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Section 1. Determining twist angle. 

We used two independent methods to find the actual twist angle 𝜃 between the two graphene 

layers. First, the twist angles were found from 𝜌xx(𝑛) and 𝜌xy(𝑛) measurements using the position 

of the secondary neutrality points (NP): 

𝜃 = 2arcsin(√
√3𝑎2

8𝐴
),  (S1) 

where 𝑎 is graphene’s lattice constant, 𝑛 the carrier density, 𝐴 = 4/∆𝑛 the superlattice unit cell 

area, and ∆𝑛 the position of the secondary NP. For device D1, NP are shown in Figs 4A and 4B in the 

main text yielding Δ𝑛 = 8.1 × 1012 cm-2 and 𝜃 = 1.87°. For device D2 it was impossible to reach 

secondary NPs using electrostatic gating; to find the twist angle in this case we used the fact that 

NPs can be found by extrapolation of the reciprocal Hall resistivity, (𝜌xy)
−1

as shown in Fig. S1A. The 

main neutrality point is clearly seen at zero carrier density and two van Hove singularities (vHS) are 

shown by red arrows. To find the secondary NPs, the linear dependences below and above the vHS 

were extrapolated as shown in Fig. S1A, with NPs corresponding to the intersections with 

(𝜌xy)
−1
= 0. The positions of the secondary NPs for this device, marked by black arrows, give 

Δ𝑛 = 15.7 × 1012 cm-2 corresponding to  = 2.60 ˚.  

Another way to determine the twist angle is from the periodicity of Brown-Zak oscillations (13, 14), 

which are shown in Fig. 4C for D1 and in Fig. S1B for D2. The superlattice area can be found as 

𝐴 = ∆(
1

𝐵
)𝜙0, where  ∆ (

1

𝐵
) is the period of Brown-Zak oscillations in the reciprocal magnetic field, 

and 𝜙0 the flux quantum. This gives ∆ (
1

𝐵
) = 0.0119 ± 0.0005 T-1 for D1 and 0.00616 ± 0.00005 T-1 

for D2 corresponding to  = 1.87±0.01˚ for device D1 and  = 2.60±0.01˚ for D2, in good agreement 

with the values found from Hall resistivity. 

 

Fig. S1. Hall resistivity and Brown-Zak oscillations in device D2. (A), Reciprocal Hall resistivity as a function of 

carrier density in a magnetic field of 1T measured at 3.5K. Black arrows indicate positions of neutrality points 

and red arrows show positions of vHS. Black dashed lines are extrapolations that allowed us to find positions 

of the secondary NPs. (B), Longitudinal resistivity vs magnetic field measured at different temperatures for 

device D2 at the carrier density n = 5.8x10
12

 cm
-2

.  

  



Section 2. Device fabrication and measurement details 

The heterostructures studied in this work were assembled using the standard dry-transfer technique 

(24, 25), and for the fabrication of the twisted bilayer graphene (TBG) we adapted the tear-and-stack 

(26, 4) method. Details of these methods are outlined below.  

First, the top hexagonal boron nitride (hBN) crystal was picked up using a polypropylene carbonate 

(PPC) polymer spun onto a polydimethylsiloxane (PDMS) film. Then we used a micromanipulator to 

place the hBN crystal so as to cover only a part of the monolayer graphene located on a SiO2/Si 

substrate. Next, hBN was slowly peeled off the substrate, tearing the graphene flake into two pieces 

while picking up the part covered with hBN. The remaining part of the graphene flake was rotated by 

2˚ and picked up with the first half attached to hBN to produce TBG. The temperature of the 

substrate was kept at 70˚ C throughout this process in order to reduce thermally induced strain or 

relaxation of the layers. By carefully controlling the micromanipulator, we ensured that graphene 

layers had no contact with the PPC polymer, guaranteeing a clean interface between the two 

graphene monolayers. Finally, the bottom hBN crystal was picked up to encapsulate the TBG, and 

the whole stack released onto a SiO2/Si substrate. To define 1D contacts, we used reactive ion 

etching to selectively remove the heterostructures areas, followed by deposition of Cr (3 nm) and Au 

(60 nm). An additional lithography step was used to make a gold top gate, which also served as an 

etching mask to define the mesa. An example of the final device is shown in Fig. S2A, where we show 

one of our dual gated TBG samples. For this sample we used p-doped Si as the bottom gate and Au 

as the top gate. 

