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Supplementary Notes 

Note S1. Vectorial diffraction theory under the Helmholtz condition 

According to the vectorial Debye theory, a vectorial electric field in a homogeneous dielectric 

medium close to the focus can be described by
29
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which allows to rewrite the Debye diffraction integral as the Fourier transform (FT) of a 

weighted electric field ( , )t  E  as  
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where f is the focal length of a focusing lens (in this paper f is the focal length of a large-angle 

FT holographic lens), λ is the incident wavelength. kt = nt*k0, where nt is the refractive index of 

the medium upon the which the light is focused (in this paper nt=1) and k0 is the free-space 

wavenumber. Due to the fact that the wavefront leaving the vectorial hologram features a broad 

angular spectrum and transforms onto the vectorially weighted Ewald sphere, with the 

transmitted electric field given as ( , ) ( ) ( , ) int P    E T E , which includes an apodization factor 

of P(θ) and a polarization transformation matrix ( , ) T  resulting from the depolarization effect. 

For holographic applications, the Helmholtz condition is used to accommodate 3D uniform 

imaging that is required in 3D holography, as such the apodization function is given as 

31
( ) ( )( )

cos
P P r


 (31). To fully consider the depolarization effect on a vectorially weighted 

Ewald sphere, the polarization transformation matrix ( , ) T  is given as 
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which opens the possibility of fully considering an arbitrary 2D vector field with a spatially 

variant vector distribution.  

        As explicitly given in Fig. 2B, our machine-learning algorithm predicts that the three 

azimuthal and radial spatial components can be used to independently manipulate the three 

orthogonal components (Ex, Ey, Ez) of a 3D vectorial field in the image space. Based on our 

machine-learning inverse design algorithm, we show that the azimuthal spatial components with 

the phase modulation of Vax and Vay, which represents a horizontal and vertical π-phase-step, 

respectively, could be used to control the transverse electric field components Ex and Ey in the 

image space, respectively. On the other hand, the radial spatial component could be used to 

manipulate the longitudinal electric field component Ez in the image space. As a result, any 

incident 2D vector field Ein could be synthesized based on the above azimuthal and radial spatial 

components: 
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where (Eax, ϕax, Eay, ϕay, Er, ϕr) are the MANN-derived amplitude and phase elements. Based on 

Eq. S4, we can transform the MANN-derived single vector output containing six elements into a 

2D vector field, as presented in Fig. 2C and fig. S3. 



        To investigate the 3D vectorial field distribution at off-axis positions in the image plane, the 

incident electric field in Eq. S4 was further modified. To this purpose, the correlation between 

the deflection angle of an optical beam induced by a blazed grating in the hologram plane and 

the associated spatial shift in the image plane was numerically characterized (figs. S11 A and B). 

Such angle-dependent diffracted beams could modify the vectorial distribution on the vectorially 

weighted Ewald sphere. Therefore, the incident vectorial distribution in Eq. S4 should be 

modified: 
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where  x and y denote the deflection angle in the x and y direction, respectively.  

Note S2. Characterization of the diffraction efficiency and viewing angle of a vectorial 

hologram 

The diffraction efficiency of a vectorial hologram was experimentally characterized by moving 

the laser-printed digital phase hologram into and out of the incident 2D vector beam. As such, 

the absolute diffraction efficiency was measured as the ratio between the total intensity of the 

holographic image and that of the same sample area without the digital phase hologram. 

Furthermore, we show the characterization of the maximal viewing angle of a vectorial hologram. 

Firstly, the maximal diffraction angle of a digital phase hologram is given as 

1
max tan ( / )p  , where λ is the wavelength of light and p is the single pixel size of the 

hologram which is 0.5 µm in our laser-printed high-resolution hologram. As such, a maximal 

diffraction angle of 57.9 degree was numerically obtained. Secondly, due to the fact that a large-



angle FT holographic lens with NA=0.8 was embedded in the digital phase hologram, the 

maximal diffraction angle for the reconstructed holographic image is given as 

1sin (NA / )
FT

n  , where n is the refractive index of the image media (in this paper n=1). 

