for which there is licensed vaccine at the time of R&D (box 

plot 3). Industry reported costs are distributed in a similar manner to non-industry reported estimates, however industry reported 

costs include significant outliers at the higher end of the reported cost range. 

 

 

 

 

 

 



Appendix box plot 3.1: Total preclinical-phase 2 cost estimates reported by Product Developers, with or without licensure 

track-record 

 
*Number of observations for licensure track-record (=1) = 33 

**Number of observations for no licensure track-record (=0) = 105 
 

 

Appendix box plot 3.2: Total preclinical-phase 2 cost estimates reported by Product Developers, with or without platform 

technologies with licensure track-record 

 
*Number of observations for licensure track-record (=1) = 56 

**Number of observations for no licensure track-record (=0) = 82 

***Platform technologies with licensure track-record include: attenuated virus- based technologies; 

inactivated pathogen- based technologies; Sub-Unit Protein- based technologies 

Platform technologies with no licensure track-record include: Nucleic acid- based technologies; Peptide- 

based technologies; Viral vector- based technologies 
 

 



Appendix box plot 3.3: Total preclinical-phase 2 cost estimates reported by Product Developers, against diseases with 

licensed or not licensed vaccines at the time of R&D being conducted 

 
*Number of observations for licensure track-record (=1) = 10 

**Number of observations for no licensure track-record (=0) = 128 

***Diseases with licensed vaccines at the time of R&D being conducted include: Hendra; Hepatitis E; IPV; 

Japanese Encephalitis; Measles; Yellow Fever 

Diseases with no licensed vaccines at the time of R&D being conducted include: Cambylobacter Jejuni; 

Chagas; Chikungunya; Cytomegalovirus; Dengue; East Equine Encephalitis; Ebola; ETEC; Human 

Metapneumovirus; Influenza (universal); Lassa; Marburg; MERS; Nipah; Other Arenaviruses; Pandemic 

H10N8; Pandemic H7N9; Respiratory Syncytial Virus; Rift Valley Fever; SARS; Venezuelan Equine 

Encephalitis; West Equine Encephalitis; West Nile Virus; Zika 

 

 

Appendix box plot 3.4: Total preclinical-phase 2 cost estimates reported by industry or non-industry Product Developers 

 
*Number of observations for industry respondents (=1) = 105 

**Number of observations for non-industry respondents (=0) = 33 



 

 

Correlation testing 

Our next step was to run a correlation test to determine how strongly the considered variables are related to each other. As 

Appendix table 3.4 demonstrates, there is a weak negative correlation between timelines and product developer licensure track-

record (~-0.24) and a weak positive correlation between timelines and platform technology licensure track-record (~0.29). These 

findings suggest that timelines are likely to be somewhat affected by the level of experience of the product developer undertaking 

the vaccine R&D project, as well as by the type of platform technology used to develop the vaccine. No other significant 

relationships between variables were found (correlation coefficient values close to zero). 

Appendix table 3.4: Correlation findings 

  Timelines 

Indirect 

cost (%) 

PD track-

record 

YES=1/NO=0) 

Industry 

(YES=1/NO=0) 

Licensed tech 

(YES=1/NO=0) 

Licensed 

disease 

(YES/NO) 

Timelines 1           

Indirect cost (%) 0·129486684 1         

PD track-record YES=1/NO=0) -0·239877069 0·084900437 1       

Industry (YES=1/NO=0) 0·086187148 -0·052764841 -0·083982684 1     

Licensed tech (YES=1/NO=0) 0·293382573 0·161873462 -0·013537585 0·013537585 1   

Licensed disease (YES/NO) 0·026287447 0·006986613 0·105413533 -0·039886202 -0·060220857 1 

 

 

Regression analysis 

In order to determine whether the considered variables are statistically significant explanatory factors of average vaccine 

development projects by R&D phase, we ran several regressions to identify consistently significant values of these (95% 

confidence interval). Although there are various types of regression models that can potentially be used, we present below the 

findings of linear regressions using Ordinary Least Squares (OLS) estimators of the explanatory variables. As we demonstrate 

below, the coefficient of determination (R squared) is low – i.e. the proportion of the variance in average vaccine development 

project costs by R&D phase that can be predicted from the explanatory variables in the regression models. This coefficient does 

not improve when running non-linear (e.g. logarithmic or exponential) regressions, which we also tested. However, the coefficient 

improves when hierarchically clustering the data. We therefore opted for OLS, which are well-established methods with robust 

(Best Linear Unbiased Estimator) properties. And we conducted a hierarchical clustering analysis to determine to what extent the 

predicted cost ranges in our model failed to capture the proportion of the variance in average vaccine development project costs by 

R&D phase not predicted from the explanatory variables in the regression model. 

The general linear multiple regression function for our analytical purposes can be expressed as follows: 

Y = intercept + Sum(biXi) + Sum(biDi) + Sum(ei) 

Where  

Y = dependent variable capturing the mean vaccine development project cost by R&D phase 

Intercept = Average constant cost of vaccine development by R&D phase at chosen values of explanatory variables 

Xi= explanatory variable i that is continuous (e.g. in our case: timelines, indirect cost) 

Di=explanatory variable i that is dichotomous i.e. it takes either a 0 or 1 value (e.g. in our care: product developer licensure track-record, 

platform technology licensure track-record, disease track-record of licensed vaccine, industry/non-industry) 

bi = coefficient parameter of variable Xi, which estimates the change in the mean cost of vaccine development per explanatory variable value 

change, all other explanatory variables held constant 

ei = residual, i.e. the cost of vaccine development by R&D phase that cannot be explained by the intercept and explanatory variables included in 

the cost function 

For our six variables previously described, we ran regressions on average vaccine development project costs by R&D phase. As 

Appendix tables 3.5 to 3.8 demonstrate, only two variables (indirect cost, product developer licensure track-record) are 

consistently statistically significant across R&D phases (p values for these variables are less than 0.05, suggesting significance 

within a 95% confidence interval). 

 



Appendix table 3.5: Exploratory regression statistics for six considered variables, preclinical phase 

  

Multiple 

R R Square Adjusted R Square 

Standard 

Error Observations 

             0·5676                                 0·3222                               0·2911          14,000,053                      138  

  df Sum Square Mean Square F Significance F 

Regression                6·00     12,204,961,821,826,900     2,034,160,303,637,820     10·378290325       0·000000002  

Residual            131·00     25,676,194,386,044,700        196,001,483,862,936      

Total            137·00     37,881,156,207,871,600        

  Coefficients Standard Error t Stat P-value   

Intercept -        118,824                            3,897,262  -                             0·030                   0·976    

Timelines -        188,077                               453,041  -                             0·415                   0·679    

Indirect cost (%)     18,741,986                            6,799,654                                 2·756                   0·007    

PD track-record YES=1/NO=0)     18,694,704                            2,927,244                                 6·386                   0·000    

Industry (YES=1/NO=0)       7,231,687                            2,816,865                                 2·567                   0·011    