Resistance measurements were carried out using the standard low-frequency lock-in technique with 

a small excitation current ~100 nA; this ensured negligible heating effects down to the lowest 

measurement temperature, T = 2K. The dual-gated geometry allowed us to control the total carrier 

density and the displacement field independently. The total carrier density is the sum of carrier 

densities induced by the top and bottom gates: 𝑛total =
1

𝑒
(𝐶tg𝑉tg + 𝐶bg𝑉bg), where 𝑉tg and 𝑉bg are 

the top and bottom gate voltages, 𝑒 is the electron charge, 𝐶tg and 𝐶bg  are the respective 

capacitances per unit area of the top and bottom gate (here 𝐶tg and 𝐶bg were obtained from the Hall 

measurements). The displacement field is calculated using 𝐷 =
1

2𝜀0
(𝐶tg𝑉tg − 𝐶bg𝑉bg), where 𝜀0 is 

the vacuum permittivity. To achieve a fixed displacement field, 𝑉tg and 𝑉bg were varied 

simultaneously according to the above formula, so that only the total carrier density changed.  An 

example of such measurements is shown in Fig. S2B.  

 



 

Fig. S2. Dual-gate measurement setup.  (A), Optical image of device D2. Scale bar, 7 µm. (B),  𝜌xx as a function 

of top and bottom gate voltages for device D2 at T = 3.5K. Red dashed line corresponds to the conditions of 

zero carrier density and black dashed lines show the direction of double gate sweeps at D=0 and 0.5 V/nm.  

  



Section 3. Calculations of TBG band structure 

To calculate the band structure of TBG, we used the model reported in ref. (31), where the 

Hamiltonian is given by: 

ĤTBG =

(
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.(S2) 

This is equivalent to the continuum-model Hamiltonian derived in ref. (3) up to a gauge 

transformation. The on-diagonal blocks describe the top and bottom layers of graphene where ν  is 

the Dirac velocity for the monolayer and Δ the energy shift induced by the perpendicular 

displacement field. The off-diagonal blocks describe the interactions between the two layers, with 

the interlayer coupling strength given by w=110 meV.  

The original band touching point of the top layer is placed at the corner of the mini Brillouin zone 

(mBZ) κ, and the band touching point of the bottom layer is placed at κ’. The vectorsΔ𝐊j accounting 

for the shift between Brillouin zone corners for the two layers (as illustrated in Fig. S3) are given by: 

Δ𝐊j =
4𝜋𝜃

3𝑎
(−sin (

2𝜋𝑗

3
) , cos (

2𝜋𝑗

3
)) , (S3) 

where 𝜃 is the twist angle between the two layers in radians and a=2.46 Å is graphene’s lattice 

constant.  

 

Fig. S3. Brillouin zone of two twisted graphene layers. Red and black hexagons are the original Brillouin zones 
of the two monolayers overlaid with a relative twist. The vectors 𝚫𝐊𝐣 (defined in Eq. (S3)) account for the shift 

between the original Brillouin zone corners of the two graphene layers making up a twisted bilayer graphene.  

The Hamiltonian in Eq. (S2) is shown for the K valley of the original Brillouin zone. To obtain the band 

structure in the K’ valley, we use a π-rotation of this Hamiltonian. 



The miniband spectrum is calculated by zone folding (32), i.e., by bringing the states in the K valley 

with momenta connected by the reciprocal lattice vectors of the moiré pattern to the first mBZ. The 

basis of k-states of the top and bottom layer are formed from the reciprocal lattice vectors 

∆𝐊0 +m𝐆1 + n𝐆2 and 2∆𝐊0 +m𝐆1 + n𝐆2, respectively, where 𝐆1 =∆𝐊0 − ∆𝐊1 and 𝐆2 =

∆𝐊0 − ∆𝐊2. The number of basis states is chosen to ensure convergence of the first three 

conduction and valence bands. The resulting Hamiltonian that contains the matrix elements 

between the basis states is diagonalised using a similar method to ref. (33). 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



