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1. Supplementary Methods 

1.1 Desalination capacity 

The desalination capacity, Γ (in mgsalt g
-1

electrode), was determined by the change in salt concentration 

before and after desalination, according to the following equation, 

𝛤 =
(𝐶0−𝐶𝑡)∙𝑉

𝑚
        (S1) 

where 𝐶0 and 𝐶𝑡 represent the initial and final solution concentrations, respectively, and are converted 

from electrical conductivities using the calibration curves (Supplementary Figure 8); 𝑉 is the volume of 

salt solutions (20 mL); m is the total mass of the active materials loaded on two electrodes (~15 mg).  

1.2 Average desalination rate 

The average desalination rate, v (in mgsalt g
-1

electrode min
-1

), was evaluated by the following equation, 

𝑣 =
𝛤

𝑡
         (S2) 

where t is the charging time (min). 

1.3 Electrical conductivity 

The electrical conductivity (S, in S cm
-1

) was derived from sheet resistance (𝑅𝑠, in Ω/) measured by a 

four-point probe conductivity meter according to the following equation, 

𝑆 =
1

𝑅𝑠∙𝑑
        (S3) 

where d is film thickness (cm). 

1.4 Surface area 



The effective surface area (𝐴eff) for desalination was estimated according to Equation S4, assuming 

that Na
+
 ions form a monolayer on electrode surfaces and the desalination capacity is exclusively 

contributed by electrical double layers, 

𝐴eff =
𝜋𝑟Na+

2 ∙𝛤∙NA

𝑀NaCl
       (S4) 

where 𝑟Na+ is the radius of hydrated Na
+
 (360 nm); NA is Avogadro number (6.02×10

23
 mol

-1
); 𝑀NaCl 

is the molecular weight of NaCl (58.4 g mol
-1

). 

1.5 Diffusion coefficient 

According to Qu et al.(49), the Na
+
 diffusion coefficient (𝐷Na+ , in cm2 s−1) was estimated by the 

following Warburg impedance equation of electrolyte-flooded (electrodes immersed in a large amount 

of electrolyte) electrochemical systems (e.g., CDI cells), 

𝐷Na+ =
1

2
(

R𝑇

F2𝑐𝜎𝐴
)

2
       (S5) 

where R is gas constant (8.314 J K
-1

 mol
-1

); T is temperature (298.15 K); F is Faraday constant (96485 

C mol
-1

); c is Na
+
 concentration in bulk electrolytes (8.56×10

-6
 mol cm

-3
); σ is diffusion resistance (in 

Ω s
-0.5

) obtained by fitting Nyquist plots (fig. S3, B-D); A is the electrode geometric area (9.5 cm
2
). 

1.6 Coulombic efficiency 

Coulombic efficiency (CE%) equals the ratio of charges used for ion adsorption to the total charges 

flowed into CDI cells, 

𝐷Na+ =
1

2
(

R𝑇

F2𝑐𝜎𝐴
)

2
       (S5) 

where R is gas constant (8.314 J K
-1

 mol
-1

); T is temperature (298.15 K); F is Faraday constant (96485 

C mol
-1

); c is Na
+
 concentration in bulk electrolytes (8.56×10

-6
 mol cm

-3
); σ is diffusion resistance (in 

Ω s
-0.5

) obtained by fitting Nyquist plots (fig. S3, B-D); A is the electrode geometric area (9.5 cm
2
). 



1.6 Coulombic efficiency 

Coulombic efficiency (CE%) equals the ratio of charges used for ion adsorption to the total charges 

flowed into CDI cells, 

CE% = (
𝛤𝐹

𝑀NaCl
) / (∫ 𝐼d𝑡

𝑡

0
)      (S6) 

where I and t represent the charging current (in A g
-1

) and charging time (in s), respectively. Typical 

CE% of a CDI cell without any ion-exchange membranes is in the range of 0.5 – 0.8 (50). 

1.7 Energy normalized adsorbed salt (ENAS) 

For constant-voltage CDI (zero discharge voltage), the energy normalized adsorbed salt (ENAS) is 

calculated according to the following equation: 

ENAS =
𝛤

𝐸in
=

𝛤

𝑈 ∫ 𝐼𝐶𝑑𝑡
𝑡𝐶

0

      (S7) 

where 𝛤 , 𝐸in , 𝑈 , tC, and IC represent desalination capacity (in mgNaCl gPCF
-1

), energy input during 

charging (in J gPCF
-1

), applied voltage (in V), charging time (in s), and charging current density (in A 

gPCF
-1

), respectively.  