Licensed tech (YES=1/NO=0)          212,515                            2,571,289                                 0·083                   0·934    

Licensed disease (YES/NO) -     9,992,501                            4,646,705  -                             2·150                   0·033    

 

Appendix table 3.6: Exploratory regression statistics for six considered variables, phase I 

  

Multiple 

R R Square Adjusted R Square 

Standard 

Error Observations 

             0·4587                                 0·2104                               0·1742            8,588,765                      138  

  df Sum Square Mean Square F Significance F 

Regression                6·00       2,574,550,353,103,880        429,091,725,517,314       5·816860566       0·000021237  

Residual            131·00       9,663,462,859,623,110          73,766,892,058,192      

Total            137·00     12,238,013,212,727,000        

  Coefficients Standard Error t Stat P-value   

Intercept          448,660                            2,390,896                                 0·188                   0·851    

Timelines          429,070                               277,932                                 1·544                   0·125    

Indirect cost (%)     11,766,596                            4,171,458                                 2·821                   0·006    

PD track-record YES=1/NO=0)       8,164,516                            1,795,808                                 4·546                   0·000    

Industry (YES=1/NO=0)       1,932,689                            1,728,093                                 1·118                   0·265    

Licensed tech (YES=1/NO=0) -        588,972                            1,577,436  -                             0·373                   0·709    

Licensed disease (YES/NO) -     5,281,677                            2,850,665  -                             1·853                   0·066    

 

Appendix table 3.7: Exploratory regression statistics for six considered variables, phase II 

  

Multiple 

R R Square Adjusted R Square 

Standard 

Error Observations 

             0·4142                                 0·1716                               0·1336          15,225,809                      138  

  df Sum Square Mean Square F Significance F 

Regression                6·00       6,289,010,935,437,650     1,048,168,489,239,610       4·521372976       0·000337977  

Residual            131·00     30,369,109,743,942,500        231,825,265,220,935      

Total            137·00     36,658,120,679,380,200        

  Coefficients Standard Error t Stat P-value   

Intercept       7,594,841                            4,238,482                                 1·792                   0·075    

Timelines          741,523                               492,706                                 1·505                   0·135    

Indirect cost (%)     20,425,013                            7,394,989                                 2·762                   0·007    

PD track-record YES=1/NO=0)     12,311,901                            3,183,535                                 3·867                   0·000    

Industry (YES=1/NO=0)       1,736,393                            3,063,492                                 0·567                   0·572    

Licensed tech (YES=1/NO=0) -     2,566,669                            2,796,414  -                             0·918                   0·360    

Licensed disease (YES/NO) -     8,027,628                            5,053,541  -                             1·589                   0·115    

 

 

 

 



Appendix table 3.8: Exploratory regression statistics for six considered variables, Total preclinical - phase II 

  

Multiple 

R R Square Adjusted R Square 

Standard 

Error Observations 

             0·5010                                 0·2510                               0·2167          35,366,432                      138  

  df Sum Square Mean Square F Significance F 

Regression                6·00     54,916,978,260,331,200     9,152,829,710,055,210       7·317671173       0·000000927  

Residual            131·00   163,852,770,054,642,000     1,250,784,504,233,910      

Total            137·00   218,769,748,314,973,000        

  Coefficients Standard Error t Stat P-value   

Intercept       7,924,667                            9,845,123                                 0·805                   0·422    

Timelines          982,517                            1,144,456                                 0·859                   0·392    

Indirect cost (%)     50,933,579                          17,177,042                                 2·965                   0·004    

PD track-record YES=1/NO=0)     39,171,132                            7,394,698                                 5·297                   0·000    

Industry (YES=1/NO=0)     10,900,759                            7,115,863                                 1·532                   0·128    

Licensed tech (YES=1/NO=0) -     2,943,114                            6,495,497  -                             0·453                   0·651    

Licensed disease (YES/NO) -   23,301,799                          11,738,340  -                             1·985                   0·049    

 

Hierarchical clustering analysis 

It is worth noting that for all regressions the outputs of which are presented in Appendix tables 3.5 to 3.8 above, the results are 

reliable (given that Significance F is less than 0.05 in all regressions), however there is a great deal of variation in average cost 

estimates that is not sufficiently explained by any standalone or combinations of the considered explanatory variables (R Squared 

is less than 0.28 in all regression; Multiple R Squared is less than 0.48 in all regressions; and there are large residual values). 

We therefore ran a hierarchical clustering analysis to identify potential clusters of cost estimates in our sample and associated cost 

drivers not captured in the tested variables above which could improve the explanatory power of the model. We did this by 

computing the distance between clusters using a Euclidean metric as the similarity measure for our data. The results are presented 

in appendix dendrograms 3.1 and 3.2 and appendix table 3.9 below.  

As the vertical distances between sub-clusters in the dendrograms show, no strong clustering effect becomes immediately 

apparent. When testing for clusters at the preclinical cost level (appendix dendrogram 3.1), sub-clusters 5 and 9 contain only 4 out 

of 138 observations. Sub-cluster 10 is a single observation, and so is sub-cluster 4. All other observations are contained in the 

remaining sub-clusters, whose distance in cost terms is very small. Similarly, when testing for clusters at the clinical cost level 

(appendix dendrogram 3.2), sub-clusters 3 and 9 each concern single observations, whereas all other observations are contained in 

the remaining sub-clusters, whose distance in cost terms is again very small. 

Appendix dendrogram 3.1.: Dendrogram of cost data clusters, preclinical phase 

 

 

 



Appendix figure 3.2.: Dendrogram of cost data clusters, clinical phases I & II 

 

Looking at the total number of cost observations per cluster for the preclinical phase, 119 are contained in sub-cluster 1 and and 

the remaining observations are distributed in very small numbers between 1 and 5 across sub-clusters 2 and 10. However, at the 

clinical phase, sub-cluster 1 reduces its total number of observations to 103, and sub-cluster 2 increases its observations to 21. All 

other observations are distributed in small numbers between 1 and 5 across sub-clusters 3 to 10. When grouping together the 

clinical phase sub-clusters into three main clusters 1, 2, and 3 (this includes sub-clusters 3 to 10), we identified: 

- One cluster (cluster 3 - comprised of sub-clusters 1 to 3) concerning cost estimates reported by vaccine developers with 

previous licensure experience, representing both industry and non-industry sectors, concerning costs for diseases where 

no vaccine had been previously licensed at the time of R&D, and representing both well-established and less established 

platform technologies.  

- A second cluster (cluster 2) concerning cost estimates reported by vaccine developers with limited licensure experience, 

representing predominantly industry, concerning costs for diseases where no vaccine had been previously licensed at the 

time of R&D, and representing both well-established and less established platform technologies.  

- The remaining sample observations excluded from clusters 2 and 3 (cluster 1), concerning cost estimates reported by 

vaccine developers with limited licensure experience, representing both industry and non-industry sectors, concerning 

costs for diseases where no vaccine had been previously licensed at the time of R&D, and representing both well-

established and less established platform technologies. 