Section 4. Numerical simulations of transverse magnetic focusing 

To simulate TMF maps shown in Fig. 2 in the main text, we first calculate the band structures to 

extract the Fermi surfaces and then determine the cyclotron orbits in real space by rotating the 

Fermi surfaces by 90° and scaling by ħ/eB (the scaling factor is obtained from the quasi-classical 

equations of motion (32)). Charge carriers propagate either clockwise or anticlockwise, depending on 

the sign of the effective charge. We assume specular boundary conditions, so that in a magnetic field 

the carriers travel along the edge of the sample following cyclotron (skipping) orbits and caustics of 

skipping orbits focus onto equidistant points. The drift direction of the skipping orbits depends on the 

effective charge of the carriers and the direction of the magnetic field.  

To achieve consistency with the experiment we select the states that are moving away from the 

injection point with energies between εf and εf+eV (where εf is the Fermi energy and V the applied 

voltage). The group velocity is calculated from the band structure using v ∝ 𝛁𝐤𝐄, i.e., it is related to 

the energy dispersion (for example, the velocity is smaller in flatter parts of the dispersion). 

Accordingly, as the applied voltage elevates the Fermi level, it results in extra states being occupied 

such that the available states are populated with a probability proportional to |𝛁𝐤𝐄|
−1  and different 

injection angles should be weighted with a probability proportional to the density of states.  

The TMF spectra shown in Fig. 2B, E in the main text are calculated numerically by using a similar 

method to ref. (12). This is achieved by counting how many electrons enter contact 3 (Fig. 1C in the 

main text) having a finite width w. The non-local resistance (V3 − V4)/I1 is then found by calculating 

(N3 −N4)/N1, where N1 is the total number of injected electrons, N3is the number of electrons 

entering contact 3 and N4is a smooth background given by N4 = ∑ w/di
N1
i .  Here the subscripts 

correspond to the device contacts in Fig. 1C and di is the distance between consecutive skips along 

the edge of the ith trajectory.  

To investigate whether the TMF spectra are sensitive to the crystallographic orientation of graphene 

layers with respect to the skipping direction (the edge of the sample), Fig. S4 compares TMF maps 

simulated for different edge orientations characterised by an angle Ф. To this end, we fix the 

orientation of one of the monolayers so that Ф = 0° corresponds to the zig zag edge and Ф = 90° to 

the armchair edge. The results for parameters of device D1 at |n| = 6.6x1012 cm-2 give triangular 

skipping orbits with the distance between the focusing peaks along the sample boundary weakly 

dependent on Ф – see Fig. S4. Similar results are obtained for all carrier densities where the Fermi 

surfaces are anisotropic, i.e., for |n| > 3x1012 cm-2 where the Fermi surface around the  point has a 

pronounced triangular shape (see Fig. 2C in the main text). Corresponding TMF maps show focusing 

peaks at slightly shifted positions relative to each other. The 3-fold symmetry of the triangular Fermi 

surface means that the TMF maps should repeat after 60° as is indeed seen for Ф = 30° and 90°  in 

Fig. S4, where the results are identical. At low carrier densities, near the main neutrality point, the 

Fermi surfaces are almost isotropic and the TMF maps are independent of Ф. The positions of vHSs 

are independent of Ф as well, in agreement with ref. (12). 



 

Fig. S4. TMF maps and simulated skipping orbits for different edge alignment. The TMF maps are simulated 
for Ф = 𝟎°, 𝟐𝟎°, 𝟑𝟎°, 𝟒𝟓° and𝟗𝟎° for device D1. The orientation of one of the monolayers is fixed such that 
𝟎° corresponds to the zig zag edge and 𝟗𝟎° to the armchair edge. The skipping orbits are shown at |n| = 
6.6x10

12
 cm

-2
.  