Through a simple mathematical derivation, the maximal holographic image size is linearly scaled 

by the vectorial hologram size through the relationship of max
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where DIm and DHolo represent the size of a holographic image and of a vectorial hologram, 

respectively. For our laser-printed high-resolution vectorial hologram, this relationship is 

explicitly given as DIm=0.2DHolo. As a result, the viewing angle of a 3D vectorial holographic 

image is determined by Im 2

1 ( ) / 22tan HoloD D f   
  , where f2 is the reconstruction distance of 

holographic image, suggesting a significantly enlarged viewing angle of 93.67 degree in our 

paper, opening the possibility of floating display. 

 

 

 

  



 

Fig. S1. A digital phase hologram (A) which represents the phase function of a vectorial 

hologram is superposed by a hologram of a digital image (B) and a large-angle FT 

holographic lens (C). 

  



 

Fig. S2. The strong correlation between the azimuthal and radial spatial components in the 

hologram plane and the three orthogonal components in the image plane. (A-C) The 

numerically simulated intensity distributions of the three orthogonal components of Ex, Ey, and 

Ez for different NAs based on the three azimuthal and radial spatial components presented in Fig. 

2B, respectively.  



 

Fig. S3. The schematic illustration of the MANN model. (A) The MANN consists of an input 

layer specified by the user as an arbitrary 3D vectorial field, a hidden perception layer, and an 

output layer used for the synthesis of a 2D vector field, respectively. (B) MANN-derived 2D 

vector fields based on any desired 3D vectorial field targets. 



 

Fig. S4. The comparison of the MANN-predicted values of the six elements of 3D vectorial 

fields and the true values based on the test dataset.    



 

Fig. S5. Training loss of the MANN model. The model loss represented as the mean squared 

error (MSE) has sharp declines. 

  



 

Fig. S6. Optical setup for the generation of a vectorial hologram for the reconstruction of a 

3D vectorial holographic image based on a split-screen SLM. LP: linear polarizer, HWP: half 

wave plate, BS: beamsplitter, PBS: polarization beamsplitter, QWP: quarter wave plate, SLM: 

spatial light modulator, L1 and L2: optical lenses. The red and yellow arrows label out the 

propagation directions of the incident laser beam and the phase-modulated laser beam reflecting 

from a split-screen SLM, respectively. 



 

Fig. S7. The numerical simulation and experimental verification of the generation of four 

different 2D vector fields derived from the MANN. 

  



 

Fig. S8. Optical setup for the characterization of a vectorial holographic image through the 

fluorescence imaging of single gold nanorods. SGN: single gold nanorods, COL: collecting 

objective lens, SPF: short-pass filter, TFA: terminated fiber adapter, SMF: single-mode fiber, 

PMT: photomultiplier tube. 

  



 

Fig. S9. Experimental characterization of the orientation of single gold nanorods through 

the polarization imaging using the azimuthal (A) and radial (B) polarization, respectively. 

  



 

Fig. S10. Numerical characterization of four 3D vectorial fields of i: E(0, π/4) (A), ii: E(0, 0) 

(B), iii: E(π/2, π/4) (C), and iv: E(π/4, π/2) (D) in both transverse and longitudinal planes. 



 

Fig. S11. Numerical characterization of the correlation between the azimuthal and radial 

spatial components and the three orthogonal components (Ex, Ey, Ez) for a large-angle 

diffracted optical beam. (A) The schematic of the reconstruction of a 3D vectorial field with a 

transverse shift in the image plane. (B) The numerically characterized deflection angle with 

respect to the spatial shift in the image plane. (C-E) The numerically simulated intensity 

distributions of the three orthogonal components in the image plane based on the incidence of the 

azimuthal and radial spatial components presented in Fig. 2B. 

 

 

  



 

Fig. S12. The numerical and experimental characterization of a 3D vectorial field of E(π/4, 

π/4) at different transverse positions in the image plane. (A) Schematic of the characterization 

positions in the image plane. (B) The numerically and experimentally characterized intensity 

distributions of the three electric field components at the optical axis. (C and D) The numerically 

and experimentally characterized intensity distributions of the three electric field components at 

different positions in the image plane. 

  



 

Fig. S13. Experimental characterization of 3D vectorial holographic images with three 

different 3D vectorial field distributions of E(0, π/4) (A), E(π/2, π/4) (B), and E(3π/4, π/4) 

(C), respectively, wherein random pixels were selected from the holographic images for the 

characterization of their 3D electric field components (insets). 