 

Appendix table 3.9: Concentration of cost sample observations by cluster, by explanatory variable considered in the 

regression 

Observations Cluster 1 Cluster 2 Cluster 3 

Total (#) 103 21 14 

PD track-record (YES=1) (% of total) 19% 19% 64% 

Industry (YES=1) (% of total) 76% 86% 64% 

Licensed disease (YES=1) (% total) 9% 5% 0% 

Licensed tech (YES=1) (% total) 42% 52% 14% 

 

Applying this clustering to the regression model and removing all other variables improves the coefficient of determination, at 

least for the clinical development phases, as demonstrated by the increased R square in Appendix table 3.10 below. This finding, 

in combination with the above, may suggest that increased R&D costs, particularly at clinical R&D phases, may potentially be 

associated with increased industrial sector affiliation but that the greatest increase in costs is associated with previous licensure 

track-record. However, as the same table suggests, the modes and boundaries of the estimated R&D cost distributions per R&D 

phase remain very close between the regression model that accounts for this clustering effect and the regression model that 

accounts for the statistically significant explanatory variables presented in the previous section. 



 

Appendix table 3.10: Exploratory regression statistics for six considered variables of vaccine R&D cost, preclinical 

through end of phase IIa 

 6 variables considered 3 variables considered Clusters only considered 

  Preclinical Phase I Phase II 
Preclinic

al 

Phase 

I 
Phase II 

Preclin

ical 

Phase 

I 

Phase 

II 

Observations 138 138 138 138 138 138 138 138 138 

 0·5676 0·4587 0·4142 
0·5365 0·4092 0·3728 0·5912 0·777

2 

0.812

3 

R Square 0·3222 0·2104 0·1716 
0.2878 0.1675 0.1390 0.3495 0.604

1 

0.659

8 

Adjusted R Square 0·2911 0·1742 0·1336 
0.2719 0.1551 0.1263 0.3399 0.598

2 

0.654

8 

Standard Error $14m $9m $15m $14m $9m $15m $14m $6m $10m 

Significance F 0·000 0·000 0·000 0.000 0.000 0.000 0.000 0.000 0.000 

 P–values       

      

      

Intercept 0·976 0·851 0·075 0.024 0.001 0.000 0.000 0.000 0.000 

Timelines (#years) 0·679 0·125 0·135 NA NA NA NA NA NA 

Indirect cost (%) 0·007 0·006 0·007 0.010 0.003 0.005 NA NA NA 

PD track-record 

(dichotomous) 
0·0000 0·0000 0·0000 

0.000 0.000 0.001 NA NA NA 

Industry (dichotomous) 0·011 0·265 0·572 NA NA NA NA NA NA 

Licensed tech (dichotomous) 0·934 0·709 0·36 NA NA NA NA NA NA 

Licensed disease 

(dichotomous) 
0·033 0·066 0·115 

0.027 0.006 0.1 NA NA NA 

Cluster 2 NA NA NA NA NA NA 0.1 0.000 0.000 

Cluster 3 NA NA NA NA NA NA 0.000 0.000 0.000 

 

 

  



Analysis of Variance (ANOVA) testing 

We ran an ANOVA to test whether the average vaccine development project cost estimates by R&D phase are statistically equal 

across explanatory variables included in the model. As Appendix tables 3.11 to 3.13 demonstrate, there is a significant source of 

variation in cost estimates between product developers with licensure track-record and all other variables. Results from both one-

tailed and two-tailed t-tests are also provided in tables 3.11 to 3.13 below. 

Appendix table 3.11: ANOVA single factor and t-Test two-sample assuming unequal variances, preclinical 

Anova: Single Factor               

Groups Count Sum Average Variance       

PD track-record YES=1 33     867,401,039                    26,284,880        803,483,567,916,375        

PD track-record NO=0 105     825,990,434                      7,866,576         35,115,003,439,485        

Industry YES=1 105  1,423,567,211                    13,557,783        337,789,373,741,060        

Industry NO=0 33     269,824,261                      8,176,493         63,248,643,525,856        

Licensed tech YES=1 56     726,536,692                    12,973,869        428,865,418,267,238        

Licensed tech NO=0 82     966,854,780                    11,790,912        175,888,802,991,404        

Licensed disease YES=1 10       55,806,500                      5,580,650         16,704,012,558,333        

Licensed disease NO=0 128  1,637,584,972                    12,793,633        293,293,304,928,347        

 

  

        

Source of Variation Sum Square df Mean Square F P-value F crit   

Between Groups      9,773,961,952,630,980  7   1,396,280,278,947,280  

5·358539

1 

   

0·000006  2·02640   

Within Groups   141,750,662,878,855,000  544     260,571,071,468,483          

Total   151,524,624,831,486,000  551           

 

                

t-Test: Two-Sample Assuming Unequal Variances (PD track-record YES=1 versus other 

variables) 

    

  

PD track-

record 

NO=0 

Industry 

YES=1 

Industry 

NO=0 

Licensed 

tech 

YES=1 

Licensed 

tech 

NO=0 

Licensed 

disease 

YES=1 

Licensed 

disease 

NO=0 

Df 33 41 37 52 38 36 38 

t Stat 3·707 2·424 3·533 2·353 2·816 4·059 2·614 

P(T<=t) one-tail 0·000 0·010 0·001 0·011 0·004 0·000 0·006 

t Critical one-tail 1·692 1·683 1·687 1·675 1·686 1·688 1·686 

P(T<=t) two-tail 0·001 0·020 0·001 0·022 0·008 0·000 0·013 

t Critical two-tail 2·035 2·020 2·026 2·007 2·024 2·028 2·024 

 

  



Appendix table 3.12: ANOVA single factor and t-Test two-sample assuming unequal variances, phase I 

Anova: Single Factor 

              

Groups Count Sum Average Variance       
PD track-record 

YES=1 33     468,833,200                    14,207,067        233,033,295,881,201        
PD track-record 

NO=0 105     714,691,672                      6,806,587         32,748,244,738,700        

Industry YES=1 105     934,490,529                      8,899,910        100,599,773,071,757        

Industry NO=0 33     249,034,343                      7,546,495         54,051,388,658,770        

Licensed tech YES=1 56     511,536,402                      9,134,579        104,547,774,615,255        

Licensed tech NO=0 82     671,988,470                      8,194,981         79,734,675,155,287        

Licensed disease 

YES=1 10       51,042,500                      5,104,250         15,044,365,402,778        

Licensed disease 

NO=0 128  1,132,482,372                      8,847,519         94,272,811,001,822        

 

              

Source of 

Variation 
Sum Square df Mean Square F P-value F crit 

Between Groups     1,580,466,516,067,730  7    25,780,930,866,818  2·5927953    0·012266  2·02640 

Within Groups   47,371,586,334,840,200  544      7,080,121,939,045        

Total  48,952,052,850,907,900  551         

 

t-Test: Two-Sample Assuming Unequal Variances (PD track-record YES=1 versus 

other variables)     

  