2. Supplementary Figures 

 

Fig. S1. Validation of the CO2 BET Surface Areas. (A-C) Q(P0-P) versus relative pressure of CO2 

during the sorption on (A) PCF, (B) CF and (C) AC. The dashed lines mark the peak positions. (D-F) 

BET plots of (D) PCF, (E) CF and (F) AC. Q, P0, and P are gas adsorption quantity (cm
3
 g

-1
), 

saturation pressure (760 mmHg), and gas pressure (mmHg), respectively. 

The CO2-based BET surface areas were lower than the N2-based BET surface areas, because a 

higher operating temperature (273 K for CO2 vs. 77 K for N2) leads to a smaller quantity of adsorbed 

gas molecules at adsorption-desorption equilibria (51). By analyzing the relationships between gas 

adsorption quantity and relative pressure (fig. S1), as proposed by Kim et al. (52), the CO2-based BET 

surface areas were validated, because the following conditions are met: 

1) The linear relative pressure range in the BET plots (fig. S1, D-F) must correspond to positive slope 

in the Q(P0-P) vs. relative pressure plots (fig. S1, A-C, the section to the left of the dashed lines); 

2) The y-intercepts of the linear lines in the BET plots (fig. S1, D-F) must be positive. 



 

 

Fig. S2. Elemental compositions of PCF, CF, and AC. (A) XPS survey spectra. (B) Atomic contents. 

In AC, “Others” include Mg and Si. (C) Schematic of a possible configuration of nitrogen dopants. N-

G: graphitic-N; N-6: pyridinic-N; N-5: pyrrolic-N. 

 



 

Fig. S3. Additional electrochemical performances. (A) Nyquist plots of the PCF, CF, and AC 

desalination cells containing 500 mg L
-1

 of NaCl solutions. The inset table lists the electrical series 

resistance (ESR) values. (B-D) Z' vs. reciprocal of the square root of frequency (ω) for (B) PCF, (C) CF, 

and (D) AC. The dashed lines are the linear best fittings, the slopes of which equal to the diffusion 

resistances (σ) of the ions in the carbon materials. (E) Cyclic voltammograms of PCF, CF, and AC at 

100 mV s
-1

 in 2000 mg L
-1

 NaCl aqueous solutions. (F) Diffusion coefficients of Na
+
 in PCF, CF, and 

AC probed by EIS in 500 mg L
-1

 NaCl solutions. 



 

Fig. S4. Cell configuration and ion chromatography. (A) Schematic illustration of a deionization 

cell composed of two carbon electrodes adhered to Sn tapes and a conductivity meter enclosed in a 

conical tube. A stir bar was used to keep the salt concentration homogenous in the solution for 

measurement purposes. The cell contained an excess of NaCl solution to probe the intrinsic 

deionization properties of PCF. (B and C) Representative Cl
-
 ion chromatograms of (B) brackish water 

and (C) tap water before and after deionization. 

 



 

Fig. S5. Calibration curves of (A) NaCl, (B) KCl, (C) MgCl2, and (D) CaCl2 aqueous solutions. Each 

data point represents the average ionic conductivity of five independent measurements. The dashed 

lines are the best linear fittings. 

 



 

Fig. S6. Electrochemical properties. All materials were tested in 500 mg L
-1

 NaCl aqueous solutions. 

(A) Constant-voltage charge-discharge profiles of PCF at 1.0 V (black) and 1.2 V (red). Inset: 

Photograph of bare tin tapes charged at 1.2 V and 1.0 V for 600 s. (B) Current density (normalized to 

the mass of active material) time-evolution profiles of PCF, CF, and AC during charging (1.0 V). (C) 

Current and (D) NaCl concentration vs. time for the desalination cells with two symmetric electrodes of 

PCF on Sn tapes (red) and bare Sn tapes (black). The applied bias was 1.0 V for both electrodes. The 

cells contained an excess of NaCl solution (500 mg L
-1

) to probe the intrinsic deionization properties of 

the materials. 

By integrating the areas below the charging curves (fig. S6B), we estimated the Coulombic 

efficiencies of PCF, CF, and AC to be 0.72, 0.85, and 0.47, respectively, using Equation S6. The 

appreciably lower Coulombic efficiency of AC could originate from its high internal resistance, as 

reflected by its limited electrical conductivity. The limited electrical conductivity induced charge 

dissipation and resulted in inefficient charge utilization. 



 

Fig. S7. Constant-voltage deionization performances of PCF. (A, C, E, and G) The current density 

(based on the mass of active material) time-evolution profiles of charging PCF in (A) NaCl, (C) KCl, 

(E) MgCl2, and (G) CaCl2 aqueous solutions. (B, D, F, H) Bar charts of (B) NaCl, (D) KCl, (E) MgCl2 

and (H) CaCl2 concentrations before and after desalination. The error bars represent one standard 

deviation. 