Section 5. Electrostatic screening in a finite displacement field   

The TMF map in Fig. 2E in the main text shows the effect of a finite displacement field between the 

two graphene monolayers. To find the effective electric field for each n in this figure, we need to 

take into account electrostatic screening. At twist angles ~2° and low carrier densities, the two 

monolayers are almost decoupled. To take into account electrostatic screening in this case, we 

include a screening term as proposed in ref. (34, 35): 

𝑒𝑑

𝜀0𝜀
(𝜀0𝐷 − (

1 + 𝜀

4
) (𝑛1 − 𝑛2)𝑒) = 

ℎ𝑣

2√𝜋
(𝑠1√|𝑛1| − 𝑠2√|𝑛2|),(S4) 

𝑛 = 𝑛1 + 𝑛2.(S5) 

where n1 and n2 are carrier densities in the two parallel graphene layers separated by a distance d, D 

the applied displacement field, 𝑣 the Dirac velocity, the band indices s1 and s2 are given by si=ni/|ni|, 

and the electron charge e < 0. In case of the TBG, we use 𝑑 ≈ 0.34 nm and following Refs. (35, 36, 

37), the dielectric constant for twisted bilayer 𝜀 = 2.7. The total carrier density n is given by Eq. (S5). 

To find the effective electric field for each value of n and D used in the experiment, the two 

equations are solved simultaneously using the Dirac velocity for monolayer graphene, v=106 m/s. In 

our calculations, we take n1 to be the bottom layer and n2 to be the top layer. The positive direction 

of D is from the top to the bottom (pointing downwards). 

 

Fig. S5. Further examples of TMF in a displacement field. (A), Rf as a function of a magnetic field and carrier 

density measured for the device D2 at 2K at a distance 4.9 µm from the injector in a displacement field 0.5 

V/nm. Colour scale: blue to red ±2.5 Ω. (B), Rf as a function of a magnetic field and carrier density measured 

for the device D2 at 5K at a distance 4.9 µm from the injector in a displacement field 0.75 V/nm. Colour scale: 

blue to red ±1.5 Ω. (C), TMF map calculated numerically for panel (A). (D), TMF map calculated numerically for 

panel (B). 



Section 6. Temperature dependence of electron scattering length 

Fig. 3B of the main text shows the temperature dependence of the relative scattering length 
𝐿𝑆
𝐿𝑝𝑎𝑡ℎ
⁄  for the electrons near the main and secondary neutrality points, where 𝐿𝑆is the electron 

scattering length and 𝐿𝑝𝑎𝑡ℎ is the length of the trajectories extending from the injector to the first 

focal point. To extract the absolute scattering lengths we have calculated 𝐿𝑝𝑎𝑡ℎ such that the 

position of the first focal point coincides with the position of the voltage probe. For the electrons 

near the main neutrality point,  𝐿𝑝𝑎𝑡ℎ ≈ 𝜋
𝐿

2
, (see inset in Fig. 1a in the main text), where 𝐿 is the 

distance from the current injector to the voltage probe, which is independent of the angle between 

the crystallographic axes orientation of graphene layers and the sample edge. Near the secondary 

neutrality point 𝐿𝑝𝑎𝑡ℎ is sensitive to the relative orientation of the graphene layers and the sample 

edge, as can be seen in Fig. S4. We have calculated 𝐿𝑝𝑎𝑡ℎ and extracted the corresponding scattering 

lengths for several characteristic angles between the device edge and zig zag axis of the top 

graphene layer: 𝐿𝑝𝑎𝑡ℎ0° = 1.11𝐿; 𝐿𝑝𝑎𝑡ℎ10° = 1.25𝐿; 𝐿𝑝𝑎𝑡ℎ20° = 1.58𝐿; 𝐿𝑝𝑎𝑡ℎ30° = 1.77𝐿; 

𝐿𝑝𝑎𝑡ℎ45° = 1.93𝐿. Using these values we extracted the scattering lengths, presuming different 

crystallographic orientations and compare them in Fig. S6. This showed that in all cases scattering 

lengths vary between ~100 µm at low T and a few µm  at T =30K, indicating the importance of 

electron-electron scattering at elevated T as discussed in the main text. 

 

Fig. S6. Temperature dependence of electron scattering length. Electron scattering lengths corresponding to 

different relative orientations of the graphene’s crystallographic axes and the sample edge were extracted 

from the temperature dependence of the first focusing peak in Fig. 3B of the main text using 𝐿𝑝𝑎𝑡ℎ  calculated 

as described in Supplementary section 6. 
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