PD track-

record NO=0 

Industry 

YES=1 

Industry 

NO=0 

Licensed 

tech 

YES=1 

Licensed 

tech 

NO=0 

Licensed 

disease 

YES=1 

Licensed 

disease 

NO=0 

Df 35 41 46 49 41 41 39 

t Stat 2·725 1·874 2·258 1·698 2·121 3·110 1·919 

P(T<=t) one-tail 0·005 0·034 0·014 0·048 0·020 0·002 0·031 

t Critical one-tail 1·690 1·683 1·679 1·677 1·683 1·683 1·685 

P(T<=t) two-tail 0·010 0·068 0·029 0·096 0·040 0·003 0·062 

t Critical two-tail 2·030 2·020 2·013 2·010 2·020 2·020 2·023 

 

 

 

 

  



Appendix table 3.13: ANOVA single factor and t-Test two-sample assuming unequal variances, phase II 

Anova: Single Factor               

Groups Count Sum Average Variance       

PD track-record YES=1 33     924,078,219                    28,002,370        687,821,296,459,282        

PD track-record NO=0 95     651,777,596                      6,860,817        111,122,022,648,137        

Industry YES=1 105  2,064,475,820                    19,661,674        315,250,134,797,915        

Industry NO=0 33     621,330,168                    18,828,187        120,458,237,847,132        

Licensed tech YES=1 56  1,091,477,869                    19,490,676        356,658,345,530,359        

Licensed tech NO=0 82  1,594,328,118                    19,443,026        210,393,038,536,530        

Licensed disease YES=1 10     144,551,000                    14,455,100         37,308,432,544,444        

Licensed disease NO=0 128  2,541,254,988                    19,853,555        283,874,252,037,103        

 

              

Source of Variation Sum Square df Mean Square F P-value F crit 

Between Groups     16,234,682,363,794,800  7   2,319,240,337,684,980  8·7129202    0·000000  2·02672 

Within Groups   142,142,280,272,954,000  534     266,184,045,454,970        

Total   158,376,962,636,749,000  541         

 

t-Test: Two-Sample Assuming Unequal Variances (PD track-record YES=1 versus other 

variables) 

    

  

PD track-

record 

NO=0 

Industry 

YES=1 

Industry 

NO=0 

Licensed 

tech 

YES=1 

Licensed 

tech 

NO=0 

Licensed 

disease 

YES=1 

Licensed 

disease 

NO=0 

Df 40 42 43 52 40 40 39 

t Stat 2·410 1·708 1·854 1·632 1·769 2·733 1·697 

P(T<=t) one-tail 0·010 0·048 0·035 0·054 0·042 0·005 0·049 

t Critical one-tail 1·684 1·682 1·681 1·675 1·684 1·684 1·685 

P(T<=t) two-tail 0·021 0·095 0·071 0·109 0·085 0·009 0·098 

t Critical two-tail 2·021 2·018 2·017 2·007 2·021 2·021 2·023 

 

Implications 

Based on the findings presented in this appendix, product developer licensure track-record and indirect costs are significant 

explanatory factors of R&D costs. However, there is a substantial variation in self reported cost estimates that cannot be 

adequately explained by clustering or explanatory variables considered in the regression.  
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Appendix 4: Monte Carlo Simulations for determining R&D costs associated with current vaccine 

pipeline structures for 11 EIDs 

In this appendix we present the details of our Monte Carlo simulation methodology and scenario analysis to determine the 

expected total cost for bringing a portfolio of vaccines through end of phase IIa, out of initial investments in 194 preclinical, 24 

clinical phase I, and 6 phase II vaccine candidates for 11 EIDs, accounting for risk of failure. 

We begin with a discussion of the parameters and assumptions underlying the simulation, including how we constructed the cost 

and PoS distributions defining the different simulation scenarios. We then turn to the steps undertaken from random sampling to 

estimating total expected vaccine R&D costs from preclinical through phase II. 

Simulation parameters 

The estimation of total vaccine R&D costs from preclinical phase through clinical phase II is dependent on the number of 

preclinical and clinical EID vaccine candidates currently available in the R&D pipeline and their combination with two sets of 

randomized input parameters to generate expected phase II and associated R&D cost outputs: 

- Cost by R&D phase 

- PoS by R&D phase 

In setting our cost by R&D phase parameters, we relied on the self-reported cost estimates provided by vaccine developers 

through the survey (appendix 2) categorized in two groups: a lower bound group with cost estimates based on product developers 

with no previous licensure track-record; and an upper bound group with cost estimates based on product developers with licensure 

track-record. For each of these groups, we took the self-reported cost estimates and created ranges of costs; range boundaries 

being defined by the lowest and highest reported cost estimates for each respective group. We assigned equal probabilities to these 

costs, to construct discrete distributions of costs by R&D phase.   

  



The figures below present the cumulative distribution functions for the lower and upper bounds of vaccine R&D costs by R&D 

phase. These figures demonstrate that vaccine project costs used for the simulation scenarios fall between: 

- US$ 1.7m – US$ 140m (upper bound) and US$ 1.8m – US$ 37.4m (lower bound) for preclinical  

- US$ 1.9m – US$ 70m (upper bound) and US$ 1m – US$ 30.2m (lower bound) for phase I 

- US$ 3.8m – US$ 140m (upper bound) and US$ 4.4m – US$ 54.5m (lower bound) for phase II 

 Figures 4.1 to 4.3.: Upper bound cumulative cost 

distributions by R&D phase, based on product 

developers with previous vaccine licensure track-

record 

Figures 4.4. to 4.6.: Lower bound cumulative cost 

distributions by R&D phase, based on product 

developers with no vaccine licensure track-record 

Preclinic

al phase 

  
  

Phase I 
 

 
  

Phase II 

  
  

 *X axis shows the self-reported cost estimates; Y axis 

shows their cumulative frequency 

 

 

In setting our PoS by R&D phase parameters, we relied on published evidence of estimates of vaccine R&D PoS by R&D phase 

in the literature and a number of key assumptions. The literature sources and their associated estimates of vaccine R&D PoS by 

R&D phase are listed in table 1 of the main article. As that table demonstrates, the literature on vaccine R&D PoS is not 

consistent, with variable estimates of PoS by R&D phase suggested by different sources. To capture this variability in previously 

published vaccine R&D PoS estimates, we assumed three PoS distribution scenarios, whereby: 

- The lower PoS scenario is defined for each R&D phase by lower and upper bounds equivalent to the lowest and highest 

PoS estimates in the literature, and a modal value equivalent to the lowest published estimate of PoS 

- The higher PoS scenario is defined for each R&D phase by lower and upper bounds equivalent to the lowest and highest 

PoS estimates in the literature, and a modal value equivalent to the highest published estimate of PoS 

- The base case PoS scenario is defined for each R&D phase by lower and upper bounds equivalent to the lowest and 

highest PoS estimates in the literature, and a modal value equivalent to Pronker’s estimates,1  acknowledging that this 

research provides one of the most comprehensive and recently updated sources of PoS estimates on vaccine R&D. 