To probe the influence of block copolymer molecular weight and composition, a new batch of PCF 

(PCF-n) from PMMA-b-PAN with a molecular weight of 63-b-107 kDa (φPAN~0.61, 

polydispersity=1.12) was prepared. The original PCF was from PMMA-b-PAN with a molecular 

weight of 48-b-52 KDa (φPAN~0.52, polydispersity=1.08). N2- and CO2-physisorption both revealed 

that the surface areas of PCF-n were appreciably lower than those of PCF (fig. S8, A-C). The lower 

surface areas corroborated with our recent finding that PCF from PMMA-b-PAN of φPAN~0.5 showed 

the highest surface areas (43). Due to the decreased surface area, the desalination capacity of PCF-n 

was 11.5±1.8 mg g
-1

, ~38% of that of PCF measured in 500 mg L
-1

 NaCl aqueous solutions (fig. S8D). 

This result demonstrated a positive correlation between the desalination capacity and surface area of 

PCF. The latter depended strongly on the molecular weight and composition of PMMA-b-PAN. 

 

Fig. S8. Effects of block copolymer molecular weight and composition on PCF. (a) N2 

physisorption isotherm at 77 K and (b) CO2 physisorption isotherms at 273 K. (C) Surface areas of 

PCF and PCF-n. The error bars are systematic errors of the instrument. (D) Desalination capacities of 

PCF and PCF-n (charging voltage: 1.0 V; 500 mg L
-1

 NaCl aqueous solutions). The error bars represent 

one standard deviation. 



3. Supplementary Tables 

Table S1. NaCl concentrations of brackish water (BW) and tap water (TW) before and after 

deionization. 

Batch 

Initial Concentration 

(mg L
-1

) 

Final Concentration 

(mg L
-1

) 

Cl
-
 NaCl 

a)
 Cl

-
 NaCl 

a)
 

BW#1 60.1 990 13.5 223 

BW#2 60.4 996 13.4 221 

BW#3 60.6 999 13.0 214 

BW#4 58.9 971 14.5 239 

TW#1 57.6 475 0.61 5.0 

TW#2 57.2 472 0.55 4.5 

TW#3 57.4 473 0.63 5.2 

TW#4 57.1 471 0.89 7.3 

Note: 

a) The NaCl concentrations (𝑐NaCl) were evaluated based on the Cl
-
 concentration (𝑐Cl−) measured by 

ion chromatography, 

𝑐NaCl = DF × 𝑐Cl− ×
𝑀NaCl

𝑀Cl−
, 

where 𝑀Cl− and 𝑀NaCl are molar masses of Cl
-
 (35.45 g mol

-1
) and NaCl (58.44 g mol

-1
), respectively. 

DF is a diluting factor of the solutions injected into ion chromatograph columns to avoid detector 

saturation. For tap water, DF = 5; For brackish water, DF = 10.



Table S2. Capacitive desalination performances of selected state-of-the-art carbon-based electrodes. 

[The data listed in this table are mainly selected from performances obtained with desalination conditions similar to our work: two-electrode 

system, no ion-exchange membranes, and desalination potentials <1.5 V.  The data here are mainly for comparison of materials performance 

rather than engineering of the device design. This table by no means is exhaustive but represents the state-of-the-art for comparison.] 

Electrode 
a)

 
NaCl Concentration 

(mg L
-1

) 

Voltage 

(V) 

Desalination 

Capacity 

(mg g
-1

electrode) 

Average Desalination Rate 

(mg g
-1

electrode min
-1

) 
Ref. 

PCF 500 1.0 30.4 3.0-38 This work 

CF 500 1.0 7.4 0.74 This work 

AC 500 1.0 11.0 1.1 This work 

Carbon Nanotubes 

CNT-CNF composite 500 1.2 16.3 0.51 (53) 

CNT sponge 500 1.2 17.0 0.05 (54) 

Single-walled 

CNT/porous 

reticulated vitreous 

carbon  

75 1.1 3.2 0.64 (55) 

Graphene/CNT hybrid 

sponge 
500 1.2 18.7 0.62 (56) 

CNT 500 1.2 2.5 ~0.025 (57) 

Carbon Fibers 

Electro-spun CNF 60 1.2 1.3 0.0013 (58) 



ZnCl2-activated CNF 500 1.2 10.5 0.17 (59) 

Hollow CNFs - 1.2 1.9 0.021 (60) 

N-doped PAN-derived 

carbon nanofibers 
585 1.2 19.9 3.98 (61) 

Graphene coated, N-

doped PAN-derived 

carbon nanofibers 

585 1.2 27.6 1.84 (61) 