 

 

Fig. S14. Experimental characterization of the large beam deflection by a binary 

diffraction grating with a period of 1 µm at a wavelength of 808 nm. (A) Optical image of the 

laser-printed binary grating with a size of 1 mm by 1 mm. (B) The scanning electron microscopy 

(SEM) image of an enlarged area in (A). (C) The scanning electron microscopy image of a small 

area in the binary diffraction grating after being milled by the focused ion beam lithography, 

wherein the lateral resolution and the axis resolution were labelled out to validate the high-

resolution 3D laser manufacturing. (D-F) The experimental characterization of the binary grating 

with a large-angle light deflection of 52.4 degrees at a wavelength of 808 nm.  



 

Fig. S15. Experimental characterization of a large-angle FT holographic lens capable of 

performing the diffraction-limited focusing. (A) Optical image of the laser-printed 

holographic lens. (B-D) Confocal images of the characterized intensity distribution of the focal 

field based on a plane wave incidence in the xy, xz, and yz plane of the focal region, respectively. 

(E) The simulated diffraction-limited focus in xy plane. (F) The comparison of the full width at 

half maximum between the experimentally characterized focal field and the simulated 

diffraction-limited focal field. 

  



 

Fig. S16. Schematic illustration of the holographic image size, reconstruction distance, and 

the viewing angle of a vectorial hologram. 

  



 

Fig. S17. The numerical characterization of the divisibility property of vectorial holograms. 

(A) Numerically simulated diffraction patterns by using different sections of a vectorial 

hologram consisting of a 2D vector field and a blazed grating. (B and C) The numerically 

characterize diffraction efficiency (B) and the 3D vector components percentage (C) for different 

fractions of a blazed grating, respectively. 



 

 

Fig. S18. Numerical characterization of the excitation of a 3D metasurface which consists of 

a 3D-oriented nano-antenna array through the generated 3D vectorial fields. (A) Schematic 



illustration of the generation of a 3D vectorial fields-multiplexed holographic image, wherein 

pixels carrying four different 3D vectorial fields of E(0, π/4), E(π/4, π/4), E(π/2, π/4), and E(3π/4, 

π/4) are colour labelled by different contour lines on the intensity distribution of the holographic 

image. (B) Schematic of a 3D-oriented nano-antenna with a fixed polar angle of 45 degree. The 

right parts present back focal plane images of a 3D-oriented nano-antenna (polar angle θN=45º; 

azimuthal angle ϕN=0º) under the excitation of a 3D vectorial field of E(0, π/4), and linear 

polarization states along Ex, Ey, Ez, directions, respectively. (C) Scattering spectral and back 

focal plane images (top) of 3D-oriented nano-antennas with a fixed polar angle θN=45º and an 

azimuthal angle of ϕN=0º, 90º, 180º, and 270º, respectively, under the excitation of four different 

3D vectorial fields of E(0, π/4), E(π/4, π/4), E(π/2, π/4), and E(3π/4, π/4), respectively. (D) 

Selective display of 3D vectorial fields-multiplexed optical information based on the rotation of 

a 3D metasurface consisting of a 3D-oriented nano-antenna array, wherein four 3D vectorial 

fields-encrypted images can be selectively scattered out by azimuthally rotating the 3D 

metasurface. (E) Numerically simulated far-field images of the four 3D vectorial fields-

encrypted optical information based on the 3D metasurface with an azimuthal orientation of 

ϕN=0º, 90º, 180º, and 270º, respectively. 

  



 

Fig. S19. The numerically simulated random multiplexing of 3D vectorial fields in a 

holographic image, leading to an array of 3D vectorial vortices/singularities. (A) Schematic 

of eight different 3D vectorial fields used for the holographic multiplexing. (B) The simulation 

result of random 3D vectorial field distributions in a 3D holographic image by using the eight 3D 

vectorial fields in (A). (C to H) The 3D vectorial vortices/singularities in the electric field 

components of (Ex, Ey), (Ex, Ez), and (Ey, Ez) in the z=0 and z=10 µm image plane, respectively. 
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