The figures below present the frequency and cumulative distribution functions for the PoS associated with lower bound, base case, 

and upper bound scenarios by R&D phase, from preclinical through phase II.  



The figures for preclinical phase demonstrate that PoS: 

- Has in the lower bound scenario a modal value of 40%, and it ranges from 40% to 60%, with over two-thirds of the PoS 

% value falling between 40% and 45% 

- Has in the base case scenario the same modal value, ranges and frequency distribution with the lower bound scenario 

- Has in the upper bound scenario a modal value of 60%, and it ranges from 40% to 60%, with half of the PoS % value 

falling between 40% and 50% 

 

 Figures 4.7 to 4.8: Frequency distributions of PoS (%), 

preclinical phase 

Figures 4.9 to 4.10: Cumulative distributions of PoS (%), 

preclinical phase 

Lower 

bound 

  
Upper 

bound 

  
 

  



The figures for phase I demonstrate that PoS: 

- Has in the lower bound scenario a modal value of 50%, and it ranges from 50% to 90%, with half of the PoS % value 

falling between 50% and 60% 

- Has in the base case scenario a modal value of 80%, and it ranges from 50% to 90%, with over half of the PoS % value 

falling between 50% and 75% 

- Has in the upper bound scenario a modal value of 90%, and it ranges from 50% to 90%, with half of the PoS % value 

falling between 50% and 80% 

 

 Figures 4.11 to 4.12: Frequency distributions of 

PoS (%),phase I 

Figures 4.13 to 4.14: Cumulative distributions of PoS 

(%),phase I 

Lower 

bound 

  
Upper 

bound 

  
 

  



The figures for phase II demonstrate that PoS: 

- Has in the lower bound scenario a modal value of 20%, and it ranges from 20% to 80%, with half of the PoS % value 

falling between 20% and 35% 

- Has in the base case scenario a modal value of 30%, and it ranges from 20% to 80%, with half of the PoS % value falling 

between 25% and 40% 

- Has in the upper bound scenario a modal value of 80%, and it ranges from 20% to 80%, with half of the PoS % value 

falling between 20% and 65% 

 

 

 

 Figures 4.15 to 4.16: Frequency distributions of 

PoS (%), phase II 

Figures 4.17 to 4.18: Cumulative distributions of 

PoS (%), phase II 

Lower 

bound 

  
Upper 

bound 

  
 

Our final assumption based on which we ran the simulation is that of statistical independence between parameters. The PoS by 

R&D phase parameters were drawn from different datasets identified in our literature review. Their independence from cost 

parameters is therefore likely. We assumed no further correlation between PoS by R&D phase and other possibly significant 

variables to which PoS may relate, namely: targeted disease; and type of technology used. Given no prophylactic vaccine and no 

standardized regulatory pathway exists for any of the 11 EIDs, disease-specific failure risks are assumed to be the same across all 

diseases. Moreover, R&D failures due to platform technology issues between preclinical and phase II are assumed not to spill over 

to other vaccine candidates even when these are being developed by the same organization. However, if phase III and licensure 

were to be included in the analysis, this assumption would no longer hold, and PoS correlation coefficients between vaccine 

candidates making use of the same platform technology would have to be calculated and integrated explicitly in the simulation 

analysis. 

 

  



Simulating total vaccine R&D project costs given EID vaccine R&D pipelines are known 

Our methodology for calculating total vaccine R&D costs is based on the combination of EID vaccine R&D pipeline data and our 

simulation parameters in a step-wise manner: 

- Step 1: Specify values for the number of vaccine candidates by R&D phase (preclinical, phase I, phase II) available 

- Step 2: Specify distributions for cost and PoS by R&D phase to define simulation scenarios. As per our clarifications on 

distributions in the previous section, we have six different simulation scenarios: 

o Scenario 1: Simulation with random sampling from base case PoS and lower bound cost distributions 

o Scenario 2: Simulation with random sampling from base case PoS and higher bound cost distributions 

o Scenario 3: Simulation with random sampling from lower bound PoS and lower bound cost distributions 

o Scenario 4: Simulation with random sampling from lower bound PoS and higher bound cost distributions 

o Scenario 5: Simulation with random sampling from higher bound PoS and lower bound cost distributions 

o Scenario 6: Simulation with random sampling from higher bound PoS and higher bound cost distributions 

- Step 3: For each scenario, draw randomly (10,000 iterations) from a range of cost US$ values for which the distribution 

function is known, to determine the base cost associated with bringing the current number of EID vaccine candidates 

through the next phase of development (call it Stage Gate 1) – i.e. phase I for vaccine candidates currently at preclinical 

phase of development; phase II for vaccine candidates currently at phase I; and phase III for vaccine candidates currently 

at phase II.  

- Step 4: For each scenario, draw randomly (10,000 iterations) from a range of PoS % values for which the triangular 

cumulative distribution function is known, to determine the probability of successful advancement of the current number 

of EID vaccine candidates through the next phase of development (Stage Gate 1). 

- Step 5: For each scenario, estimate the integer value of the number of EID vaccine candidates advancing through the next 

phase of development (Stage Gate 1) by adjusting the values in step 1 according to the PoS % values in step 4. 

- Step 6: For each scenario, repeat step 3 above using the cost US$ value distributions associated with bringing the number 

of Stage Gate 1 EID vaccine candidates through the next phase of development (Stage Gate 2) - i.e. phase II for vaccine 

candidates at phase I of development under Stage Gate 1; phase III for vaccine candidates at phase II under Stage Gate 2. 

- Step 7: For each scenario, repeat step 4 above using the PoS % value distributions associated with bringing the number of 

Stage Gate 1 EID vaccine candidates through Stage Gate 2; then repeat steps 5 and 6 to calculate integer values and 

associated costs of the number of EID vaccine candidates advancing through Stage Gate 3 – i.e. phase III for vaccine 

candidates that were at phase II in Stage Gate 2. 

The above steps, and the data and assumptions supporting the simulation parameters that we described above, allow us to estimate 

through this simulation model the number of successful phase II outcomes expected from investing in the current vaccine R&D 

pipelines by EID; and the associated total portfolio costs for achieving those phase II outcomes, given current EID vaccine R&D 

pipelines are known. 

 

Appendix 4 references 
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Appendix 5: Stochastic optimization of EID vaccine R&D portfolios and associated costs   

In this appendix we present a more detailed overview of the rationale and design of our stochastic optimization methodology. We 

begin with a descriptive formulation of the model and then turn to a discussion of solution methods. We conclude with a 

presentation of our probabilistic sensitivity analysis findings associated with the different stages of the model. 

Section 5.1. Model formulation 

Rationale 

Whereas simulation-based scenario analyses can provide analytical depth to highlighted scenarios, they have limited capacity to 

demonstrate optimal solutions on their own, such as how to minimize or optimize objectives in EID vaccine R&D. Optimization 

techniques can provide insights on how to prioritize R&D investments through the minimization or maximization of objective 

functions subject to analytical constraints that cannot be exceeded.1 Moreover, the simultaneous consideration of multiple 

candidate projects is a key aspect in managing a new product development pipeline.2  

In pharmaceutical R&D management, several stochastic modelling approaches have been proposed to address a variety problems. 