N-doped porous 

carbon nanofiber 

aerogel 

500 1.2 14.3 0.24 (62) 

P-doped carbon 

nanofiber aerogel 
1000 1.2 16.2 0.27 (63) 

Cellulose-derived 

CNF 
500 1.2 13.1 0.066 (64) 

Graphene 

N-doped nanoporous 

graphene aerogel 
50 1.5 21 0.7 (24) 

Nanoporous graphene 

aerogel 
500 1.2 12.4 0.21 (65) 

3D porous graphene 

aerogel 
25 1.2 6.2 0.069 (66) 

N-doped graphene 

powder 
- 1.8 4.8 0.12 (67) 



Graphene powder - 1.8 3.9 0.098 (67) 

N-doped graphene 

sponge 
50 1.2 8.0 0.27 (24) 

Graphene spheres 25 1.6 2.3 1.2 (68) 

Graphene/mesoporous 

carbon 
500 1.5 24.3 0.20 (69) 

Graphene aerogel 500 1.2 9.9 0.99 (70) 

Graphene sponge 500 1.5 14.9 0.50 (71) 

Three-dimensional 

macroporous 

graphene 

105 µS cm
-1

 1.2 2.0 2.18 (12) 

Holey graphene sheet 5000 1.2 26.8 0.45 (13) 

Sandwich-like 

nitrogen-doped 

graphene composite 

500 1.0 10.3 0.19 (72) 

3D intercalated 

graphene sheet-sphere 

nanocomposite 

500 1.2 22.1 0.35 (73) 

Porous Carbon 

Poly(sulfobetaine 

methacrylate)-coated 

porous carbon 

245 1.2 16.5 3.3 (74) 



Basswood-derived 

hierarchically porous 

carbon monoliths 

100 1.2 5.7 0.033 (23) 

Mesoporous carbon 

film 
23500 1.2 21.0 2.1 (75) 

Carbon aerogel 2250 1.3 7.1 0.071 (76) 

TiC-derived carbon 

powder 
290 1.2 10.1 1.01 (31) 

YP50-F activated 

carbon 
290 1.2 9.1 0.91 (31) 

Mesoporous 

templated carbon 
290 1.2 12.8 1.28 (31) 

CO2-activated 

CF/carbon black 
90 1.6 9.1 0.075 (47) 

Carbide-derived 

microporous carbon 
290 1.4 14.9 0.89 (9) 

Carbon aerogel 

monolith 
2922 1.5 9.6 0.96 (48) 

Silica-templated 

ordered mesoporous 

carbon 

500 1.2 10.8 0.06 (77) 

N-doped hollow 

carbon sphere 
500 1.4 13.0 0.22 (78) 



Loofa-derived porous 

carbon monolith 
585 1.0 22.5 0.38 (15) 

Zwitterionic polymer 

coated porous carbon 
245 1.2 16.5 3.3 (74) 

N-doped porous 

carbon spheres 
1000 1.2 14.9 0.50 (79) 

Biomass-derived N-

doped porous carbon 
40 1.2 15.5 0.44 (14) 

N-doped pollen-

derived porous carbon 

powder 

~260 1.4 18.0 0.30 (80) 

N-doped mesoporous 

carbon spheres 
584 1.2 20.6 0.67 (36) 

Meso-, micro-porous 

activated carbon 

powder 

584 1.0 20.9 0.35 (81) 

N-doped carbon 

sheet/rGO composite 
589 1.2 17.5 1.75 (82) 

Ordered mesoporous 

carbon nano-

polyhedra 

584 1.2 14.6 0.49 (20) 

Polypyrrole-derived 

nano-porous carbon 

sheet 

1169 1.2 27.4 2.5 (83) 



Activated carbon 

(MSP-20) 
292 1.2 15.2 0.59 (84) 

H2-treated carbon 

beads 
292 1.2 11.6 1.2 (84) 

H2-treated carbon 

beads 
292 1.2 10.7 2.4 (84) 

Activated carbon (YP-

50) 
1169 1.2 9.2 0.90 (50) 

Activated carbon (YP-

50) 
1169 1.2 4.3 2.4 (50) 

Metal organic 

framework-based 

carbon 

584 1.2 6.9 5.4 (85) 

Metal organic 

framework-based 

carbon 

584 1.2 10.7 2.4 (85) 

Activated luffa-

derived biowaste 

porous carbon sponge 

2500 1.0 25.0 0.42 (86) 

N, P, S co-doped 

hollow carbon 

polyhedron 

500 1.0 14.0 0.12 (87) 

a)
 Acronyms of materials: CNT – carbon nanotube; CNF – carbon nanofiber; PAN – poly(acrylonitrile); rGO – reduced graphene oxide. 
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