A multistage simulation-optimization model identified the optimal number of projects required to deliver pharmaceutical R&D 

outputs that maximize economic value.3 Discrete-event simulation was combined with mixed integer linear programming for the 

optimal structuring of, and ordering of activities within pharmaceutical R&D portfolios.4 Mixed integer linear programming using 

simulation and real options valuation was employed to determine the optimal size and structuring of pharmaceutical R&D 

portfolios.5 Discrete-event simulation was combined with genetic algorithm based optimization procedures for the optimal 

selection and ordering of pharmaceutical R&D projects to maximize economic value and to minimize the probability of economic 

losses.6 In other approaches discrete-event simulation was combined with efficient frontier analysis to identify optimal 

pharmaceutical R&D portfolios at different levels of risk and budget constraints.7, 8 Simulation-optimization techniques have been 

proposed that incorporate mixed integer linear programming for the optimal scheduling and allocation of resources for 

pharmaceutical R&D pipelines.9 Other related approaches were proposed for clinical trial scheduling and value maximization in 

pharmaceuticals.10–12 An event stochastic simulation model used multi-objective genetic algorithms for the optimal structuring and 

sequencing of pharmaceutical R&D portfolios to minimize time, minimize risk and maximize economic value of R&D.2 Others 

used multistage stochastic programming with knapsack decomposition algorithms for the optimal structuring of pharmaceutical 

R&D pipelines,13 and multi-range robust optimization techniques for pharmaceutical R&D project selection.14 

A number of simulation-optimization techniques for simultaneous portfolio management and manufacturing capacity planning are 

summarized in the literature.15 So are several other simulation-optimization techniques for time dependent optimization of new 

product development pipeline schedules.2 And programming techniques have recently been reviewed using chance constrained 

optimization for the optimization of pharmaceutical development processes under uncertainty.16 

This literature demonstrates that stochastic optimization can provide meaningful prioritization insights for new product 

development in the presence of uncertainty. Given the inherently risky nature of vaccine R&D, stochastic modelling approaches 

are likely to represent realistic reflections of the uncertain expectations from the pharmaceutical R&D process. However, this 

evidence predominantly provides theoretical approaches to hypothetical, yet challenging and sophisticated problems may relate to, 

but do not directly address real-life situations. This is a common limitation of this literature that our study attempts to overcome. 

Problem description 

Our optimization model can be described as a stochastic non-smooth mixed integer programming (SNP/MIP) problem. The key 

parameters of the model are provided in the main part of the study, table 2. Here, we provide some definitions and elaborate on 

several assumptions we have undertaken.  

Mixed integer problems concern optimization problems where at least some of these variables are restricted to be integers, 

introducing discontinuities in the objective function and in the search space of feasible solutions. Non-smooth optimization means 

optimization of a problem where derivative information on the objective and variables cannot be used to determine the direction in 

which the objective function is increasing or decreasing, creating a non-convex space of many potentially feasible solutions. 

Given the nature of SNP/MIP problems it is unlikely that all possible solutions can be calculated or a globally optimal solution 

found. In SNP/MIP problems, traditional optimization techniques – such as linear or non-linear convex programming – break 

down, either due to the irregular structure of the search space or because the search becomes computationally intractable.17 In such 

cases, evolutionary computation approaches can offer robust and flexible alternatives to optimization problem solving,17 where 

solutions are no longer deterministic (i.e. single point estimates representing global optimum solutions without uncertainty) but 

probabilistic (i.e. range estimates representing multiple likely optimal solutions with uncertainty).  

A general introduction to evolutionary algorithms and an overview of genetic algorithms for modelling and optimization can be 

found elsewhere in the literature.17, 18 Although genetic and evolutionary algorithms developed independently since the 1960s,19, 20 

they share the same overall approach to generating candidate solutions to some problem via random selection and evolution of 

solutions to near-optimal solutions through a series of fitness-based evolutionary steps (see figure 5.1 for an illustration). Despite 



small differences in technical details2, genetic and evolutionary algorithms are generally treated as part of the same family of 

evolutionary computation methods.  

As figure 5.1 illustrates, an evolutionary algorithm starts by randomly drawing from a population of candidate solutions. The 

algorithm learns and adapts its search for even better optima in relation to a current solution, as the composition of the population 

of candidate solutions changes. This adaptation is supported by random changes (mutations) to the original (the parent) population 

of candidate solutions, yielding new candidate solutions (the children) – which may or may not be an improvement to previous 

solutions. Throughout this process, an evolutionary algorithm selects the ‘fittest’ and eliminates the ‘least fit’ members of the 

population of candidate solutions.  

Figure 5.1: The general scheme of an evolutionary algorithm as a flow-chart18 

 

An evolutionary algorithm will continue to drive towards ever-better, or at least ever-new, solutions in comparison to previously 

generated solutions, only to be constrained by rules designed to serve as stopping conditions in the computation process. These 

include: (1) the maximum computation time allowed; (2) the number of ‘fitness’ iterations allowed; (3) the maximum time 

allowed for fitness iterations to take place without improving on the current solutions; (4) and the minimization of differences 

between new versus previous sets of solutions.18 The latter condition, also known as convergence, is a critical indication of 

whether optimal or near-optimal solutions have been met. However, premature convergence – the loss of diversity between sets of 

solutions too quickly in the search process – can lead to solutions that are not near-optimal. To avoid this, the number of 

optimization runs permitted in any given optimization problem making use of evolutionary algorithms needs to be substantial. 

Although a good practice, there is no agreement on the minimum threshold for the number of optimization runs required for 

evolutionary algorithms to reach convergent, or near optimal solutions.18 In our study, we ran between 10 and 100 optimizations 

on the same problem, for each stage of the model. We assumed that a minimum of 10 optimizations would be sufficient to 

minimize the risk of early convergence on the problem for each stage of the model. If differences between model parameters were 

consistently zero or close to zero on their 5th and 95th percentile values after 5 consecutive optimizations, beyond and above the 10 

minimum runs, we then assumed that a convergent solution had been found.  

Evolutionary programming is increasingly being employed to solve stochastic optimization problems through simulation-

optimization techniques in pharmaceutical R&D management problems, as demonstrated by evidence also referenced earlier in 

this appendix. 2,6,12,13,15,21–23 The basic idea behind simulation optimization is that for each set of values for the decision variables 

considered by the model, we perform one simulation of 10,000 iterations for the constraints and objective that depend on 

uncertainty. The model uses these measures to decide what set of values it should try next for the decision variables – and the 

process is repeated with a new simulation conducted at each step of the optimization. The overall benefit of simulation-

optimization is the treatment of optimization outcomes as probabilistic outcomes accounting for uncertainty. A significant 

limitation associated with such techniques is the number of computational steps required to derive solutions, which can grow 

exponentially with the number of variables and constraints included in the optimization problem. For instance, the cumulative 

computational time for solutions across all stages of our model was over 20 hours in total. 

                                                           
2 E.g. an evolutionary algorithm may make a sequence of mutations of an original solution, whereas a genetic algorithm may make a 

recombination of two original solutions to generate new solutions. Both mutation and recombination operators are stochastic and are applied so 

as to randomly draw from populations of multiple original solutions. 



Although the theory behind evolutionary computation is limited in scope and applicability to special cases,17 the literature on 

pharmaceutical R&D management problems demonstrates that evolutionary algorithms provide acceptable means of coping with 

large and discontinuous search spaces (such as non-smooth mixed integer problems) and robust ways of dealing with problems 

where there is significant uncertainty associated with key parameters of the problems (such as PoS in pharmaceutical R&D 

optimization problems).  



Section 5.2. Probabilistic sensitivity analysis 

Here we assess the robustness of our results, by analysing the expected outcome probabilities associated with the lowest and 

highest PoS/Cost scenarios and by examining the degree of correlation between the variance in outcomes and the uncertain 

parameters of the model. To do this we are employing a probabilistic sensitivity analysis approach, inherent in Monte Carlo 

simulations24 and simulation-optimization methods,25 whereby probability distributions are defined for the uncertain parameters of 

the model: cost and PoS by R&D phase. By simulating the consequences of random drawings from these distributions, we are able 

to determine the likelihood that different outcomes will occur and to identify the most significant sources of variation in our 

model’s outcomes.  

In stage 1, we asked how many vaccine candidates would ideally need to enter into preclinical, or phase I, or phase II, to achieve 

at least one phase IIa outcome by EID. The probabilities associated with the occurrence of at least one phase IIa outcome due to 

vaccine candidates entering different phases of the R&D pipeline by disease are presented in table 5.1 for the low PoS/ low cost 

scenario and in table 5.2 for the high PoS/ high cost scenario, respectively. Here we find that the probability of zero phase IIa 

outcomes remains consistently below 5% across scenarios. For each EID, the probability of one vaccine progressing through end 

of phase IIa is higher than the respective probability of two or more phase IIa outcomes in the low PoS/Cost scenario (see table 

5.1). In the high PoS/Cost scenario two phase IIa outcomes per EID are more likely for all EIDs, except for RVF (see table 5.2). 

Table 5.1: Probabilistic Sensitivity Analysis under low PoS/ low cost scenario, stage 1 of stochastic optimization model 

  

0 phase IIb/III 
ready 
candidates 

1 phase 
IIb/III 
ready 
candidate 

2 phase 
IIb/III 
ready 
candidates 

3 phase 
IIb/III 
ready 
candidates 

4 phase 
IIb/III 
ready 
candidates 

5 phase 
IIb/III 
ready 
candidates 

RVF 4% 52% 32% 11% 1% 0% 

Chikungunya 0% 50% 34% 14% 2% 0% 

CCHF 5% 49% 32% 11% 3% 0% 

Marburg 5% 49% 32% 11% 3% 0% 

MERS 4% 49% 32% 12% 3% 0% 

SARS 4% 48% 31% 13% 3% 1% 

SFTS 4% 47% 32% 13% 3% 1% 

Lassa 4% 47% 32% 13% 4% 0% 

Nipah 4% 47% 32% 13% 4% 0% 

Zika 0% 46% 34% 16% 4% 0% 

Starting from phase II 0% 56% 33% 11% 0% 0% 

Starting from preclinical 1% 37% 34% 19% 7% 2% 

Starting from phase I 0% 36% 35% 20% 7% 2% 
 

 

Table 5.2: Probabilistic Sensitivity Analysis under high PoS/ high cost scenario, stage 1 of stochastic optimization model 

  

0 phase 

IIb/III 

ready 

candidates 

1 phase 

IIb/III 

ready 

candidate 

2 phase 

IIb/III 

ready 

candidates 

3 phase 

IIb/III 

ready 

candidates 

4 phase 

IIb/III 

ready 

candidates 

Chikungunya 1% 30% 55% 14% 0% 

Zika 2% 37% 51% 10% 0% 

RVF 5% 55% 40% 0% 0% 

MERS 4% 43% 46% 7% 0% 

Marburg 4% 38% 46% 12% 0% 

CCHF 4% 37% 45% 14% 0% 

SARS 3% 37% 45% 15% 0% 

Lassa 3% 37% 45% 15% 0% 

SFTS 4% 36% 45% 15% 0% 

Nipah 4% 36% 45% 15% 0% 

Starting from phase 

II 1% 24% 59% 16% 0% 

Starting from phase I 0% 17% 43% 37% 3% 

Starting from 

preclinical 1% 19% 44% 32% 4% 

 



In stage 2, we asked how much investment would be needed to progress at least one vaccine through end of phase IIa by EID, 

given current and new preclinical vaccine candidates are made available. As table 5.3 demonstrates, the probabilities associated 

with at least one phase IIa outcome per EID at a total cost of less than US$ 4 billion or more than US$ 7 billion are less than 2% 

across scenarios. The most likely cost range for achieving the minimum phase IIa targets for all 10 EIDs is US$5 – 6 billion, 

followed by the US$4 – 5 billion range and the US$6 – 7 billion range, respectively. 

Table 5.3: Probabilistic Sensitivity Analysis across PoS/cost scenarios, stage 2 of stochastic optimization model 

Scenario <$1bn $1–2bn $2–3bn $3–4bn $4-5bn 
$5-6bn $6-7bn $7-8bn $8-9bn $9-10bn >$10bn 

Low PoS/cost 2% 28% 33% 22% 10% 4% 0.5% 0.5% 0% 0% 0% 

High PoS/cost 4% 18% 19% 26% 14% 9% 4% 3% 2% 1% 0% 

 

Finally, as table 5.4 demonstrates, the variance in expected phase IIa outcomes is strongly correlated with the variance in PoS by 

R&D phase, and in particular with PoS in phase II. The variance in associated portfolio costs is positively correlated with both 

costs and PoS by R&D phase. However, the variance in expected costs is most sensitive to preclinical and phase II costs, followed 

by PoS by R&D phase. 

Table 5.4: Correlations between variance in stochastic optimization outcomes and uncertain parameters in the model 

 Cost 

Phase IIa 

outcomes  

  Low High Low High 

Preclinical $ 72% 82% N/A N/A 

Phase I $ 40% 32% N/A N/A 

Phase II $ 53% 46% N/A N/A 

Preclinical PoS 10% 6% 21% 20% 

Phase I PoS 11% 4% 32% 36% 

Phase II PoS N/A N/A 86% 82% 

 

This sensitivity analysis demonstrates that whereas zero phase II outcomes are unlikely, expected phase II outcomes above and 

beyond one phase IIb/III ready candidate are dependent on the PoS. Moreover, whereas the likelihood of portfolio costs below 

US$ 1 billion or above US$8 billion to achieve minimum preparedness R&D targets for the EIDs of interest is close to zero, the 

likely cost below or above this range will depend on the relationship of the PoS by R&D phase and the cost associated with 

experience and indirect costs of the vaccine developers. For instance, in a scenario where low costs were associated with high PoS 

distributions the same numbers of vaccine candidates would need to be funded as per the high PoS/high Cost scenario, but the 

overall portfolio cost would drop to US$ 1.6 billion (US$715 million – 2.9 billion range); whereas in a scenario where high costs 

were associated with low PoS distributions, the same numbers of vaccine candidates would need to be funded as per the low 

PoS/low Cost scenario, however the portfolio cost would increase to US$ 6.8 billion (US$1.5 – 15.1 billion range). 

  



Table 5.5: Minimum R&D portfolios and costs for progressing at least one vaccine candidate through end of phase IIa, per 

EID, under extreme scenarios 

  
#preclinical candidates  (High PoS/ 

Low Cost to Low PoS/ High Cost 

scenario) 

#phase I 

candidates  

High PoS/ 

Low Cost 

to Low 

PoS/ High 

Cost 

scenario) 

#phase II 

candidates  

(High PoS/ 

Low Cost 

to Low 

PoS/ High 

Cost 

scenario) 

Expected US$ cost, 

preclinical through 

phase IIa (95% CI) 

Expected number of phase 

IIb/III ready vaccine 

candidates (95% CI) 

Pathogen 
# currently available 

candidates 

# new 

candidates 

needed 

# 

currently 

available 

candidates 

# 

currently 

available 

candidates 

High PoS/ 

Low Cost 

scenario 

Low PoS/ 

High Cost 

scenario 

High PoS/ 

Low Cost 

scenario 

Low PoS/ 

High Cost 

scenario 

Chikungunya 0 to 3 - 2 to 5 2 

$64 m 

($21–131 

m) 

$314 m 

($99–684 

m) 

1 (1 to 3) 1 (1 to 2) 

Zika - - 4 to 8 1 
$88 m 

($31–177 

m) 

$271 m 
($75–662 

m) 

1 (1 to 3) 1 (1 to 3) 

Rift Valley 

Fever 
5 to 13 - - 2 

$103 m 

($46–185 

m) 

$562 m 

($122 m–

1·3 bn) 

1 (1 to 3) 1 (1 to 2) 

MERS 3 to 12 - 4 - 

$114 m 

($50–208 
m) 

$592 m 

($135 m–
1·3 bn) 

1 (1 to 3) 1 (1 to 3) 

Marburg 7 to 16 - 2 - 

$150 m 

($66–274 

m) 

$693 m 

($144 m–

1·6 bn) 

1 (1 to 3) 1 (1 to 3) 

Lassa 11 to 21 - - - 
$185 m 

($80–341 

m) 

$835 m 
($157 m–

1·9 bn) 

1 (1 to 3) 1 (1 to 3) 

CCHF 6 3 to 12 1 - 
$168 m 

($74–309 

m) 

$744 m 
($147 m–

1·7 bn) 

1 (1 to 3) 1 (1 to 3) 

Nipah 11 to 13 0 to 8 - - 

$185 m 

($80–341 
m) 

$835 m 

($157 m–
1·9 bn) 

1 (1 to 3) 1 (1 to 3) 

SARS 6 5 to 15 - - 

$185 m 

($80–341 

m) 

$835 m 

($157 m–

1·9 bn) 

1 (1 to 3) 1 (1 to 3) 

SFTS 1 10 to 20 - - 
$185 m 

($80–341 

m) 

$835 m 
($157 m–

1·9 bn) 

1 (1 to 3) 1 (1 to 3) 

Total 50 to 91 18 to 55 13 to 20 5 

$1·6 bn 

($0·7–2·9 

bn) 

$6·8 bn 

($1·5–15·1 

bn) 

10 (10 to 

30) 
10 (10 to 29) 

 

  



Section 5.3. Quantifying uncertainty in analytical measurements 

As explained in appendix 4, statistical independence has been assumed between cost and PoS distributions by R&D phase. 

Moreover, it is assumed that self-reported cost estimates are statistically independent from numbers of vaccine candidates 

identified in the R&D pipeline. As per section 5.2, the variance in portfolio costs associated with phase IIa outcomes is positively 

correlated with cost and PoS distributions by R&D phase. Given that this variance is likely to be amplified from the variance 

observed in the reported cost and pipeline data, we quantified the uncertainty associated with the simulation-optimization analysis 

to determine to what extent the variation in the observed data was amplified in the analytical process. We did this by: 

- Estimating the variance of the product of the following two variables: (1) number of vaccine candidates per R&D phase; 

(2) self-reported cost estimates per R&D phase, using the following formula: 

𝑉𝑎𝑟(𝑋𝑌) = 𝐸(𝑋2)𝐸(𝑌2) − [𝐸(𝑋)]2[𝐸(𝑌)]2 

Where 

X = number of candidates in the pipeline considered 

Y = self-reported cost estimates 

- Comparing the standard deviation of the above with the standard deviation associated with the PoS-adjusted cost 

estimates in the simulation-optimization. 

As per table 3 in the main article, the standard deviation of the cost of a single vaccine candidate advancing through end of phase 

IIa in the simulation model assuming 100% PoS is lower than the standard deviation observed in the self-reported cost data. The 

standard deviation of the cost of one vaccine candidate successfully advancing through end of phase IIa in the simulation-

optimization deviates increasingly from the standard deviation observed in the self-reported data as the number of vaccine 

candidates considered start from earlier phases of development and PoS distributions by R&D phase are taken into account (for 

comparison of standard deviations see Appendix table 5.6 below). In line with the sensitivity analysis above, this suggests that the 

amplification of uncertainty in the measurement of EID vaccine R&D costs is solely based on the objective function of the 

simulation-optimization model (minimum 1 phase IIa outcome) and the impact of PoS distributions by R&D phase on the 

numbers of vaccine candidates required per R&D phase to achieve this objective. There are no other sources of uncertainty 

amplification in the analysis in relation to the variation observed in the self-reported cost data. 

 

Table 5.6: Comparison of standard deviations of cost estimates between simulation-optimization and self-reported data 

  Simulation assuming 100% PoS vs self-reported data Simulation-optimization of PoS-adjusted cost vs 

self-reported data 

High Cost/  

High PoS 

scenario 
              

  

 Preclinical   Phase I   Phase II   Total   Starting from 

phase 2  

 Starting from 

phase 1  

 Starting from 

preclinical  

SD self-

reported       28,345,786        15,265,428        26,226,347        67,747,184        92,045,406        76,707,607      260,839,556  
SD simulation-

optimization 
      27,914,228        15,032,372        25,826,057        40,849,928      103,304,711      142,019,505      332,532,567  

Low Cost/  

Low PoS 

scenario               

SD self-

reported         5,925,791          5,722,608        10,508,552        18,975,332        55,916,750        52,726,261      120,381,555  
SD simulation-

optimization 
        5,895,823          5,694,263        10,458,030        13,377,017        52,306,472        86,375,514      150,096,592  
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